Articles | Volume 12, issue 6
Model description paper
25 Jun 2019
Model description paper |  | 25 Jun 2019

Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v1.2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations

Wouter J. M. Knoben, Jim E. Freer, Keirnan J. A. Fowler, Murray C. Peel, and Ross A. Woods

Related authors

FROSTBYTE: A reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
EGUsphere,,, 2024
Short summary
OpenWQ v.1: A multi-chemistry modelling framework to enable flexible, transparent, interoperable, and reproducible water quality simulations in existing hydro-models
Diogo Costa, Kyle Klenk, Wouter Knoben, Andrew Ireson, Raymond J. Spiteri, and Martyn Clark
EGUsphere,,, 2023
Short summary
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn E. Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci. Discuss.,,, 2023
Preprint under review for HESS
Short summary
Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1: an object-oriented implementation of 47 established hydrological models for improved speed and readability
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369,,, 2022
Short summary
Teaching hydrological modelling: illustrating model structure uncertainty with a ready-to-use computational exercise
Wouter J. M. Knoben and Diana Spieler
Hydrol. Earth Syst. Sci., 26, 3299–3314,,, 2022
Short summary

Related subject area

GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173,,, 2024
Short summary
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929,,, 2024
Short summary v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions
Ciaran J. Harman and Esther Xu Fei
Geosci. Model Dev., 17, 477–495,,, 2024
Short summary
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527,,, 2024
Short summary
GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300,,, 2024
Short summary

Cited articles

Addor, N. and Melsen, L. A.: Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models, Water Resour. Res., 55, 378–390,, 2019. 
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313,, 2017. 
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846,, 2018. 
Andréassian, V., Perrin, C., and Michel, C.: Impact of imperfect potential evapotranspiration knowledge on the efficiency and parameters of watershed models, J. Hydrol., 286, 19–35,, 2004. 
Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M. H., and Valéry, A.: Crash tests for a standardized evaluation of hydrological models, Hydrol. Earth Syst. Sci., 13, 1757–1764,, 2009. 
Short summary
Computer models are used to predict river flows. A good model should represent the river basin to which it is applied so that flow predictions are as realistic as possible. However, many different computer models exist, and selecting the most appropriate model for a given river basin is not always easy. This study combines computer code for 46 different hydrological models into a single coding framework so that models can be compared in an objective way and we can learn about model differences.