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Abstract. We describe FESOM-C, the coastal branch of the
Finite-volumE Sea ice – Ocean Model (FESOM2), which
shares with FESOM2 many numerical aspects, in particu-
lar its finite-volume cell-vertex discretization. Its dynamical
core differs in the implementation of time stepping, the use of
a terrain-following vertical coordinate, and the formulation
for hybrid meshes composed of triangles and quads. The first
two distinctions were critical for coding FESOM-C as an in-
dependent branch. The hybrid mesh capability improves nu-
merical efficiency, since quadrilateral cells have fewer edges
than triangular cells. They do not suffer from spurious in-
ertial modes of the triangular cell-vertex discretization and
need less dissipation. The hybrid mesh capability allows one
to use quasi-quadrilateral unstructured meshes, with triangu-
lar cells included only to join quadrilateral patches of differ-
ent resolution or instead of strongly deformed quadrilateral
cells. The description of the model numerical part is comple-
mented by test cases illustrating the model performance.

1 Introduction

Many practical problems in oceanography require regional
focus on coastal dynamics. Although global ocean circula-
tion models formulated on unstructured meshes may in prin-
ciple provide local refinement, such models are as a rule
based on assumptions that are not necessarily valid in coastal
areas. The limitations on dynamics coming from the need
to resolve thin layers, maintain stability for sea surface el-
evations comparable to water layer thickness, or simulate

the processes of wetting and drying make the numerical ap-
proaches traditionally used in coastal models different from
those used in large-scale models. For this reason, combining
coastal and large-scale functionality in a single unstructured-
mesh model, although possible, would still imply a combina-
tion of different algorithms and physical parameterizations.
Furthermore, on unstructured meshes, the numerical stabil-
ity of open boundaries, needed in regional configurations,
sometimes requires masking certain terms in motion equa-
tions close to open boundaries. This would be an unneces-
sary complication for a large-scale unstructured-mesh model
that is as a rule global.

The main goal of the development described in this paper
was to design a tool, dubbed FESOM-C, that is close to FE-
SOM2 (Danilov et al., 2017) in its basic principles, but can
be used as a coastal model. Its routines handling the mesh in-
frastructure are derived from FESOM2. However, the time
stepping, vertical discretization, and particular algorithms,
detailed below, are different. FESOM-C relies on a terrain-
following vertical coordinate (vs. the arbitrary Lagrangian–
Eulerian (ALE) vertical coordinate of FESOM2), but takes a
step further with respect to the mesh structure. It is designed
to work on hybrid meshes composed of triangles and quads.
Some decisions, such as the lack of the ALE at the present
stage, are only motivated by the desire to keep the code as
simple as possible through the initial phase of its develop-
ment and maintenance. The code is based on the cell-vertex
finite-volume discretization, the same as FESOM2 (Danilov
et al., 2017) and FVCOM (Chen et al., 2003). It places scalar
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quantities at mesh vertices and the horizontal velocities at
cell centroids.

Our special focus is on using hybrid meshes. In essence,
the capability of hybrid meshes is built on the finite-volume
method. Indeed, computations of fluxes are commonly im-
plemented as cycles over edges, and the edge-based infras-
tructure is immune to the polygonal type of mesh cells. How-
ever, because of staggering, it is still convenient to keep some
computations on cells, which then depend on the cell type.
Furthermore, high-order transport algorithms might also be
sensitive to the cell geometry. We limit the allowed polygons
to triangles and quads. Although there is no principal limi-
tation on the polygon type, triangles and quads are versatile
enough in practice for the cell-vertex discretization. Our mo-
tivation for using quads is twofold (Danilov and Androsov,
2015). First, quadrilateral meshes have 1.5 times fewer edges
than triangular meshes, which speeds up computations be-
cause cycles over edges become shorter. The second reason is
the intrinsic problem of the triangular cell-vertex discretiza-
tion – the presence of spurious inertial modes (see, e.g., Le
Roux, 2012) and decoupling between the nearest horizontal
velocities. Although both can be controlled by lateral vis-
cosity, the control leads to higher viscous dissipation over
the triangular portions of the mesh. The hybrid meshes can
be designed so that triangular cells are included only to op-
timally match the resolution or are even absent altogether.
For example, FESOM-C can be run on curvilinear meshes
combining smooth changes in the shape of quadrilateral cells
with smoothly approximated coastlines. One can also think
of meshes for which triangular patches are only used to pro-
vide transitions between quadrilateral parts of different reso-
lution, implementing an effective nesting approach.

Many unstructured-mesh coastal ocean models were pro-
posed recently (e.g., Casulli and Walters, 2000; Chen et al.,
2003; Fringer et al., 2006; Zhang and Baptista, 2008; Zhang
et al., 2016). It will take some time for FESOM-C to catch
up in terms of functionality. The decision on the development
of FESOM-C was largely motivated by the desire to fit in the
existing modeling infrastructure (mesh design, analysis tools,
input–output organization), and not by any deficiency in ex-
isting models. The real workload was substantially reduced
through the use or modification of the existing FESOM2 rou-
tines.

We formulate the main equations and their discretization
in the three following sections. Section 5 presents results of
test simulations, followed by a discussion and conclusions.

