Articles | Volume 13, issue 1
https://doi.org/10.5194/gmd-13-225-2020
https://doi.org/10.5194/gmd-13-225-2020
Model description paper
 | 
29 Jan 2020
Model description paper |  | 29 Jan 2020

The Canadian Hydrological Model (CHM) v1.0: a multi-scale, multi-extent, variable-complexity hydrological model – design and overview

Christopher B. Marsh, John W. Pomeroy, and Howard S. Wheater

Related authors

Multi-scale snowdrift-permitting modelling of mountain snowpack
Vincent Vionnet, Christopher B. Marsh, Brian Menounos, Simon Gascoin, Nicholas E. Wayand, Joseph Shea, Kriti Mukherjee, and John W. Pomeroy
The Cryosphere, 15, 743–769, https://doi.org/10.5194/tc-15-743-2021,https://doi.org/10.5194/tc-15-743-2021, 2021
Short summary

Related subject area

Hydrology
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023,https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023,https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023,https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
DynQual v1.0: a high-resolution global surface water quality model
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023,https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023,https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary

Cited articles

Ahrens, J., Geveci, B., and Law, C.: ParaView: An End-User Tool for Large Data Visualization, in Visualization handbook, Elsevier, 2005. 
Avanzi, F., Michele, C. D., Morin, S., Carmagnola, C. M., and Lejeune, Y.: Model complexity and data requirements in snow hydrology : seeking a balance in practical applications, Hydrol. Proc., 30, 2106–2118, https://doi.org/10.1002/hyp.10782, 2016. 
Bahremand, A.: HESS Opinions: Advocating process modeling and de-emphasizing parameter estimation, Hydrol. Earth Syst. Sci., 20, 1433–1445, https://doi.org/10.5194/hess-20-1433-2016, 2016. 
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/s0165-232x(02)00074-5, 2002. 
Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, 2014. 
Download
Short summary
The Canadian Hydrological Model (CHM) is a next-generation distributed model. Although designed to be applied generally, it has a focus for application where cold-region processes, such as snowpacks, play a role in hydrology. A key feature is that it uses a multi-scale surface representation, increasing efficiency. It also enables algorithm comparisons in a flexible structure. Model philosophy, design, and several cold-region-specific examples are described.