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Abstract. Despite debate in the rainfall–runoff hydrology
literature about the merits of physics-based and spatially
distributed models, substantial work in cold-region hydrol-
ogy has shown improved predictive capacity by includ-
ing physics-based process representations, relatively high-
resolution semi-distributed and fully distributed discretiza-
tions, and the use of physically identifiable parameters
that require limited calibration. While there is increasing
motivation for modelling at hyper-resolution (< 1 km) and
snowdrift-resolving scales (≈ 1 to 100 m), the capabilities of
existing cold-region hydrological models are computation-
ally limited at these scales.

Here, a new distributed model, the Canadian Hydrolog-
ical Model (CHM), is presented. Although designed to be
applied generally, it has a focus for application where cold-
region processes play a role in hydrology. Key features in-
clude the ability to do the following: capture spatial hetero-
geneity in the surface discretization in an efficient manner
via variable-resolution unstructured meshes; include multi-
ple process representations; change, remove, and decouple
hydrological process algorithms; work at both a point and
spatially distributed scale; scale to multiple spatial extents
and scales; and utilize a variety of forcing fields (bound-
ary and initial conditions). This paper focuses on the overall
model philosophy and design, and it provides a number of
cold-region-specific features and examples.

1 Introduction

Hydrological models are important tools for understanding
past hydrological events, evaluating anthropogenic impacts
on natural systems, and informing water resource and man-
agement decisions under contemporary and future climates
(DeBeer et al., 2015; Freeze and Harlan, 1969; Milly et al.,
2008; Mote et al., 2005; Nazemi et al., 2013; Wheater, 2015).
Due to the significant role mountains play in the global
water supply as “water towers” (Viviroli et al., 2007), the
fragility of arctic and mountain ecosystems (Bring et al.,
2016), and these regions’ sensitivity to anthropogenic cli-
mate change (Duarte et al., 2012; Mote et al., 2005; Mus-
selman et al., 2017; Rasouli et al., 2015), there is substantial
motivation to provide timely and accurate simulations that
can be used to address current and future management chal-
lenges in these cold regions. Although the need for multi-
scale (Samaniego et al., 2017), hyper-resolution (sub-1 km)
(Wood et al., 2011), and snowdrift-resolving scales (1 to
100 m) (Pomeroy and Bernhardt, 2017) is becoming clear,
contemporary cold-region models suffer from shortcomings
when run over large extents and high spatial resolutions, and
they may be limited to the spatial scale at which they operate.

Numerous studies suggest that model performance is
greatly improved in cold regions when including explicit spa-
tial heterogeneity, identifiable parameter spaces, and a full
range of cold-region hydrological processes, e.g., Pomeroy
et al. (1998a, b), Bartelt and Lehning (2002), Bowling et
al. (2004), Etchevers et al. (2004), Raderschall et al. (2008),
Dornes et al. (2008b), Essery et al. (2013, 2009), Pomeroy et
al. (2013), Fang et al. (2013), Fiddes and Gruber (2014), Ku-
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mar et al. (2013), Endrizzi et al. (2014), Mosier et al. (2016),
and Painter et al. (2016). A better understanding of the physi-
cal system instead of solely focusing on parameter optimiza-
tion (Bahremand, 2016) and ensuring that models are not
needlessly constrained by the rigidity of the model struc-
ture, choice of parametrization, and representation of spa-
tial variability and hydrological connectivity (Mendoza et al.,
2015) are expected to further predictive capacity. Physics-
based models may also limit the reliance upon calibrated ef-
fective values and decrease uncertainty due to requiring the
use of physically identifiable parameters (Fatichi et al., 2016;
Pomeroy et al., 2013). The use of lightly calibrated or uncali-
brated models is increasingly important for simulating future
conditions, as climate non-stationarity increases the uncer-
tainty of calibrated models (Brigode et al., 2013; Vaze et al.,
2010). Distributed, physics-based models are thus often the
most appropriate type of hydrological model for simulating
distributed state variables (Dornes et al., 2008a; Fatichi et
al., 2016), simulating catchments with extreme heterogene-
ity (Kumar et al., 2013), or simulating process interactions
(Dornes et al., 2008a; Horne and Kavvas, 1997; Maxwell and
Kollet, 2008). These improvements motivate the continued
development of spatially discrete, physics-based models.

Although there is uncertainty in the optimum levels of
complexity required in cold-region hydrological models
(Avanzi et al., 2016; Clark et al., 2017), such models have
unique requirements and considerations; a brief summary
follows. The largest discharge event of the year often re-
sults from the melt of the seasonal snowpack (Davies et al.,
1987; Gray and Male, 1981), and therefore substantial ef-
fort has been invested in snow model development, e.g., Jor-
dan (1991), Marks et al. (1998), Bartelt and Lehning (2002),
Vionnet et al. (2012), Leroux and Pomeroy (2017), as well
as flexible snow-cover modelling systems, e.g., the Facto-
rial Snow Model (FSM) (Essery, 2015) and ES-CROC (En-
semble System Crocus) (Lafaysse et al., 2017). Streamflow
discharge is impacted by snowmelt spatial heterogeneity due
to variability in surface energetics (Carey and Woo, 1998;
Dozier and Frew, 1990; Harder et al., 2019; Marks et al.,
1992; Mott et al., 2013; Munro and Young, 1982; Olyphant,
1986; Pomeroy et al., 2003; Schlögl et al., 2018), precipita-
tion spatial variability (Harder and Pomeroy, 2013; Lehning
et al., 2008; Marks et al., 2013), vegetation canopy intercep-
tion (Hedstrom and Pomeroy, 1998; Kuchment and Gelfan,
2004), and snow redistribution via wind processes (Essery et
al., 1999; MacDonald et al., 2009; Mott et al., 2010; Pomeroy
et al., 1993; Pomeroy and Li, 2000; Winstral et al., 2002).
Snowmelt runoff is further complicated due to frozen soils
that limit infiltration rates (McCauley et al., 2002; Zhao and
Gray, 1999) such that standard infiltration representations are
insufficient (Lundberg et al., 2016). Active layer depth above
permafrost dramatically impacts surface characteristics (e.g.,
topography, vegetation, soils), streamflow seasonality, and
water partitioning (Walvoord and Kurylyk, 2016). In cold
regions, the numerous lakes and wetlands impact the local

climate during ice-free periods (Latifovic and Pouliot, 2007;
Rouse et al., 2005; Shook et al., 2015). In summary, cold-
region hydrological models have unique challenges and must
include a variety of process representations not considered in
most temperate hydrological models.

There are, however, significant limitations in hydrolog-
ical modelling ability. For instance, there are deficiencies
due to substantial heterogeneity and difficulty in observing
surface and subsurface parameters and processes (Freeze,
1974), no single scale at which the homogeneity of con-
trol volumes is achieved (Beven, 1989; Blöschl and Siva-
palan, 1995; Klemeš, 1983; Shook and Gray, 1996), and mis-
matches between underlying theory and applied scales (Or
et al., 2015). These limitations manifest as (1) uncertain-
ties in model parameters, initial conditions, boundary con-
ditions, forcing data; (2) incomplete process representations,
selections, and linkages (Beven, 1993; Beven and Wester-
berg, 2011; Clark et al., 2008; Fatichi et al., 2016; Raleigh et
al., 2015; Slater et al., 2013; Wagener and Montanari, 2011);
and (3) issues of complexity including the degree of physics-
based equations, the number of parameters, forcing data re-
quirements, and spatial discretization requirements (Beven,
1993; Clark et al., 2008; Hrachowitz and Clark, 2017). In
addition, these models may have limited structural flexibil-
ity for incorporating multiple modelling philosophies (e.g.,
Dornes et al., 2008b; Clark et al., 2011) or have limitations
in incorporating next-generation data products such as un-
manned aerial vehicle (UAV) imagery (Bühler et al., 2016;
Harder et al., 2016; Spence and Mengistu, 2016). Without
care, physically based, mechanistic approaches can result
in over-parameterized models (Perrin et al., 2001) that are
highly uncertain and difficult to verify (Beven, 1993) due to
a mismatch in model element and observed scales as well
as limited high-resolution spatially distributed data (Beven,
1989). Physically based models should be used critically,
with a proper appreciation of the strengths and limitations,
and should be dependent on the purpose of the modelling
(Beven, 1993, 2006; Das et al., 2008; Perrin et al., 2001).

