Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-1009-2019
https://doi.org/10.5194/gmd-12-1009-2019
Model description paper
 | 
21 Mar 2019
Model description paper |  | 21 Mar 2019

FESOM-C v.2: coastal dynamics on hybrid unstructured meshes

Alexey Androsov, Vera Fofonova, Ivan Kuznetsov, Sergey Danilov, Natalja Rakowsky, Sven Harig, Holger Brix, and Karen Helen Wiltshire

Related authors

Dynamical reconstruction of the upper-ocean state in the central Arctic during the winter period of the MOSAiC expedition
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024,https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Nonlinear processes in tsunami simulations for the Peruvian coast with focus on Lima and Callao
Alexey Androsov, Sven Harig, Natalia Zamora, Kim Knauer, and Natalja Rakowsky
Nat. Hazards Earth Syst. Sci., 24, 1635–1656, https://doi.org/10.5194/nhess-24-1635-2024,https://doi.org/10.5194/nhess-24-1635-2024, 2024
Short summary
Plume spreading test case for coastal ocean models
Vera Fofonova​​​​​​​, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021,https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Sea-level rise in Venice: historic and future trends (review article)
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021,https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Non-linear aspects of the tidal dynamics in the Sylt-Rømø Bight, south-eastern North Sea
Vera Fofonova, Alexey Androsov, Lasse Sander, Ivan Kuznetsov, Felipe Amorim, H. Christian Hass, and Karen H. Wiltshire
Ocean Sci., 15, 1761–1782, https://doi.org/10.5194/os-15-1761-2019,https://doi.org/10.5194/os-15-1761-2019, 2019
Short summary

Related subject area

Numerical methods
The Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024,https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A Joint Reconstruction and Model Selection Approach for Large Scale Inverse Modeling
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot Miller, and Arvind Saibaba
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-90,https://doi.org/10.5194/gmd-2024-90, 2024
Revised manuscript accepted for GMD
Short summary

Cited articles

Androsov, A. A., Klevanny, K. A., Salusti, E. S., and Voltzinger, N. E.: Open boundary conditions for horizontal 2-D curvilinear-grid long-wave dynamics of a strait, Adv. Water Resour., 18, 267–276, https://doi.org/10.1016/0309-1708(95)00017-D, 1995. a
Barnier, B., Siefridt, L., and Marchesiello, P.: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses, J. Marine Syst., 6, 363–380, https://doi.org/10.1016/0924-7963(94)00034-9, 1995. a
Baschek, B., Schroeder, F., Brix, H., Riethmüller, R., Badewien, T. H., Breitbach, G., Brügge, B., Colijn, F., Doerffer, R., Eschenbach, C., Friedrich, J., Fischer, P., Garthe, S., Horstmann, J., Krasemann, H., Metfies, K., Merckelbach, L., Ohle, N., Petersen, W., Pröfrock, D., Röttgers, R., Schlüter, M., Schulz, J., Schulz-Stellenfleth, J., Stanev, E., Staneva, J., Winter, C., Wirtz, K., Wollschläger, J., Zielinski, O., and Ziemer, F.: The Coastal Observing System for Northern and Arctic Seas (COSYNA), Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, 2017. a
Becherer, J., Burchard, H., Floeser, G., Mohrholz, V., and Umlauf, L.: Evidence of tidal straining in well-mixed channel flow from micro-structure observations, Geophys. Res. Lett., 38, L17611, https://doi.org/10.1029/2011GL049005, 2011. a
Benjamin, T. B.: Gravity currents and related phenomena, J. Fluid Mech., 31, 209–248, 1968. 
Download
Short summary
We present a description of a coastal ocean circulation model designed to work on variable-resolution meshes made of triangular and quadrilateral cells. This hybrid mesh functionality allows for higher numerical performance and less dissipative solutions.