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Abstract. Bridging physics and deep learning is a topical
challenge. While deep learning frameworks open avenues
in physical science, the design of physically consistent deep
neural network architectures is an open issue. In the spirit of
physics-informed neural networks (NNs), the PDE-NetGen
package provides new means to automatically translate phys-
ical equations, given as partial differential equations (PDEs),
into neural network architectures. PDE-NetGen combines
symbolic calculus and a neural network generator. The lat-
ter exploits NN-based implementations of PDE solvers us-
ing Keras. With some knowledge of a problem, PDE-NetGen
is a plug-and-play tool to generate physics-informed NN ar-
chitectures. They provide computationally efficient yet com-
pact representations to address a variety of issues, including,
among others, adjoint derivation, model calibration, forecast-
ing and data assimilation as well as uncertainty quantifica-
tion. As an illustration, the workflow is first presented for the
2D diffusion equation, then applied to the data-driven and
physics-informed identification of uncertainty dynamics for
the Burgers equation.

1 Introduction

Machine learning and deep learning are of fast-growing inter-
est in geoscience to address open issues, including sub-grid
parameterization.

A variety of learning architectures have shown their ability
to encode the physics of a problem, especially deep learn-
ing schemes which typically involve millions of unknown

parameters, while the theoretical reason for this success re-
mains a key issue (Mallat, 2016). A recent research trend has
involved the design of lighter neural network (NN) architec-
tures, like residual neural networks (ResNets) with shared
weights (He et al., 2016), while keeping a similar learning
performance. Interestingly, a ResNet can be understood as
an implementation of a numerical time scheme solving an
ordinary differential equation (ODE) or partial differential
equation (PDE) (Ruthotto and Haber, 2019; Rousseau et al.,
2019). Applications to learning PDEs from data have also
been introduced, e.g. PDE-Net (Long et al., 2017, 2018).
These previous works emphasize the connection between the
underlying physics and the NN architectures.

Designing or learning an NN representation for a given
physical process remains a difficult issue. If the learning fails,
it may be unclear how to improve the architecture of the neu-
ral network. It also seems irrelevant to run computationally
expensive numerical experiments on a large-scale dataset to
learn well-represented processes. The advection in fluid dy-
namics may be a typical example of such processes, which do
not require complex non-linear data-driven representations.
Overall, one would expect to accelerate and make more ro-
bust the learning process by combining, within the same NN
architecture, the known physical equations with the unknown
physics.

From the geoscience point of view, a key question is to
bridge physical representations and neural network ones so
that we can decompose both known and unknown equa-
tions according to the elementary computational units made
available by state-of-the-art frameworks (e.g. Keras, Tensor-
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Flow). In other words, we aim to translate physical equa-
tions into the computational vocabulary available to neural
networks. PDE-NetGen (Pannekoucke, 2020) addresses this
issue for PDE representations, for which we regard convolu-
tional layers as being similar to the stencil approach, which
results from the discretization of PDEs by using the finite-
difference method (see e.g. Thomas, 1995). PDE-NetGen re-
lies on two main components: (i) a computer algebra system,
here SymPy (Meurer et al., 2017), used to handle the physi-
cal equations and discretize the associated spatial derivatives;
and (ii) a Keras network generator which automatically trans-
late PDEs into neural network layers from these discretized
forms. Note that code generators based on symbolic compu-
tation are receiving increased attention to facilitate the design
of numerical experiments; see e.g. Louboutin et al. (2019).
As an illustration, we consider in this paper the application
of PDE-NetGen to the identification of closure terms.

The paper is organized as follows. In the next section, we
detail the proposed neural network generator, with an illus-
tration of the workflow on a diffusion equation. In Sect. 3, we
present the numerical integration of the neural network im-
plementation of the diffusion equation, then an application
to the data-driven identification of the closure of the Burgers
equation. A conclusion and perspective are given in Sect. 4

2 Neural network generation from symbolic PDEs

Introducing physics in the design of neural network topol-
ogy is challenging since physical processes can rely on very
different partial derivative equations, e.g. eigenvalue prob-
lems for waves or constrained evolution equations in fluid
dynamics under iso-volumetric assumption. The neural net-
work code generator presented here focuses on physical pro-
cesses given as evolution equations:

∂tu=M(u,∂αu), (1)

where u denotes either a scalar field or multivariate fields,
∂αu denotes partial derivatives with respect to spatial coor-
dinates, and M is the generator of the dynamics. At first
glance, this situation excludes diagnostic equations as en-
countered in geophysics, like balance equations: each equa-
tion has to be the evolution equation of a prognostic vari-
able. PDE-NetGen incorporates a way to solve diagnostic
equations, and this will be shown in the example detailed in
Sect. 3.2.