In order to address the scientific and societal demands
placed on hydrological models, there is a need for a new gen-
eration of hydrological models that allow for the following.

1. Multi-scale, spatially distributed process representa-
tion. Although semi-distributed schemes such as the
group response unit (GRU) or hydrological response
unit (HRU) approach have had substantial success in
cold regions, e.g., Pietroniro et al. (2007), Pomeroy et
al. (2007), and Clark et al. (2015), complex spatial be-
haviours cannot be modelled unless the HRUs are con-
structed a priori to produce the behaviours. This lim-
its simulating cascading processes and emergent be-
haviours, e.g., the accumulation of non-linear process
interactions leading to basin-wide behaviours. Repre-
senting mass and energy heterogeneities as well as inter-
actions at multiple spatial scales (Hrachowitz and Clark,
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2017; Samaniego et al., 2017) moving towards regional
predictions (Sivapalan, 2018) has been suggested as a
path to improving predictive capacity. Fully distributed,
raster-based models are inefficient with the need for
many raster cells, greatly limiting the applicability for
both high resolution and over large extents. The defi-
ciencies in HRU, GRU, and raster-based models point
towards a need for an improved terrain representation
that allows for both high resolution as needed and ap-
plicability for modelling over large extents.

2. Flexible model structure. Many models use a rigid
model structure that does not allow for easily chang-
ing model algorithms and all parameters or easily test-
ing different algorithms or hypotheses. An improved ap-
proach is to allow process modularity for easily modify-
ing aspects of a model’s structure and complexity. Such
model flexibility has been present in many rainfall–
runoff models, e.g., MMS (Leavesley et al., 2002),
FUSE (Clark et al., 2008), and SUPERFLEX (Fenicia
et al., 2011), but to the authors’ knowledge, such modu-
larity in cold-region models has been limited to the Cold
Regions Hydrological Model (CRHM) (Pomeroy et al.,
2007) and SUMMA (Clark et al., 2015). These are both
modular, physics-based, semi-distributed hydrological
response unit (HRU) models with capability for cold-
region hydrology. A flexible model structure should al-
low for easily scaling between temporal scales (i.e., time
stepping), spatial extents, spatial resolutions, and pro-
cess representations as required. Assumptions on ex-
plicit coupling between processes leads to difficulty in
testing different process representations and limits the
inclusion of existing code. Despite the rich set of cold-
region snow and hydrological models, e.g., Alpine3-D
(Lehning et al., 2006), iSnobal (Marks et al., 1998),
GeoTOP (Endrizzi et al., 2014), MESH (Pietroniro et
al., 2007), CRHM (Pomeroy et al., 2007), SUMMA
(Clark et al., 2015), SRGM (Gelfan et al., 2004; Kuch-
ment and Gelfan, 2004), ESCROC (Lafaysse et al.,
2017), and VIC (Cherkauer et al., 2003), there are no
explicitly distributed, modular cold-region models.

3. Ease of changing model parameters, as well as ini-
tial and boundary conditions. Model parameters, ini-
tial conditions, and boundary conditions are uncertain
in hydrological systems and are a significant constraint
on model complexity and validity. Hard-coded param-
eters can be a significant source of uncertainty as they
are effectively treated as physical constants (Mendoza
et al., 2015). Modern models must be developed so that
changing initial conditions, parameters, and all aspects
of the model configuration are trivial and easily done
within the context of an uncertainty framework. Due to
the long temporal durations for which climate change
scenarios are done, flexibility in changing surface pa-

rameters with time, e.g., vegetation cover, also needs to
be possible.

4. Efficient use of computational resources. Unlike GRU-
or HRU-based models, distributed models are generally
discretized using a raster approach with a fixed spa-
tial resolution. This can lead to either increased com-
putational requirements or non-optimum use of com-
puter resources due to the overrepresentation of the
surface (e.g., homogenous locations), while choosing
a coarser-sized mesh may result in failure to capture
quickly varying and extremely important heterogeneity.
Because of the general overrepresentation of topogra-
phy via a fixed-resolution raster, these distributed mod-
els become difficult to parametrize and computation-
ally expensive to run, limiting their applicability to large
spatial extents. Using more efficient terrain representa-
tions as well as modern high-performance computing
paradigms can reduce this wasted computational effort.

5. Allow appropriate model complexity. Raster-based
models with high-resolution grid cells, and wasted com-
putational effort as noted above, often lead to arbi-
trary complexity reduction and process removal due
to computational constraints. Reducing the model run-
time is often a justification for simpler conceptual mod-
els, for simpler landscape representations, and for fewer
computational elements. Hydrological model complex-
ity should be warranted based upon the simulation re-
sults and needs but not for simplicity’s sake.

Although there are substantial advantages to using
physics-based, fully distributed models, data (forcing and
validation) and computational limitations have slowed their
development and adoption. However, recent technological
progress has been progressively removing some of these lim-
itations. For example, unmanned aerial vehicle (UAV) im-
agery is providing submetre digital surface and elevation
maps (Bühler et al., 2016; Harder et al., 2016), vegeta-
tion classification (Spence and Mengistu, 2016), hydrolog-
ical features (Spence and Mengistu, 2016), and initial con-
ditions, e.g., snow cover (Bühler et al., 2016; Harder et al.,
2016). Surface geophysical methods are improving the char-
acterization of large-scale subsurface properties (Hubbard et
al., 2013). Remote sensing products of soil properties are
of increasingly higher quality (Mohanty, 2013), and high-
resolution satellite imagery can be used to diagnose spatial
patterns of snow cover (Wayand et al., 2018). Widespread ac-
cess to high-performance computing (HPC) resources, e.g.,
Compute Canada (Canada), Extreme Science and Engineer-
ing Discovery Environment (XSEDE; United States), Na-
tional Computational Infrastructure (NCI; Australia), and
the Horizon 2020 initiative (European Union), can help off-
set the increased computational cost of the simulations and
of the uncertainty analysis needed to constrain a priori es-
timated physically based parameters (Paniconi and Putti,
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2015). Lastly, efficient uncertainty analysis frameworks such
as VARS (Razavi and Gupta, 2016) can also decrease the to-
tal number of required simulations to estimate uncertainty,
further reducing the computational burden. However, esti-
mates of critical subsurface properties such as hydraulic con-
ductivity cannot be represented a priori with sufficient con-
fidence or at the correct scale, viz. effective model element
parameters (Binley et al., 1989), to avoid calibration (Freeze,
1974).

In summary, models will always require a trade-off be-
tween computational complexity (e.g., algorithms, landscape
representation, initial conditions, parameters, and terrain dis-
cretization) and model performance (e.g., modelled versus
observed). Cold-region hydrological models have unique re-
quirements that motivate the inclusion of explicit spatial
heterogeneity via semi-distributed and fully distributed dis-
cretizations. To simulate the complex inter-process interac-
tions that lead to important hydrological features, a variety of
features must exist within a distributed, process-based mod-
elling framework.

