Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.240 IF 5.240
  • IF 5-year value: 5.768 IF 5-year
    5.768
  • CiteScore value: 8.9 CiteScore
    8.9
  • SNIP value: 1.713 SNIP 1.713
  • IPP value: 5.53 IPP 5.53
  • SJR value: 3.18 SJR 3.18
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 51 h5-index 51
GMD | Articles | Volume 13, issue 1
Geosci. Model Dev., 13, 225–247, 2020
https://doi.org/10.5194/gmd-13-225-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 13, 225–247, 2020
https://doi.org/10.5194/gmd-13-225-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 29 Jan 2020

Model description paper | 29 Jan 2020

The Canadian Hydrological Model (CHM) v1.0: a multi-scale, multi-extent, variable-complexity hydrological model – design and overview

Christopher B. Marsh et al.

Viewed

Total article views: 1,252 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
860 379 13 1,252 26 32
  • HTML: 860
  • PDF: 379
  • XML: 13
  • Total: 1,252
  • BibTeX: 26
  • EndNote: 32
Views and downloads (calculated since 26 Apr 2019)
Cumulative views and downloads (calculated since 26 Apr 2019)

Viewed (geographical distribution)

Total article views: 964 (including HTML, PDF, and XML) Thereof 963 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 10 Jul 2020
Publications Copernicus
Download
Short summary
The Canadian Hydrological Model (CHM) is a next-generation distributed model. Although designed to be applied generally, it has a focus for application where cold-region processes, such as snowpacks, play a role in hydrology. A key feature is that it uses a multi-scale surface representation, increasing efficiency. It also enables algorithm comparisons in a flexible structure. Model philosophy, design, and several cold-region-specific examples are described.
The Canadian Hydrological Model (CHM) is a next-generation distributed model. Although designed...
Citation