We first explain how the derivatives are embedded into NN
layers, then we detail the workflow of PDE-NetGen for a
simple example.

2.1 Introducing physical knowledge in the design of an
NN topology

Since the NN generator is designed for evolution equations,
the core of the generator is the automatic translation of partial

derivatives with respect to spatial coordinates into layers. The
correspondence between the finite-difference discretization
and the convolutional layer give a practical way to translate
a PDE into an NN (Cai et al., 2012; Dong et al., 2017; Long
et al., 2017).

The finite-difference method remains to replace the deriva-
tive of a function by a fraction that only depends on the
value of the function (see e.g. Thomas, 1995). For instance,
the finite-difference method applied on a second-order par-
tial derivative ∂2

xu, for u(t,x) on a 1D domain, leads to the
approximation of the derivative by

∂2
xu(t,x)≈ F2

xu(t,x), (2)

with

F2
xu(t,x)=

u(t,x+ δx)+ u(t,x− δx)− 2u(t,x)
δx2 , (3)

where δx stands for the discretization space step. Here the
spatial derivative is replaced by a fraction that only depends
on the values of u at the time t and points x− δx, x, x+ δx.
This makes a kernel stencil k = [1/δx2,−2/δx2,1/δx2

] ap-
pear that can be used in a 1D convolution layer with a lin-
ear activation function and without bias. A similar routine
applies for 2D and 3D geometries. PDE-NetGen relies on
the computer algebra system SymPy (Meurer et al., 2017) to
compute the stencil and to handle symbolic expressions.

In PDE-NetGen, the finite-difference implementation ap-
pears as a linear operator F which approximates any par-
tial derivative from the values on a regular grid. In partic-
ular, the finite difference Fα

x u(t,x) of any partial deriva-
tive ∂αx u(t,x) of order α, is computed from the grid
points {x± (2i+ 1)δx}i∈[0,p] when α = 2p+ 1 is odd and
{x± iδx}i∈[0,p] when α = 2p is even. This approximation
is consistent at the second order, i.e. Fα

x u=0
∂αx u+O(δx2),

where O is Landau’s big O notation: for any f , the notation
f (δx)=

0
O(δx2) means that limδx→0

f (δx)

δx2 is finite.

The operator F behaves partially as the partial derivative
operator ∂: F is commutative with respect to independent
coordinates, i.e. in a 2D domain for coordinates (x,y) we
have Fx ◦Fy = Fy ◦Fx , where ◦ denotes the operator com-
position, and this applies at any order, e.g. F3

xxy = F2
x ◦Fy

(but F2
x 6= Fx ◦Fx). Hence, the finite difference of a deriva-

tive with respect to multiple coordinates is computed sequen-
tially from the iterative discretization along each coordinate,
and this approximation is consistent at the second order.

Note that we chose to design PDE-NetGen considering
the finite-difference method, but alternatives using automatic
differentiation can be considered as introduced by Raissi
(2018), who used TensorFlow for the computation of the
derivative.

Then, the time integration can be implemented either by a
solver or by a ResNet architecture of a given time scheme,
e.g. an Euler scheme or a fourth-order Runge–Kutta (RK4)
scheme (Fablet et al., 2017).
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Figure 1. Neural network generator for a heterogeneous 2D diffu-
sion equation.

These two components, namely the translation of partial
derivatives into NN layers and a ResNet implementation of
the time integration, are the building blocks of the proposed
NN topology generator as exemplified in the next section.

2.2 Workflow of the NN representation generator

We now present the workflow for the NN generator given a
symbolic PDE using the heterogeneous 2D diffusion equa-
tion as a test bed:

∂tu=∇ · (κ∇u), (4)

where κ(x,y)= [κij (x,y)](i,j)∈[1,2]×[1,2] is a field of 2× 2
diffusion tensors, with x and y as the spatial coordinates, and
whose Python implementation is detailed in Fig. 1.