This paper outlines the philosophy and details of a new hy-
drological model, the Canadian Hydrological Model (CHM),
and how the development of this modelling framework ad-
dresses the above outlined limitations of many existing hy-
drological models and contributes to cold-region modelling.
This paper focuses on the overall model philosophy and de-
sign, and it provides a small number of cold-region-specific
features and examples.

2 Design and overview

2.1 Overview

The Canadian Hydrological Model (CHM) is a spatially dis-
tributed, modular modelling framework. Although not re-
stricted to cold regions, it is designed with both cold-region
and temperate zone processes in mind and has various capa-
bilities that facilitate the modelling of these domains. The
design goal of CHM is to use existing high-quality open-
source libraries and modern high-performance computing
(HPC) paradigms. By providing a framework that allows
for as loose or tight a coupling between processes as re-
quired, CHM allows for the integration of current state-
of-the-art process representations and makes no assump-
tions about the complexity of these process representations.
For example, it allows for the testing of the representations
in a consistent manner, diagnosing model behaviour due
to parameter changes, process representation changes, and
basin discretization. Spatially, it allows for domains at point
(10−6 km2), hillslope (1 to 10 km2), basin (100 km2), re-
gional (8000 km2), and provincial or state (> 1 000 000 km2)
scales. The following sections outline the framework fea-
tures, including terrain representation, surface parameteri-
zation, process representation, meteorological inputs, paral-

lelism, uncertainty analysis, visualization and analysis, and
adaptation of raster algorithms. Although the CHM will
eventually include the entirety of the hydrological cycle, at
this time only snow accumulation and surface meteorology
processes are implemented. Additional model components
are being developed and will be available in future versions
of CHM.

2.2 Terrain representation

The spatial variability of terrain is a key component to
any model and is an important component of model com-
plexity. Regardless of how sophisticated, physics-based, and
spatially explicit a hydrological model may be, at some
level the hydrological system is conceptualized and aggre-
gated into a control volume (Vrugt et al., 2008). Structured
meshes, also known as rasters and grids, are a landscape dis-
cretization whereby the landscape is discretized by uniformly
sized cells. Raster-based hydrological models are common
(Tucker, 2001) because their computer representation is triv-
ial, and the widespread use of rasters, such as in remotely
sensed data, makes using them a natural choice in hydrolog-
ical models. However, rasters have a number of significant
limitations, the most limiting being a fixed spatial resolution
over the entire basin (Tucker, 2001). This results in poten-
tially large computational inefficiencies due to the overrep-
resentation of topography. This arises as a result of requiring
small raster cells (elements) to capture the spatial variabil-
ity in areas of high topographic variability or (sub)surface
variability (e.g., vegetation, soils), which results in the over-
representation of areas that have limited spatial variability.
Coarse-resolution rasters also have discontinuities in the ele-
vation data, and adjacent cells may have large elevation dif-
ferences.

Unstructured triangular meshes, sometimes referred to as
triangulated irregular networks (TINs), represent the topog-
raphy via a set of irregularly sized, non-overlapping con-
nected triangles, with each triangle face being of a constant
slope (Chang, 2008). Areas of large topographic variability
can have a higher density of small triangles in order to cap-
ture the spatial variability, and areas of relatively homoge-
neous topography have fewer large triangles. This a more ef-
ficient terrain representation than rasters (Shewchuk, 1996)
and may have up to a 90 % reduction in computation ele-
ments (Ivanov et al., 2004; Marsh et al., 2018). Despite these
computational advantages, a practical downside is that due
to the widespread availability of raster data, conversion to
an unstructured mesh is required. This results in increased
uncertainty due to aggregation of the landscape into control
volumes. The CHM uses a novel multi-objective approach
for unstructured triangular mesh generation, Mesher, detailed
in Marsh et al. (2018). A brief summary follows: quality De-
launay meshes are generated, ensuring a smooth graduation
between small and large triangles; triangles are bounded with
minimum and maximum triangle areas to ensure that process
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Figure 1. Example of a variable-resolution triangulation mesh as produced by Mesher for the Bow River Basin west of Calgary in the
Canadian Rocky Mountains and foothills. The triangular edges are shown as grey lines overlain on the original digital elevation model
(DEM).

representations match the physical scale; and triangles are
generated to fulfil tolerances (e.g., root mean square error –
RMSE) to the underlying topographic raster and other im-
portant landscape features such as vegetation and soils. This
mesh generation attempts to limit the amount of error intro-
duced by the approximating surface given by the unstruc-
tured mesh and provides mechanisms to ensure that spatial
heterogeneity in the landscape is correctly preserved.

Using this mesh generation, simulation domains can be
constructed at a variety of spatial extents and, importantly,
spatial scales. An example of this variable-resolution trian-
gulation mesh for a part of the Bow River Basin in the Cana-
dian Rockies and foothills west of Calgary, Alberta, Canada,
is shown in Fig. 1. The triangular edges are shown in grey
lines. The variable resolution produces larger triangles in the
valley bottoms, where topographic variability is limited, and
small triangles in the mountains, where the heterogeneity is
greater. This allows for diagnosing the impact of scale on
model performance as well as matching the process represen-
tation to the correct model length scale. Further constraints
could ensure that streams are accurately defined.

2.3 Triangle parameterization

Setting values of parameters for the triangles, such as assign-
ing vegetation or soil type to the triangle, is done during the
mesh generation phase. The parameter values are stored in a
file separate from the underlying mesh and can thus be easily
changed at runtime. This allows for easily investigating the
impact of parameter values on outputs. The parameterization
of the triangles is done by (a) determining the valid raster
cells under each triangle, (b) calculating an error metric for
these cells, and assigning this value to the triangle. Maxi-
mum and mean are the two most commonly used methods,
but it can be any user-defined function. For classified data,
the mode is used. This would allow, for example, for the se-
lection of the most dominant land-cover class. In addition, a
user-specified classifier function can be given to easily clas-
sify continuous input parameters; e.g., classifying vegetation
heights into vegetation classes. Lastly, CHM provides mech-
anisms to write model output to a format that can be used as
input; that is, CHM can use its output to set triangle values
for future simulations.
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Figure 2. Directed acyclic graph showing module dependencies. Lines point to the module that requires the listed dependency. In this
example, a snow-cover model, Snobal, is being driven by meteorology in order to drive a frozen soil infiltration model (Gray_inf).

2.4 Modular process representation structure

A hydrological model is a hypothesis based on assumptions
of how a hydrological system works (Savenije, 2009). Mod-
ular model structures allow for rigorously testing process
representations and have been used with success in cold-
region hydrology, e.g., the Cold Regions Hydrological Model
(CRHM) (Pomeroy et al., 2007) and Structure for Unify-
ing Multiple Modeling Alternatives (SUMMA) (Clark et al.,
2015). A feature of CHM is that it provides a modular pro-
cess representation that is suitable for distributed modelling,
while maintaining high computational performance and flex-
ibility.

In CHM, process representations are conceptualized into
modules. Selecting various combinations of these modules
in the CHM framework defines the overall model. A princi-
pal design goal of the module system is that a module has an
enforced set of preconditions and post-conditions. Precondi-
tions represent the variables that must be computed prior to a
given module running, and post-conditions encapsulate vari-
ables that must be computed by the currently running mod-
ule so as to be available as input for other modules. At run-
time, the user-selected modules are linked together into a di-
rected acyclic graph based on these variable dependencies,
and module execution order is determined via a topological
sort of this graph. This sort ensures that modules are run in
an order so as to fulfil the precondition (i.e., the variable de-
pendencies). Linkages between modules showing these de-
pendencies are shown in Fig. 2. The lines with arrows show
how variable dependencies are resolved between modules.
The lines going from a module are the post-conditions that

satisfy the preconditions of the next-to-be-run module. In this
example, a snow-cover model, Snobal, is being driven by me-
teorology, with the output of Snobal being used as input to a
frozen soil infiltration model (Gray_inf).

