Articles | Volume 12, issue 6
https://doi.org/10.5194/gmd-12-2463-2019
https://doi.org/10.5194/gmd-12-2463-2019
Model description paper
 | 
25 Jun 2019
Model description paper |  | 25 Jun 2019

Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v1.2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations

Wouter J. M. Knoben, Jim E. Freer, Keirnan J. A. Fowler, Murray C. Peel, and Ross A. Woods

Related authors

FROSTBYTE: A reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
EGUsphere, https://doi.org/10.5194/egusphere-2023-3040,https://doi.org/10.5194/egusphere-2023-3040, 2024
Short summary
OpenWQ v.1: A multi-chemistry modelling framework to enable flexible, transparent, interoperable, and reproducible water quality simulations in existing hydro-models
Diogo Costa, Kyle Klenk, Wouter Knoben, Andrew Ireson, Raymond J. Spiteri, and Martyn Clark
EGUsphere, https://doi.org/10.5194/egusphere-2023-2787,https://doi.org/10.5194/egusphere-2023-2787, 2023
Preprint archived
Short summary
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn E. Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-258,https://doi.org/10.5194/hess-2023-258, 2023
Revised manuscript accepted for HESS
Short summary
Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1: an object-oriented implementation of 47 established hydrological models for improved speed and readability
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022,https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Teaching hydrological modelling: illustrating model structure uncertainty with a ready-to-use computational exercise
Wouter J. M. Knoben and Diana Spieler
Hydrol. Earth Syst. Sci., 26, 3299–3314, https://doi.org/10.5194/hess-26-3299-2022,https://doi.org/10.5194/hess-26-3299-2022, 2022
Short summary

Related subject area

Hydrology
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024,https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary
EvalHyd v0.1.2: a polyglot tool for the evaluation of deterministic and probabilistic streamflow predictions
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024,https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Modelling water quantity and quality for integrated water cycle management with the Water Systems Integrated Modelling framework (WSIMOD) software
Barnaby Dobson, Leyang Liu, and Ana Mijic
Geosci. Model Dev., 17, 4495–4513, https://doi.org/10.5194/gmd-17-4495-2024,https://doi.org/10.5194/gmd-17-4495-2024, 2024
Short summary
HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
Geosci. Model Dev., 17, 3559–3578, https://doi.org/10.5194/gmd-17-3559-2024,https://doi.org/10.5194/gmd-17-3559-2024, 2024
Short summary
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024,https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary

Cited articles

Addor, N. and Melsen, L. A.: Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models, Water Resour. Res., 55, 378–390, https://doi.org/10.1029/2018WR022958, 2019. 
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-2017-169, 2017. 
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. 
Andréassian, V., Perrin, C., and Michel, C.: Impact of imperfect potential evapotranspiration knowledge on the efficiency and parameters of watershed models, J. Hydrol., 286, 19–35, https://doi.org/10.1016/j.jhydrol.2003.09.030, 2004. 
Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M. H., and Valéry, A.: Crash tests for a standardized evaluation of hydrological models, Hydrol. Earth Syst. Sci., 13, 1757–1764, https://doi.org/10.5194/hess-13-1757-2009, 2009. 
Download
Short summary
Computer models are used to predict river flows. A good model should represent the river basin to which it is applied so that flow predictions are as realistic as possible. However, many different computer models exist, and selecting the most appropriate model for a given river basin is not always easy. This study combines computer code for 46 different hydrological models into a single coding framework so that models can be compared in an objective way and we can learn about model differences.