Starting from a list of coupled evolution equations given
as a PDE, a first preprocessing of the system determines the
prognostic functions, the constant functions, the exogenous
functions and the constants. The exogenous functions are the
functions which depend on time and space but whose evolu-
tion is not described by the system of evolution equations.
For instance, a forcing term in dynamics is an exogenous
function.

For the diffusion equation Eq. (4), the dynamics are rep-
resented in SymPy using the Function, Symbol and
Derivative classes. The dynamics are defined as an equa-
tion using the Eq class of PDE-NetGen, which inherits from
sympy.Eq with additional facilities (see the implementa-
tion in Fig. 1 for additional details).

The core of the NN generator is given by the
NNModelBuilder class. This class first preprocesses the
system of evolution equations and translates the system into
a Python NN model.

The preprocessing of the diffusion equation Eq. (4)
presents a single prognostic function, u, and three constant
functions κ11, κ12 and κ22. There is no exogenous function
for this example. During the preprocessing, the coordinate
system of each function is diagnosed such that we may deter-
mine the dimension of the problem. For the diffusion equa-
tion (Eq. 4), since the function u(t,x,y) is a function of
(x,y) the geometry is two-dimensional. In the current ver-
sion of PDE-NetGen, only periodic boundaries are consid-
ered. The specific DerivativeFactory class ensures the
periodic extension of the domain, then the computation of the
derivative by using a convolutional neural network (CNN)
and finally the crop of the extended domain to return to the
initial domain. Other boundaries could also be implemented
and might be investigated in future developments.

All partial derivatives with respect to spatial coordinates
are detected and then replaced by an intermediate variable in
the system of evolution equations. The resulting system is as-
sumed to be algebraic, which means that it only contains ad-
dition, subtraction, multiplication and exponentiation (with
at most a real). For each evolution equation, the abstract syn-
tax tree is translated into a sequence of layers which can be
automatically converted into NN layers in a given NN frame-
work. For the current version of PDE-NetGen, we consider
Keras (Chollet, 2018). An example of the implementation
in Keras is shown in Fig. 2: a first part of the code is used
to compute all the derivatives using Conv layers of Keras,
then Keras layers are used to implement the algebraic equa-
tion, which represents the trend ∂tu of the diffusion equation
Eq. (4).

At the end, a Python code is rendered from templates
by using the jinja2 package. The reason why tem-
plates are used is to facilitate the saving of the code in
Python modules and the modification of the code by the
experimenter. Runtime computation of the class could
be considered, but this is not implemented in the current
version of PDE-NetGen. For the diffusion equation (Eq. 4),
when run, the code rendered from the NNModelBuilder
class creates the NNDiffusion2DHeterognous
class. Following the class diagram in Fig. 3, the
NNDiffusion2DHeterogeneous class inherits
from a Model class, which implements the time evolution
of evolution dynamics by incorporating a time scheme. Here
several time schemes are implemented, namely an explicit
Euler scheme and a second- and a fourth-order Runge–Kutta
scheme.
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Figure 2. Part of the Python code of the NNDiffusion2DHeterogeneous class, which implements the diffusion equation (Eq. 4) as a
neural network by using Keras (only one derivative is explicitly given for the sake of simplicity).

3 Applications of PDE-NetGen

Two applications are now considered. First we validate the
NN generator on a known physical problem: the diffusion
equation (Eq. 4) detailed in the previous section. Then, we
tackle a situation in which part of the physics remains un-
known, showing the benefit of merging the known physics in
the learning of the unknown processes.

3.1 Application to the diffusion equation

In the Python implementation in Fig. 1,
diffusion_model is an instance of the
NNDiffusion2DHeterogeneous class, which nu-
merically solves the diffusion equation (Eq. 4) over a
2D domain, defined by default as the periodic domain
[0,1)×[0,1) discretized by 100 points along each direction
so that dx = dy = 1.0/100.