The hydrological literature has a diverse set of process
representations that are either one-dimensional with no lat-
eral exchange between elements (point scale) or are explic-
itly coupled with surrounding elements (Todini, 1988). CHM
makes no assumption about either, and modules may either
operate on a single triangle or on the entire domain. If only
point-scale modules are selected, then CHM may be option-
ally run at a point scale, effectively disabling the rest of the
distributed framework. As there are substantial merits to mix-
ing top-down and bottom-up process representations (Hra-
chowitz and Clark, 2017; Pomeroy et al., 2004), CHM makes
no assumptions on the complexity or type of process rep-
resentation in a module – modules may be a mix of com-
plex physics-based representations and conceptual represen-
tations. This also applies to process coupling. For example,
a module could be a single process (e.g., a snow model), a
coupled set of processes (e.g., coupled heat and energy snow
model + frozen soil routine), or an entire existing model.

Due to the strict preconditions and post-conditions re-
quired for module dependency resolution and the abstraction
used in CHM, existing libraries and code can be used in a
model. There is no need to rewrite the code. Therefore, any
code that may be called via a C interface (e.g., Fortran, R,
Python, MATLAB) is suitable to be used (with a few consid-
erations) as a CHM module.

Summarized in Table 1 and described in brief below is a
list of the processes currently available in CHM. Two en-
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Table 1. Cold-region surface process representations currently available in CHM.

Process Type or name

Canopy Open or forest (interception, sublimation, unloading, subcanopy radiation, turbulent trans-
fer) (Ellis et al., 2010; Pomeroy et al., 1998b)

Snowpack Two-layer Snobal (Marks et al., 1999); multilayer SNOWPACK (Bartelt and Lehning,
2002); various albedo, e.g., CLASS (Verseghy, 1991)

Soil Frozen soil infiltration (Gray et al., 2001)

Snow mass redistribution PBSM3-D (Marsh et al., 2020); SnowSlide (Bernhardt and Schulz, 2010)

ergy balance snowpack models are available, Snobal and
SNOWPACK. Snobal (Marks et al., 1999) is a two-layer
energy balance model with a fixed upper layer that is
used for the estimation of outgoing longwave radiation and
atmosphere–snow temperature gradients for the turbulent
heat flux. SNOWPACK (Bartelt and Lehning, 2002) is a mul-
tilayer finite-element energy balance snow model originally
developed for avalanche hazard forecasting. In addition to
the snow-cover albedo estimates provided by Snobal and
SNOWPACK, the Canadian Land Surface Scheme (CLASS)
albedo routine is available (Verseghy, 1991). Frozen soil in-
filtration is calculated using the parametric form of Gray
et al. (2001). Horizontal snow mass is redistributed using
a 3-D advection–diffusion blowing snow model derived for
unstructured meshes (Marsh et al., 2020). Blowing snow
saltation (Pomeroy and Gray, 1990), turbulent suspension
(Pomeroy and Male, 1992), sublimation (Pomeroy et al.,
1993), threshold shear stress for saltation (Li and Pomeroy,
1997), shear stress partitioning by vegetation and snow, and
probabilistic upscaling (Pomeroy and Li, 2000) parameteri-
zations comprise the blowing snow model. The vertical redis-
tribution of mass in steeply sloping terrain is calculated us-
ing Snowslide (Bernhardt and Schulz, 2010) with a threshold
slope and mass exceedance to transport mass downslope (i.e.,
it is not a prognostic avalanche model). The forest canopy is
conceptualized into open and forest areas and uses the snow
interception algorithm of Hedstrom and Pomeroy (1998)
coupled to the intercepted snow sublimation and unload-
ing algorithms of Pomeroy et al. (1998b) as well as the
drip and rapid unloading formulations in Ellis et al. (2010).
Subcanopy shortwave and longwave irradiance and turbulent
transfer algorithms from Ellis and Pomeroy (2007), Pomeroy
et al. (2009), and Ellis et al. (2010) are also included in the
canopy module.

2.5 Input meteorology

Input meteorology is prescribed as a point source (herein,
“virtual station”) defined by latitude, longitude, and eleva-
tion. However, a virtual station may have an arbitrary loca-
tion and elevation, and it need not be within the simulation
domain or correspond to a real meteorological station. This

allows a virtual station to be located at, for example, the cen-
troid of a numerical weather prediction output grid cell. Be-
cause all input meteorology is given as a point source, vari-
ous spatial interpolants are present in CHM to provide a dis-
tributed field across all triangles.

Spatial interpolates are present as inverse distance weight-
ing (IDW) and thin plate spine with tension. In some cases,
no interpolation is desired, and therefore a third option called
“nearest” is available – this uses the nearest virtual station
without any spatial interpolation. Over large domains, such
as when using numerical weather prediction output, every
virtual station in the simulation domain should not be used
in the interpolation to every triangle. Therefore, interpolants
may query a list of either (a) virtual stations within some dis-
tance of the triangle or (b) the closest n virtual stations. This
ensures that only nearby virtual stations are used to form the
interpolant. Vertical elevation correction is provided by a set
of specialty modules. All virtual stations are corrected to a
common reference level using these modules prior to spatial
interpolation. A list of these algorithms is summarized in Ta-
ble 2.

Input meteorology may be given as either text files or as
NetCDF files (Rew and Davis, 1990). When NetCDF files
are used, the time step data are lazy-loaded such that only
the current time step is read. This decreases the up-front load
time and decreases total memory usage.

2.6 Input filters

Input filters provide a mechanism to modify input meteorol-
ogy during runtime. This is similar to the filter feature in
CRHM (Pomeroy et al., 2007) and MeteoIO (Bavay and Eg-
ger, 2014). Filters are assigned to each virtual station, and
each virtual station may have an arbitrary number of filters.
The purpose of filters is to allow, for example, values outside
a certain range to be filtered or to perform a correction such
as taking an observed wind speed at 2 m and changing it to
10 m for use later in a process module. Filters operate per
time step and can therefore consider the previous model time
step for use in the correction; e.g., including snow depth to
perform vertical wind speed height correction.
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Table 2. List of available meteorology interpolants.

Variable Type

Air temperature Linear lapse rates (measured, seasonal, constant, neutral stability) (Cullen and Marshall, 2011; Dodson
and Marks, 1997; Kunkel, 1989)

Relative humidity Linear lapse rates (measured, seasonal, constant) (Kunkel, 1989)

Horizontal wind Topographic curvature (Liston and Elder, 2006); Mason–Sykes (Mason and Sykes, 1979); uniform wind

Precipitation Elevation-based lapse (Thornton et al., 1997)

Precipitation phase Linear; psychometric (Harder and Pomeroy, 2013); threshold

Solar radiation Terrain shadows (Dozier and Frew, 1990; Marsh et al., 2012); clear-sky transmittance (Burridge and
Gadd, 1975); transmittance from observations; cloud fraction estimates (Walcek, 1994); direct–diffuse
splitting (Iqbal, 1980)

Longwave T , RH based (Sicart et al., 2006); constant (Marty et al., 2002)

2.7 Point mode

Due to the difficulty in validating spatial models due to lim-
ited spatial observations, evaluation is generally performed
using point observations. CHM may be run in point mode,
which allows for simulating a single triangle without lat-
eral interactions, using a specialized input module to pass
a hydrometeorological station’s observation data directly to
the underlying process models. This is intended to simulate
a point collocated with an input observation meteorology
dataset and allows for traditional point simulations.

2.8 High-performance computing

In CHM, parallelism is currently implemented via the shared
memory OpenMP library. Coding a process representation
into a module will generally result in either a point-scale
module (e.g., point-scale snow-cover model) or it will be a
spatially coupled model (coupled advection–diffusion equa-
tion). The first type, owing to the fact it does not require
knowledge of its neighbours to compute a value, corresponds
to an embarrassingly parallel problem – that is, a problem
that does not require any communication between threads.
Herein, these are referred to as data parallel. Spatially cou-
pled models require the solution at their neighbour triangles
in order to compute a solution. These neighbours, in turn, re-
quire solutions at their neighbours, and so on. Therefore, this
is a much more challenging type of problem to introduce par-
allelism to. Herein, these are referred to as domain parallel.
Data parallel modules automatically have the parallelism im-
plemented and require no special consideration from the de-
veloper. Domain parallel modules, however, require the mod-
ule developer to implement parallelism as appropriate for the
module.

Mixing these two types of parallelism complicates the im-
plementation of parallel code. To provide as much seam-
less parallelism as possible, each module declares the type

of algorithm it is: data parallel or domain parallel. After the
topological sort is performed to determine module execution
order, the modules are scheduled together into groups that
share a parallelism type. For example, consider the following
sorted list of modules, with their parallelism type in brackets.

– mod_A (parallel::data)

– mod_B (parallel::data)

– mod_C (parallel::data)

– mod_D (parallel::domain)

– mod_E (parallel::data)

These would then be scheduled together into three groups.

– Group 1

– mod_A (parallel::data)

– mod_B (parallel::data)

– mod_C (parallel::data)

– Group 2

– mod_D (parallel::domain)

– Group 3

– mod_E (parallel::data)

The modules in group 1 are run in parallel together. Be-
cause they are data parallel, only one iteration over the mesh
is required. Then, groups 2 and 3 are run. This scheduling
mechanism reduces the overhead of a modular approach by
limiting total iterations over the mesh and minimizing thread
creation. Further, as most hydrological process representa-
tions are point scale, it allows for abstracting parallelism, re-
sulting in “free” parallelism for the developer.
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Figure 3. Output from CHM is in the ParaView format, allowing for time series analysis and full 3-D visualization in ParaView. Shown is
shadowing over Marmot Creek Research Basin, Alberta, Canada.

2.9 Uncertainty analysis

CHM provides a mechanism to easily allow modules to ob-
tain parameter values from configuration files (JSON for-
mat), overriding the default hard-coded value. Changes to
the model structure (i.e., choosing modules), initial condi-
tions, and parameter files (e.g., land cover) are also done via
this mechanism. Users may, via the command line, change
any configuration value – thus simplifying uncertainty test-
ing. This mechanism reduces situations in which changes re-
quire recompilation.

The Python code snippet shown in Listing 1 demonstrates
changing values on the command line (via Python). This
code is setting the name of three output files and adding a
new module to be run.

2.10 Visualization and analysis

The output format used is the ParaView (Ahrens et al., 2005)
unstructured mesh format. This allows for the visualization
of the simulation results in full 3-D, with time series analy-
sis in ParaView, as shown in Fig. 3. The addition of a Par-

Listing 1. Example for setting output file names and adding a new
module.

aView plug-in for CHM allows for displaying the date and
time of the output. The animation view allows for exploring
the spatio-temporal results. It also allows for immediate di-
agnosis of modelling errors, especially if the spatial pattern
of an output variable is clearly incorrect: for example, if a
coding error resulted in a patchwork of air temperatures in-
stead of an expectedly smooth gradient with elevation, snow-
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Figure 4. Marmot Creek Research Basin, Kananaskis Valley, Alberta, in the Canadian Rocky Mountains. The basin outline is given as solid
black, 100 m contour lines are shown in brown, stream channels are shown in blue, and man-made clearings are shown as hatched areas. The
meteorological stations used for this study are shown as crosses. The southernmost set of clearings are ski runs in the Nakiska Ski Resort.

drifts being formed in locations that were known to be in-
correct such as the top of a ridge instead of in the lee, or
Northern Hemisphere north-facing slopes receiving the most
shortwave irradiance. There are many post-processing filters
and tools available in ParaView, such as plotting an individ-
ual triangle’s values over time. Because ParaView uses the
Visualization Toolkit (VTK) library (Schroeder et al., 2006),
the ParaView files can easily be loaded and post-processed
using the Python VTK library in conjunction with traditional
Python libraries such as NumPy (Oliphant, 2006) and SciPy
(Jones et al., 2018).

In addition to the ParaView output, CHM provides a set
of post-processing scripts that allows for converting the Par-
aView file to a rasterized GeoTiff or NetCDF file. This al-
lows for using the output in post-processing algorithms that
require arrays, or in GIS.

2.10.1 Adaptation of raster-based algorithms

The adaptation of raster-based algorithms is an important as-
pect of CHM as many existing algorithms are raster-based.
Frequently, raster-based algorithms employ logic that per-
forms queries such “look X length units in direction Y ”. This
is easily done on a structured mesh; however, on an unstruc-
tured grid, this process is non-obvious. Iterating over each
triangle’s neighbours results in a random walk across the
domain, and brute-force iteration search methods are need-
lessly slow. CHM uses the k-d spatial search tree available
within the dD Spatial Searching (Tangelder and Fabri, 2018)

package in the Computational Geometry Algorithms Library
(CGAL) to optimize spatial queries. Briefly, a k-d tree is a
generalization of a binary search tree in high dimensions that
decomposes the search domain into a set of small subdo-
mains (Bentley, 1975). This tree structure can then be recur-
sively searched, resulting in efficient spatial lookups. The k-
d tree implementation is how nearby stations are determined.
This technique for spatial searching can also be used to cal-
culate terrain parameters, such as the terrain curvature.

3 Model application

3.1 Overview

The following section describes the methodology for evaluat-
ing various features of CHM and provides examples of usage.
Although the CHM will eventually include the entirety of the
hydrological cycle, snow accumulation and surface meteo-
rology processes are currently implemented. Marmot Creek
Research Basin (MCRB) in the Canadian Rockies in Alberta,
Canada, is used as a location to test the two snow modules
and various models to provide the driving meteorological
forcing for these models that are currently implemented in
CHM. The meteorological interpolants are tested in a leave-
one-out validation across the MCRB. In addition, an adapta-
tion of a raster-based terrain shadowing for shortwave irradi-
ance calculation is presented, demonstrating the conversion
of an algorithm from a raster to unstructured mesh. Finally,
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the parallel computation aspect of CHM is tested by perform-
ing a scaling analysis using different numbers of CPUs.

3.2 Study site

3.2.1 Marmot Creek

Marmot Creek Research Basin (MCRB) (Golding, 1970)
is located in the Kananaskis River Valley of the Canadian
Rockies, as shown in Fig. 4. It is a 9.4 km2 basin covered pre-
dominately by needle-leaf forest (Fang et al., 2013; Pomeroy
et al., 2012). The climate is dominated by continental air
masses with long and cold winters; however, these are inter-
rupted by frequent chinooks (Foehns) in midwinter (DeBeer
and Pomeroy, 2009). It spans an elevation range from 1700
to 2886 m (Rothwell et al., 2016), and snow covers the upper
elevations of the basin from October to June. The average
seasonal precipitation is approximately 600 mm at low ele-
vations, increasing to over 1140 mm at the treeline (Rothwell
et al., 2016).

3.2.2 Meteorological observations

Meteorological observations for air temperature, relative hu-
midity, wind speed, precipitation, soil temperature, and in-
coming shortwave radiation for the Upper Clearing (1860 m),
Vista View (1956 m), and Fisera Ridge (2325 m) sites, shown
as crosses in Fig. 4, were used. Gap-filled, quality-corrected
15 min data for the water years 2007 to 2016 (inclusive) were
used. Please see Fang et al. (2019) for further details. Precip-
itation was measured with Alter-shielded Geonor weighing
precipitation gauges and corrected for wind-induced under-
catch (Smith, 2009). Precipitation phase was determined via
the psychrometric energy balance method of Harder and
Pomeroy (2013). Longwave irradiance was calculated fol-
lowing Sicart et al. (2006). This was developed for moun-
tainous terrain and was shown to have an error of less than
10 % over the snowmelt season. This method has been used
with success at the MCRB.