The time integration of the diffusion equation is shown
in Fig. 4. For this numerical experiment, the heterogeneous
tensor field of diffusion tensors κ(x,y) is set as rotations
of the diagonal tensor (l2x/τ, l

2
y/τ) defined from the length

scales lx = 10dx and ly = 5dy and the timescale τ = 1.0,
with the rotation angles θ(x,y)= π

3 cos(kxx+ kyy), where
(kx,ky)= 2π(2,3). The time step for the simulation is dt =
τMin(dx2/lx2,dy2/ly2)/6≈ 1.66× 10−3. The numerical
integration is computed by using a fourth-order Runge–Kutta
scheme. The initial condition of the simulation is given by a
Dirac in Fig. 4a. In order to validate the solution obtained
from the generated neural network, we compare the inte-
gration with the one of the finite-difference discretization of
Eq. (4),

∂tu= Fxi (κij )Fxj (u)+ κijF2
xixj

(u), (5)

where F is the operator described in Sect. 2.1 and whose
numerical result is shown in Fig. 4b.

The heterogeneity of the diffusion tensors makes an
anisotropic diffusion of the Dirac appear (see Fig. 4b), which
is perfectly reproduced by the result obtained from the inte-
gration of the generated neural network, as shown in Fig. 4c.

Figure 3. Unified modelling language (UML) class dia-
gram showing the interaction between the Model and the
NNDiffusion2DHeterogeneous classes, as well as the re-
sulting instance diffusion_model corresponding to the numer-
ical computation of the diffusion equation (Eq. 4).

At a quantitative level, the l2 distance between the solutions
is 10−5 (with dt = 1.6× 10−3). This validates the ability of
the NN generator PDE-NetGen to compute the dynamics of
a given physical evolution equation.

The next section illustrates the situation in which only part
of the dynamics is known, while the remaining physics are
learned from the data.

3.2 Application to the data-driven identification of
stochastic representations

As an illustration of the PDE-NetGen package, we consider a
problem encountered in uncertainty prediction: the paramet-
ric Kalman filter (PKF) (Pannekoucke et al., 2016, 2018). For
a detailed presentation and discussion of uncertainty predic-
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Figure 4. Starting from a Dirac (a), the diffusion equation (Eq. 4) is integrated from 0 to 1 by using a fourth-order Runge–Kutta time scheme.
The results obtained from the time integration of the finite-difference implementation in Eq. (5) (b) and of the generated NN representation
(c) are similar.

tion issues in geophysical dynamics, we refer the reader to
Le Maître and Knio (2010). Here, we briefly introduce basic
elements for the self-consistency of the example.

The idea of the PKF is to mimic the dynamics of the co-
variance error matrices all along the analysis and the forecast
cycle of the data assimilation in a Kalman setting (Kalman
filter equations for the uncertainty). It relies on the approx-
imation of the true covariance matrices by some paramet-
ric covariance model. When considering a covariance model
based on a diffusion equation, the parameters are the variance
V and the local diffusion tensor ν. Therefore, the dynamics
of the covariance error matrices along the data assimilation
cycles are deduced from the dynamics of the variance and
of the diffusion tensors. In place of the full covariance evo-
lution this dramatically reduces the dynamics to one of few
parameters.

For the non-linear advection–diffusion equation, known as
the Burgers equation,

∂tu+ u∂xu= κ∂
2
xu, (6)

the dynamics of the variance Vu and the diffusion tensor
νu = [νu,xx] (which is featured by a single field νu,xx) (Pan-
nekoucke et al., 2018) are the following.

∂
∂t
u = κ ∂2

∂x2 u− u
∂
∂x
u−

∂
∂x
Vu

2

∂
∂t
Vu = −

κVu
νu,xx
+ κ ∂2

∂x2Vu−
κ
(
∂
∂x
Vu

)2

2Vu
−u ∂

∂x
Vu− 2Vu ∂

∂x
u

∂
∂t
νu,xx = 4κν2

u,xxE
[
εu

∂4

∂x4 εu

]
−3κ ∂2

∂x2 νu,xx − κ +
6κ
(
∂
∂x
νu,xx

)2

νu,xx

−
2κνu,xx ∂2

∂x2 Vu

Vu
+
κ ∂
∂x
Vu

∂
∂x
νu,xx

Vu
+

2κνu,xx
(
∂
∂x
Vu

)2

V 2
u

− u ∂
∂x
νu,xx+

2νu,xx ∂
∂x
u

(7)

Here, E [·] denotes the expectation operator. For the sake of
simplicity, in this system of PDEs, u denotes the expecta-
tion of the random field and not the random field itself as in
Eq. (6).