Periodic snow surveys of depth and snow water equivalent
(SWE) on long transects at Upper Clearing were conducted
by various members of the Centre for Hydrology and used to
quantify snowpack density. For each transect, there were at
least 25 snow depth measurements and at least 6 gravimet-
ric snow density measurements using an ESC-30 snow tube
(Fang et al., 2019).

3.3 Models

3.3.1 Snow models

Point-scale evaluation of the two snow models in CHM,
Snobal and SNOWPACK, was done at the Upper Clearing
site.

Snobal (Marks et al., 1999) is a physics-based, two-layer
snowpack model designed specifically for deep mountain

snowpacks and approximates the snowpack with two layers;
the surface fixed-thickness active layer (taken here as 0.1 m)
is used to estimate surface temperature for outgoing long-
wave radiation and the atmosphere–snow exchange of sen-
sible and latent heat via turbulent transfer. Snobal features
coupled energy and mass balance, internal energy tracking,
and liquid water storage calculations. Turbulent fluxes are ex-
plicitly calculated via Marks et al. (1992), a bulk transfer ap-
proach that includes a Monin–Obukhov stability correction.
The ground heat flux is calculated from conduction with a
single soil layer of known temperature.

SNOWPACK (Bartelt and Lehning, 2002; Lehning et al.,
2002) is a multilayer finite-element model of mountain snow-
packs, with application for avalanche hazard forecasting. It
describes the microphysical properties of a snowpack and in-
cludes the dynamic addition and/or removal of snow layers
using a system of partial differential equations (PDEs). These
are discretized vertically into an arbitrary number of snow
layers in a Lagrangian coordinate system. It has coupled en-
ergy and mass balance, internal energy, and liquid water stor-
age calculations with a bulk transfer turbulent flux scheme
with Monin–Obukhov stability correction (Michlmayr et al.,
2008). The default Michlmayr et al. (2008) scheme was used
herein.

Both SNOWPACK and Snobal were configured to use the
albedo routine of Verseghy et al. (1993). The snow models
were driven with observed precipitation, shortwave irradi-
ance, wind speed, air temperature, relative humidity, and soil
temperature at a 15 min time interval. Because of the shel-
tered nature of the Upper Clearing, no blowing snow was
simulated (Musselman et al., 2015). Snow model parame-
ters, such as roughness length, were set following Pomeroy
et al. (2012).

3.3.2 Mesh generation

The unstructured mesh was created using the Mesher soft-
ware. A 1 m× 1 m input elevation lidar DEM (Hopkinson et
al., 2011) was used. The resulting mesh was generated to
have a minimum triangle area equivalent to a 25 m× 25 m
raster and represented the topography to within 25 m RMSE.
This resulted in approximately ≈ 100 000 triangles.

3.3.3 Raster algorithm adaptation (shadowing)

An example of the adaptation of a raster algorithm to the un-
structured mesh is shown for a terrain shadowing algorithm,
illustrated in Fig. 5, that calculates the shadows cast from
surrounding terrain. The “look X length units in Y direc-
tion” query is required for finding obstructing terrain (e.g.,
a tall mountain) by searching along the azimuthal direction
towards the sun. As a demonstration of the k-d tree usage in
CHM, the shadowing algorithm of Dozier and Frew (1990)
(herein DF90) was implemented for unstructured triangu-
lar meshes. In brief, the DF90 algorithm searches along an
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Figure 5. Dozier and Frew (1990) horizon shadowing algorithm.
For observer A, a search along the azimuth that corresponds to the
solar vector S is performed such that if the slope of H is greater
than that of S, A is in shadow.

azimuthal direction within some horizontal distance and at-
tempts to find terrain that is above the solar elevation. For
an observer A, a search along the azimuth that corresponds
to the solar vector S is performed. For each terrain element
found, a new vector (H ) is calculated. If the slope of H is
greater than that of S, A is in shadow. Terrain is searched
from the observer towards some maximum search radius in
steps of size dx. Specifically, this adaptation of DF90 re-
quired using the k-d tree to find the triangle at a distance
X m from the source triangle (A) along an azimuth that cor-
responded to the solar vector, S.

The DF90 shadowing algorithm was run for all of Marmot
Creek using the mesh described in Sect. 3.2. A maximum
search radius of 1000 m was used, discretized into 10 steps.
The guidelines for choosing these search values follow two
criteria: (1) the radius should be large enough to cover the
distance across a representative valley length distance such
that shadows from mountains across the valley are included;
and (2) the step should be about half of a triangle length scale
such that steps do not pass over triangles. The DF90 imple-
mentation was compared to observed shadowed area (see be-
low), the Marsh et al. (2012) shadowing model, and the Solar
Analyst (Fu and Rich, 1999) shadow model. Solar Analyst is
an extension in the ArcGIS software by the Environmental
Systems Research Institute (ESRI). The observed shadowed
areas are from time series images from the field campaign de-
tailed in Marsh et al. (2012) and were orthorectified using the
software of Corripio (2004). Shadow location for 1 Febru-
ary 2011 at 17:00 was used in this comparison. The output
from CHM was rasterized from the unstructured mesh at a
1 m× 1 m spatial resolution.

3.4 Leave-one-out comparison

To test the efficacy of the meteorological interpolants, a
leave-one-out comparison was conducted for the Upper
Clearing, Vista View, and Fisera Ridge stations. This en-
tailed using two of the three meteorological stations as input
for CHM in order to predict the third. For example, Upper
Clearing and Vista View were used to predict meteorological
conditions at Fisera Ridge, and Vista View and Fisera Ridge
were used to predict Upper Clearing.

A total of 10 water years using 15 min data were simu-
lated. The following meteorological interpolants were used:
terrain shadowing (Dozier and Frew, 1990), cloud frac-
tion (Walcek, 1994), air temperature (Cullen and Marshall,
2011), relative humidity (Kunkel, 1989), precipitation phase
(Harder and Pomeroy, 2013), precipitation (Thornton et al.,
1997), and solar radiation transmittance estimated from ob-
served incoming shortwave values.

3.5 Parallel scaling

The heterogenous Westgrid cluster Graham was used to in-
vestigate the scaling performance of the CHM code with var-
ious numbers of CPUs. The base nodes were used. These
have two Intel E5-2683 v4 Broadwell CPUs at 2.1 Ghz for a
total of 32 cores and 128 GB of RAM. The modules run in-
clude the data parallel Snobal snowpack module, as well as
a domain parallel advection–diffusion blowing snow module
(Marsh et al., 2020).

Simulations were run for a mesh with≈ 100 000 triangles.
The model was run with 1, 2, 4, 6, 8, 16, and 32 cores, and for
each core-count scenario, the fastest of five runs was taken.
File output was disabled for these runs. The speed-up for the
n core run (coren) was computed relative to the one-core run
(core1):

speed-up=
core1

coren

. (1)

4 Results

4.1 Point-scale snow model

Shown in Fig. 6 is the simulated snow water equivalent
(SWE, mm) for SNOWPACK (blue) and Snobal (red). The
water year is denoted above each plot. Snow course obser-
vations are shown as black dots. The RMSE and mean bias
(MB) values for both models for each water year are shown
in Table 3 and averaged over all years in Table 4.