In this system of PDEs, the term E
[
εu

∂4

∂x4 εu

]
cannot be

determined from the known quantities u,Vu and νu,xx . This
brings up a problem of closure, i.e. determining the unknown
term as a function of the known quantities. A naive assump-
tion would be to consider a zero closure (closure(t,x)= 0).
However, while the tangent–linear evolution of the perturba-
tions along the Burgers dynamics is stable, the dynamics of
the diffusion coefficient νu,xx would lead to unstable dynam-
ics as the coefficient of the second-order term −3κ ∂2

∂x2 νu,xx
is negative. This further stresses the importance of the un-
known term to successfully predict the uncertainty.

Within a data-driven framework, one would typically ex-
plore a direct identification of the dynamics of the diffusion
coefficient νu,xx . Here, we use PDE-NetGen to fully exploit
the known physics and focus on the data-driven identifica-
tion of the unknown term E

[
εu

∂4

∂x4 εu

]
in the system of equa-

tions (Eq. 7). This leads to replacing the term E
[
εu

∂4

∂x4 εu

]
in Eq. (7) by an exogenous function closure(t,x) and then to
follow the workflow detailed in Sect. 2.2.

The unknown closure function is represented by a neural
network (a Keras model) which implements the expansion

closure(t,x)∼ a
∂2

∂x2 νu,xx (t,x)

ν2
u,xx (t,x)

+ b
1

ν2
u,xx (t,x)

+ c

(
∂
∂x
νu,xx (t,x)

)2
ν3
u,xx (t,x)

, (8)

where a, b, and c are unknown and where the partial deriva-
tives are computed from convolution layers, as described in
Sect. 2. This expression is similar to a dictionary of possi-
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Figure 5. Implementation of the closure by defining each unknown quantity as an instance of the class TrainableScalar and the
resulting generated NN code. This is part of the code available in the Jupyter notebook given as an example in the package PDE-NetGen.

ble terms as in Rudy et al. (2017), and it is inspired from
an arbitrary theoretically designed closure for this problem
where (a,b,c)= (1, 3

4 ,−2) (see Appendix A for details). In
the NN implementation of the exogenous function modelled
as Eq. (8), each of the unknown coefficients (a,b,c) is imple-
mented as a 1D convolutional layer, with a linear activation
function and without bias. Note that the estimated parame-
ters (a,b,c) could be different from the one of the theoretical
closure: while the theoretical closure can give some clues for
the design of the unknown term, this closure is not the truth,
which is unknown (see Appendix A).

The above approach, which consists of constructing an ex-
ogenous function given by an NN to be determined, may
seem tedious for an experimenter who would not be accus-
tomed to NNs. Fortunately, we have considered an alterna-
tive in PDE-NetGen that can be used in the particular case in
which candidates for a closure take the form of an expression
with partial derivatives, as is the case for Eq. (8). An example
of implementation is shown in Fig. 5 where pkf_dynamics
stands for the system of equations (Eq. 7). The unknown clo-
sure function is replaced by the proposal of closure Eq. (8)
where each unknown quantity (a,b,c) is declared as an
instance of the class TrainableScalar. Then, the NN
is generated, producing the class ClosedPKFBurgers
whose an instance is ready for training. In the generated code,
each instance of the TrainableScalar class is translated
as a specific layer, TrainableScalarLayerFactory,
equivalent to the above-mentioned convolution layer and

whose parameter can be trainable. For instance, the train-
able scalar a is implemented by the line train_scalar_9. Note
that the layer TrainableScalarLayerFactory can
be used for 1D, 2D or 3D domains. In this example, the pro-
posal for closure has been defined at a symbolic level without
an additional exogenous NN.

Examples of implementation for the exogenous NN and
for the trainable layers are provided in the package PDE-
NetGen as Jupyter notebooks for the case of the Burgers
equation.

For the numerical experiment, the Burgers equation is
solved on a one-dimensional periodic domain of length 1,
discretized in 241 points. The time step is dt = 0.002, and the
dynamics are computed over 500 time steps to integrate from
t = 0 to t = 1.0. The coefficient of the physical diffusion is
set to κ = 0.0025. The numerical setting considered for the
learning is the tangent–linear regime described in Pannek-
oucke et al. (2018), in which the initial uncertainty is small
and whose results are shown in their Figs. 4a, 5a and 6a.