In 2007, SNOWPACK overestimates peak SWE more than
Snobal, although ablation timing between the two is identi-
cal. In 2008, early season SWE is overestimated by SNOW-
PACK, although late season SWE is better estimated by
SNOWPACK. Water year 2009 is poorly simulated in gen-
eral, especially by Snobal. It is not clear what causes this
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Figure 6. Comparison of Snobal (red) and SNOWPACK (blue) run as a point simulation within CHM for the Upper Clearing site at Marmot
Creek Research Basin for 10 water years. Manual snow course observations are shown as black dots.

Table 3. Root mean square error (RMSE, mm) and mean bias (MB, mm) for the SNOWPACK and Snobal models at the Upper Clearing site
for each water year.

Year Snobal RMSE (mm) SNOWPACK RMSE (mm) Snobal MB (mm) SNOWPACK MB (mm)

2007 40.7 56.73 18.24 45.56
2008 42.47 42.42 33.65 38.15
2009 65.07 23.22 −49.54 −1.49
2010 20.55 11.24 10.81 3.94
2011 24.18 32.43 15.07 −7.57
2012 57.12 22.26 −49.05 6.92
2013 27.21 15.51 −9.59 −0.05
2014 28.81 21.12 −13.6 13.69
2015 19.19 19.41 −13.54 13.84
2016 55.55 66.87 27.08 60.7

poor performance. During the cold winters of 2010 and
2011, both models perform well. In 2012, Snobal underes-
timates peak SWE versus SNOWPACK. For the years 2013
to 2015 SNOWPACK better captures peak snow and the ab-
lation period than Snobal. In 2016 Snobal better estimates
SWE, as SNOWPACK overestimates during accumulation
and for peak SWE. SNOWPACK tends to be more consistent
in its prediction capacity, although it tends to overestimate,
whereas Snobal tends to underestimate total SWE. Overall,
SNOWPACK tends to perform better than Snobal, although
there are individual years in which Snobal edges out SNOW-
PACK.

4.2 Adaptation of raster-based algorithm

Shortwave irradiance corrected for slope and aspect, with
horizon (cast) shadows via an adaptation of the Dozier and
Frew (1990) shadowing algorithm for unstructured meshes
for the Marmot Creek Research Basin, is shown in Fig. 7.
The simulation is for 1 February 2011 at 17:00 local time.
High irradiance is shown in red, and shadows are shown
in dark blue; these areas are receiving only diffuse radia-
tion. The region north of Fisera Ridge is shown in detail in
Fig. 8. This figure shows an orthorectified terrestrial photo
of a shadow passing over Mt. Collembola from Fisera Ridge.
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Figure 7. Incoming shortwave radiation for the Marmot Creek Research Basin for 1 February 2011, 17:00 local time. The shadowing
algorithm of Dozier and Frew (1990) (DF90) has been implemented on the unstructured mesh. Uniform dark blue indicates shadowed areas.

Table 4. Root mean square error (RMSE, mm) and mean bias (MB,
mm) errors averaged over all years.

Model RMSE (mm) MB (mm)

Snobal 38 −3
SNOWPACK 31 17

The location of the shadowed region for 1 February 2011 at
17:00 local time is shown for the DF90 algorithm described
herein (green), the observed shadow (red), the ArcGIS So-
lar Analyst shadow (black), and the Marsh 2012 algorithm
(blue); the white region is the region not covered by the pho-
tograph. The DF90 implementation agrees quite well with
observed shadow locations, and a sensitivity test (not shown)
shows improved agreement with increasingly small triangles.
The performance of the other two shadowing algorithms is
detailed in Marsh et al. (2012). In brief, the high-resolution
Solar Analyst performed the best but at the cost of multiple
hours of runtime. The Marsh 2012 algorithm overpredicted
the shadow on the right-hand side of the domain, whereas
DF90 underpredicted the shadow delineation. In both cases,
the TIN algorithms had a few incorrect shadow classifica-
tions on the upper slope as a result of the reduced spatial res-
olution, causing a small false positive. The triangular-shaped
bumps along the shadow line are from the unstructured trian-
gular mesh elements.

4.3 Leave-one-out validation

The leave-one-out validation is shown in Fig. 9 for Vista
View (top row), Upper Clearing (middle row), and Fisera
Ridge (bottom row). The dashed line is the 1 : 1 line, and
the solid black line is a linear regression line of best fit. The
r2 value for this fit is shown in the bottom right corner. Due

Figure 8. This shows an orthorectified terrestrial photo of a shadow
passing over Mt. Collembola from Fisera Ridge – details are found
in Marsh et al. (2012). The location of the shadowed region for
1 February 2011, 17:00 local time, is shown for the DF90 algo-
rithm described herein (green), the observed shadow (red), the Ar-
cGIS implementation for a 1 m× 1 m lidar raster (black), and for
the Marsh et al. (2012) algorithm (blue).
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Figure 9. Leave-one-out analysis for Vista View (top row), Upper Clearing (middle), and Fisera Ridge (bottom). The values have been binned
into 100 hex bins and coloured using the log of the normalized per-bin count. Grey values are bins that have a normalized count of less than
0.01.

to significant over-plotting of the data points, the values have
been binned into 100 hex bins and coloured using the log of
the normalized per-bin count. Hex bins divide the x–y plane
into six-sided bins and counts values in these bins. The hexes
avoid the visual artefacts that can occur with square bins.
Grey values are bins that have a normalized count of less
than 0.01. Because of the significant number of low and zero
values in the shortwave and precipitation time series, this re-
sulted in the per-bin colouring being difficult to read. Values
of ISWR < 50 W m−2 and p < 1 mm were removed for the
colouring. Please note that these data were not removed for
the linear fit, r2, MBE, or RMSE metrics.

Temperature was well predicted at all sites with r2 values
of 0.99, 0.97, and 0.92 for Vista View, Upper Clearing, and
Fisera Ridge, respectively. Both mid-elevation sites were bet-
ter predicted than the high-elevation (Fisera Ridge) site. The
majority of the data lie close to the 1 : 1 line. Upper Clearing
had a warm bias (MB= 1.11 ◦C), whereas Fisera Ridge had a
cold bias (MB=−0.37 ◦C). Less spread was observed in the
summer months (not shown), matching the results of Cullen
and Marshall (2011). Relative humidity was the most poorly
predicted variable. Vista View was the most accurately pre-
dicted (r2

= 0.9) with a slight (1.09 %) positive bias. Up-

per Clearing had more spread with a distinct negative bias
(−6.2 %) and decreased r2 (0.76). Fisera Ridge was the most
poorly predicted (r2

= 0.55, MB= 6.12 %). A separate anal-
ysis that grouped the data into winter and summer periods
(not shown) showed improved results and less spread during
the summer months, especially for Fisera Ridge; this summer
period had r2

= 0.7, MB= 7.84 %, and RMSE= 15.32 %.
Due to the proximity to vegetation, summer evapotranspi-
ration may result in less temporal variability, dampening the
responses. The interpolation methods assume a free atmo-
sphere and thus do not capture these canopy interactions.
During the winter months, the observed RH is predominately
dominated by synoptic-scale forcing (Cullen and Marshall,
2011) and may be influenced by the sublimation of inter-
cepted snow in the canopy (Pomeroy et al., 2012), which
is not captured by this interpolation. The Fisera Ridge data
have had substantial infilling for the RH variable (Fang et al.,
2019), and the poor fit of CHM to these infilled data may be
a result of the infilled data using a higher-elevation exposed
ridge that may not be representative of Fisera Ridge. Short-
wave irradiance is generally well captured, although Fisera
Ridge has a larger negative bias (−15.79 W m−2) than the
other two sites. Precipitation at Vista View and Upper Clear-
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Figure 10. Speed-up for a ≈ 100 000 triangle mesh using 1, 2, 4, 6,
8, 16, and 32 cores.

ing was well predicted, and Fisera Ridge is again the least
well predicted.