To train the parameters (a,b,c) in Eq. (8), we build a train-
ing dataset from an ensemble prediction method whereby
each member is a numerical solution of the Burgers equation.
The numerical code for the Burgers equation derives from
PDE-NetGen applied on the symbolic dynamics (Eq. 6). Us-
ing this numerical code, we generate a training dataset com-
posed of 400 ensemble simulations of 501 time steps, with
each ensemble containing 400 members. For each ensem-
ble forecast, we estimate the mean, variance Vu and diffu-
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Figure 6. Example of a Keras implementation for an RK4 time
scheme: given time step dt and a Keras model trend of the dynam-
ics, the function make_time_scheme returns a Keras model im-
plementing an RK4.

sion tensor νu. Here, we focus on the development of the
front where we expect the unknown term to be of key impor-
tance and keep for training purposes the last 100 time steps of
each ensemble forecast. For the training only, the RK4 time
scheme is computed as the ResNet implementation given in
Fig. 6 to provide the end-to-end NN implementation of the
dynamics.

The resulting dataset involves 40 000 samples. To train
the learnable parameters (a,b,c), we minimize the one-step-
ahead prediction loss for the diffusion tensor νu. We use the
ADAM optimizer (Kingma and Ba, 2014) and a batch size
of 32. Using an initial learning rate of 0.1, the training con-
verges within three outer loops of 30 epochs with a geo-
metrical decay of the learning rate by a factor of 1/10 af-
ter each outer loop. The coefficients resulting from the train-
ing over 10 runs are (a,b,c)= (0.93,0.75,−1.80)± (5.1×
10−5,3.6× 10−4,2.7× 10−4).

Figure 7 compares the estimation from a large ensem-
ble of 1000 members (panels a–c) with the results of the
trained closed PKF dynamics (panels d–f). Both the ensem-
ble and PKF means (panels a and d) clearly show a front
which emerges from the smooth initial condition located near
x = 0.75 at time 1. The variance fields (panels b and e) illus-
trate the vanishing of the variance due to the physical diffu-
sion (the κ term in Eq. 6) and the emergence of a peak of
uncertainty which is related to the uncertainty of the front
position. Instead of the diffusion νu,xx , panels (c) and (f)

show the evolution of the correlation length scale defined
as
√

0.5νu,xx , which has the physical dimension of a length.
Both panels show the increase in the length scale due to the
physical diffusion, except in the vicinity of the front where an
oscillation occurs, which is related to the inflexion point of
the front. While the magnitude of the oscillation predicted by
the PKF (panel f) is slightly larger than the estimation from
the large ensemble reference (panel c), the pattern is well-
predicted by the PKF. In addition, the parametric form of the
PKF does not involve local variabilities due to the finite size
of the ensemble, which may be observed in panel (c). Over-
all, these experiments support the relevance of the closure in
Eq. (8) learned from the data to capture the uncertainty asso-
ciated with Burgers’ dynamics.

3.3 Discussion on the choice of a closure

In the Burgers dynamics, a priori knowledge was introduced
to propose an NN implementing the closure in Eq. (8).

In the general case, the choice of the terms to be intro-
duced in the closure may be guided by known physical prop-
erties that need to be verified by the system. For example,
conservation or symmetry properties that leave the system
invariant can guide the choice of possible terms. For Burgers
dynamics, νu,xx has the dimension of a length squared, [L2

],

and E
[
εu

∂4

∂x4 εu

]
is of dimension [L−4

]. Thus, the terms con-
sidered in Eq. (8) are among the simplest ones which fulfil
the expected dimensionality of [L−4

]. Symbolic computation
here may help the design of such physical parameterizations
in more general cases.

When no priors are available, one may consider mod-
elling the closure using state-of-the-art deep neural network
architectures, which have shown impressive prediction per-
formance, e.g. CNNs, ResNets (Zagoruyko and Komodakis,
2016; Raissi, 2018).

The aim of the illustration proposed for Burgers dynamics
is not to introduce a deep learning architecture for the clo-
sure, but to facilitate the construction of a deep learning ar-
chitecture taking into account the known physics: the focus is
on the hybridization between physics and machine learning.
Though the closure itself may not result in a deep architec-
ture, the overall generated model leads to a deep architecture.
For instance, the implementation using the exogenous NN
uses around 75 layers, while the implementation based on the
class TrainableScalar uses 73 layers (we save the cal-
culation of the derivatives that appear in Eq. (8), while they
are computed twice when using the exogenous NN), with
several convolutional layers among them. For other prob-
lems, there would be no choice other than considering a deep
neural network, for instance using multiple ResNet blocks or
normalization, or architectures inspired from recent studies
on closure modelling (e.g. Bolton and Zanna, 2019). Such
architectures can be plugged in PDE-NetGen as an exoge-
nous neural network.
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Figure 7. Uncertainty estimated from a large ensemble of 1000 members (a–c) with the expectation of E [u] (a), variance Vu (b) and
the length scale (defined from the diffusion coefficient by

√
0.5νu,xx ). (c) The uncertainty predicted from the PKF evolution equa-

tions closed from the data (d–f), for which the same statistics are shown in (d), (e) and (f). The fields are represented only for time
t = 0,0.2,0.4,0.6,0.8,1.

4 Conclusions

We have introduced a neural network generator, PDE-
NetGen, which provides new means to bridge physical priors
given as symbolic PDEs and learning-based NN frameworks.
This package derives and implements a finite-difference ver-
sion of a system of evolution equations, wherein the deriva-
tive operators are replaced by appropriate convolutional lay-
ers including the boundary conditions. The package has been
developed in Python using the symbolic mathematics li-
braries SymPy and Keras.

We have illustrated the usefulness of PDE-NetGen through
two applications: a neural network implementation of a 2D
heterogeneous diffusion equation and the uncertainty predic-
tion in the Burgers equation. The latter involves unknown
closure terms, which are learned from data using the pro-
posed neural network framework. Both illustrations show the
potential of such an approach, which could be useful for im-
proving the training in complex applications by taking into
account the physics of the problem.

This work opens new avenues to make the most of exist-
ing physical knowledge and of recent advances in data-driven
settings, more particularly neural networks, for geophysi-
cal applications. This includes a wide range of applications,
for which such physically consistent neural network frame-
works could either lead to the reduction of computational
cost (e.g. GPU implementation embedded in deep learning
frameworks) or provide new numerical tools to derive key
operators (e.g. adjoint operator using automatic differentia-
tion). These neural network representations also offer new
means to complement known physics with the data-driven
calibration of unknown terms. This is regarded as key to ad-
vancing state-of-the-art simulations, forecasting and the re-
construction of geophysical dynamics through model–data
coupled frameworks.
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Appendix A: Local Gaussian closure

For self-consistency, we detail how the theoretical closure is
obtained (Pannekoucke et al., 2018).

It can be shown that E
[
εu∂

4
xεu

]
= E

[(
∂2
xεu

)2]
− 2∂2

xgu,

where gu = 1
2νu

is the so-called metric tensor that is a scalar
field in 1D. When the correlation function ρ(x,x+ δx)=
E [ε(x)ε(x+ δx)] is a homogeneous Gaussian, ρ(x,x+
δx)= e−

1
2 δx

2g , where the metric tensor g is a constant here,
then the fourth-order Taylor expansion in δx of the Gaus-
sian correlation leads to the identity E

[
ε∂4
xε
]
= 3g2, which

is independent of the position x. As a possible closure, this
suggests modelling the unknown term as E

[
εu∂

4
xεu

]
∼ 3g2

u−

2∂2
xgu that depends on x. Replacing gu by 1/(2νu) leads to

E
[
εu∂

4
xεu

]
∼

∂2

∂x2 νu,xx (t,x)

ν2
u,xx (t,x)

+
3
4

1
ν2
u,xx (t,x)

− 2

(
∂
∂x
νu,xx (t,x)

)2
ν3
u,xx (t,x)

. (A1)

The result is that Eq. (A1) is not the true analytic expression
of E

[
εu∂

4
xεu

]
as a function of u,Vu and νu but only a param-

eterization.
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Code availability. The PDE-NetGen package is free and open
source. It is distributed under the CeCILL-B free software li-
cence. The source code is provided through a GitHub repos-
itory at https://github.com/opannekoucke/pdenetgen, last access:
12 June 2020). A snapshot of PDE-NetGen 1.0 is available at
https://doi.org/10.5281/zenodo.3891101 (Pannekoucke, 2020).
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