4.4 Parallel scaling

Shown in Fig. 10 are the scaling results for 1, 2, 4, 6, 8, 16,
and 32 cores. Good scaling is observed with a 1.97× speed-
up with 2 cores, 7.23× speed-up with 8 cores, a 12.3× speed-
up with 16 cores, and a 20.5× speed-up with 32 cores. A sub-
linear scaling is expected due to the mixing of domain and
data parallel modules. As most compute nodes are approxi-
mately 32 cores, this shows good per-node scaling and thus
demonstrates motivation for moving towards a distributed
memory model, such as a message passing interface (MPI).

5 Outlook

As described above, this paper outlines the goals of the CHM
framework and the motivation for its development. The pro-
cess representations described herein and currently available
in CHM are primarily surface processes. A key component
for future development is the addition of the full hydrolog-
ical cycle to CHM. The use of an irregular geometry for
the surface discretization somewhat complicates surface and
subsurface computations of lateral mass and energy fluxes.
Although an open research topic is how to best incorporate
these fluxes in CHM, there are examples of how triangular
mesh elements have been used in other models. This section
outlines some of the techniques used in these models and
how they might be incorporated in CHM.

There are benefits to the improved representation of the ir-
regular geometry for various flow and routing algorithms. If
line segments (i.e., triangle edges) are used to represent river
and stream channels (along with a sub-grid in-channel flow
parameterization), the nonuniform spacing and the unstruc-
tured nature of the triangle vertices can more readily rep-
resent meandering features than structured meshes (Tucker,
2001). Simple overland flow-routing methods on unstruc-
tured meshes can be easily derived to be analogous to the
commonly used grid-based flow methods (Tucker, 2001),
e.g., D-8 (O’Callaghan and Mark, 1984) and D-inf (Tar-
boton, 1997). When simulating the landscape evolution of
river channels using unstructured and structured meshes, the
directional constraints of a maximum of eight directions of
a structured mesh have been identified as causing nonnatu-
ral channel evolution (Braun and Sambridge, 1997). More
complex PDE formulations, such as the shallow water equa-
tions, can be discretized on the unstructured mesh. However,
the numerical formulations require the use of more sophisti-
cated numerical methods such as the finite-element or finite-
volume approaches. The use of these numerical techniques
on triangular meshes is common when estimating shallow
water flows (Hagen et al., 2002) and has been done with
success in hydrological models (Kumar et al., 2009; Qu and
Duffy, 2007).

The vertical coupling of the surface flow with subsurface
flows requires subsurface extension of the surface mesh. An
approach is to use vertically extruded triangles, forming 3-D
prisms of some given height that can be stacked vertically.
These prisms can then be used to discretize variably satu-
rated flow calculations, such as the Richards equation, and
can optionally simulate lateral subsurface flows for a full 3-D
model (Hopp et al., 2016; Kumar et al., 2009; Qu and Duffy,
2007). The vertical stacking of prisms is currently being used
for aboveground discretization in an in-development blowing
snow model for use in CHM (Marsh et al., 2020). Alterna-
tively, vertical 1-D models of variably saturated flow can be
used with various lateral assumptions (Hopp et al., 2016).
Thus, there are various possibilities for inclusion in CHM,
ranging from 1-D models with no lateral or surface coupling
to fully coupled 3-D surface–subsurface flows.

One avenue of future research should examine multi-mesh
approaches. Depending on the surface and subsurface ge-
ology, refinement of the subsurface mesh based on surface
characteristics may be inappropriate. A possible approach
would result in the generation of one or more subsurface
meshes, refined as appropriate to represent the heterogene-
ity in subsurface properties. This mesh would then be cou-
pled to the surface mesh through various approaches, such
as a gradation in triangles linking the subsurface and sur-
face meshes, a nested mesh approach, or via interpolation be-
tween the meshes. All approaches involve various technical
challenges as well as accuracy trade-offs that have not been
intensively explored. Full investigation of the merit of multi-
mesh approaches must be done; however, it likely presents
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an elegant solution to incorporating heterogeneity where ap-
propriate across multiple processes and scales.

6 Conclusion

Simulations of hydrological phenomena are increasingly im-
portant for the management and prediction of the hydrolog-
ical cycle under anthropogenic climate change impacts, and
cold regions are some of the most sensitive regions to these
impacts. Spatially distributed models are generally thought
to produce improved predictions in cold regions when spa-
tially explicit prognostic variables are required; however,
substantial challenges including initial conditions, bound-
ary conditions, parameterizations, and computational costs
all conspire to limit their applicability. Despite this, hyper-
resolution models are increasingly being applied for water
management and design decisions. There is a significant op-
portunity for next-generation models to address challenges in
existing models such as seamless prediction at various spa-
tial and temporal scales, the utilization of hyper-resolution
data obtained by new remote sensing platforms, quantifying
structural uncertainty in distributed models, and the utiliza-
tion of modern high-performance computing infrastructure.

In this paper, a new modelling framework, the Canadian
Hydrological Model (CHM), was presented as a first step to-
wards these goals. Key features of CHM include the ability to
do the following: capture spatial heterogeneity in an efficient
manner; include multiple process representations; change,
remove, and decouple hydrological process algorithms; work
at both a point and spatially distributed scale; scale to multi-
ple spatial extents and scales; and utilize a variety of forcing
fields (boundary and initial conditions). The efficient repre-
sentation of spatial heterogeneity is due to the use of unstruc-
tured variable-resolution triangular meshes. These can rep-
resent key landscape heterogeneities such as vegetation and
topography with 50 % to 95 % fewer computational elements
versus a fixed-resolution mesh.

To demonstrate and test cold-region operations, two snow-
pack models, Snobal and SNOWPACK, were compared at
a point scale in a mountain clearing. Both models per-
formed well and demonstrated skill in simulating SWE.
Although the irregular geometry of a triangular mesh can
complicate the application of raster-derived methods, there
are various mechanisms in CHM to facilitate the adapta-
tion. A new unstructured mesh implementation of the well-
known Dozier and Frew (1990) shadowing algorithm was
derived to demonstrate the adaptation of raster-based al-
gorithms and the use of these mechanisms in CHM. This
method performed well compared to existing high-resolution
raster-based algorithms (Solar Analyst) and other unstruc-
tured mesh shadowing algorithms. A leave-one-out valida-
tion was done for the meteorological processes and these re-
sults showed a high degree of accuracy in the spatial inter-
polation of meteorological forcing in CHM. Air temperature

was the most accurately predicted forcing variable (r2
= 0.9)

and relative humidity was the most poor (r2
= 0.5 to 0.7).

Lastly, a parallel computation scaling test demonstrated a
good but sublinear scaling with the number of CPUs and
demonstrated a need for increased parallelism efficiency via
distributed memory models, such as MPI.

In summary, CHM is a first step towards a variable-
resolution explicitly distributed model with a focus for appli-
cation where cold-region processes play a role in hydrology.
Although it remains a work in progress and only snow ac-
cumulation and surface meteorology processes are currently
implemented, CHM will ultimately include the entirety of
the hydrological cycle. The inclusion of irregular geometries
is not a significantly problematic aspect for computations of
lateral mass and energy exchanges, and other models have
used these geometries without issue. However, the novel use
of multi-mesh approaches to couple various meshes that have
been refined for surface and subsurface optimization is likely
a way forward for including increased explicit heterogeneity
with a lower computational burden.

Code availability. The code for the Canadian Hydrological Model
is open source under the GPLv3 license and is available at https:
//github.com/Chrismarsh/CHM (last access: 2 January 2020) and
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is open source under the GPLv3 license. It is available at https:
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