2 Model formulation

2.1 The governing equations

We solve standard primitive equations in the Boussinesq,
hydrostatic, and traditional approximations (see, e.g., Mar-
shall et al., 1997). The solution is sought in the domain

Q̂=Q×[0, tf], where tf is the time interval. The boundary
∂Q of domainQ is formed by the free water surface, the bot-
tom boundaries, and lateral boundaries composed of the solid
part ∂Q1 and the open boundary ∂Q2, Q= {x,y,z;x,y ∈
�,−h(x,y)≤ z < ζ(x,y, t)}, 0≤ t ≤ tf. Here ζ is the sur-
face elevation and h the bottom topography. We seek the vec-
tor of unknown q = (u,w,ζ,T ,S), where u= (u,v) is the
horizontal velocity, w the vertical velocity, T the potential
temperature, and S the salinity, satisfying the equations

∂u

∂t
+

∂

∂xi
(uui)+

∂

∂z
(uw)+

1
ρ0
∇p+ f k×u

=
∂

∂z
ϑ
∂u

∂z
+∇ · (K∇)u, (1)

∇ ·u+
∂

∂z
w = 0, (2)

∂p

∂z
=−gρ, (3)

∂2j

∂t
+

∂

∂xi
(ui2j )+

∂

∂z
(w2j )=

∂

∂z
ϑ2
∂2j

∂z

+∇(K2∇)2j . (4)

Here i = 1,2, x1 = x, x2 = y, u1 = u, and u2 = v, and sum-
mation is implied over the repeating indices i; p is the pres-
sure; and j = 1,2 with 21 = T and 22 = S represents the
potential temperature and salinity, respectively. The seawater
density is determined by the equation of state ρ = ρ(T ,S,p),
and ρ0 is the reference density; f is the Coriolis parameter; k

is the vertical unit vector; ϑ andK are the coefficients of ver-
tical and horizontal turbulent momentum exchange, respec-
tively; ϑ2 and K2 are the respective diffusion coefficients;
and g is the acceleration due to gravity.

Writing

ρ(x,y,z, t)= ρ0+ ρ
′(x,y,z, t), (5)

where ρ′ is the density fluctuation, we obtain, integrating
Eq. (3),

p−patm =

ζ∫
z

ρgdz= gρ0(ζ − z)+ g

ζ∫
z

ρ′dz,

where patm is the atmospheric pressure. The horizontal pres-
sure gradient is then expressed as the sum of barotropic, baro-
clinic, and atmospheric pressure gradients:

ρ−1
0 ∇p = g∇ζ + gρ

−1
0 ∇I + ρ

−1
0 ∇patm,

I =

ζ∫
z

ρ′dz. (6)

Note that horizontal derivatives here are taken at fixed z.
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2.2 Turbulent closures

The default scheme to compute the vertical viscosity and dif-
fusivity in the system of Eqs. (1)–(4) is based on the Prandtl–
Kolmogorov hypothesis of incomplete similarity. According
to it, the turbulent kinetic energy b, the coefficient of tur-
bulent mixing ϑ , and dissipation of turbulent energy ε are
connected as ϑ = l

√
b, where l is the scale of turbulence,

ϑ2 = cρϑ , ε = cεb2/ϑ , and cε = 0.046 (Cebeci and Smith,
1974). Prandtl’s number cρ is commonly chosen as 0.1 and
sets the relationship between the coefficients of turbulent dif-
fusion and viscosity. The equation describing the balance of
turbulent kinetic energy is obtained by parameterizing the en-
ergy production and dissipation in the equation for turbulent
kinetic energy b as

∂b

∂t
−ϑ

(
|uz|

2
+ cρgρ

−1
0
∂ρ

∂z

)
+ cεb

2/ϑ = αb
∂

∂z
ϑ
∂b

∂z
, (7)

with the boundary conditions

b|h = B1|u|
2,

ϑbz|ζ = γζu
3
∗ζ ,

where αb = 0.73, B1 = 16.6, and γζ = 0.4× 10−3; u∗ζ =
(ρ/ρa)

1/2u∗ is the dynamical velocity in water near the sur-
face, ρa the air density, and u∗ the dynamic velocity of water
on the interface between air and water.

Dissipative term is written as

b2/ϑ =
(

2bν+1bν − (b2)ν
)
/ϑν,

where ν is the index of iterations. Equation (7) is solved by a
three-point Thomas scheme in the vertical direction with the
boundary conditions given above. Iterations are carried out
until convergence determined by the condition

max
∣∣∣(bν+1

− bν
)
/bν

∣∣∣<$,
where $ is a small value O(10−6). More details on the so-
lution of this equation are given in Voltzinger et al. (1989).

To determine the turbulence scale l in the presence of sur-
face and bottom boundary layers we use the Montgomery
formula (Reid, 1957):

l =
κ

H
ZhZζ ,

where H = h+ ζ is the full water depth, Zh = z+h+ zh,
Zζ =−z+ζ +zζ , κ ' 0.4 is the von Kármán constant, z the
layer depth, and zh and zζ are the roughness parameters for
the bottom and free surface, respectively. To remove turbu-
lent mixing in layers that are distant from interfaces we mod-
ify the Montgomery formula by introducing the cutoff func-
tion Z0 = 1−β1H

−2ZhZζ , 0≤ β1 ≤ 4 (Voltzinger, 1985):

l =
κ

H
ZhZζZ0.

In addition to the default scheme, one may select a scheme
provided by the General Ocean Turbulence Model (GOTM)
(Burchard et al., 1999) implemented into the FESOM-C code
for computing vertical eddy viscosity and diffusion for mo-
mentum and tracer equations. GOTM includes large number
of well-tested turbulence models with at least one member of
every relevant model family (empirical models, energy mod-
els, two-equation models, algebraic stress models, K-profile
parameterizations, etc.) and treats every single water column
independently. An essential part of GOTM includes one-
point second-order schemes (Umlauf and Burchard, 2005;
Umlauf et al., 2005, 2007).

2.3 Bottom friction parameterization

The model uses either a constant bottom friction coefficient
Cd, or it is computed through the specified bottom roughness
height zh. The first option is preferable if the vertical reso-
lution everywhere in the domain does not resolve the loga-
rithmic layer or when the vertically averaged equations are
solved. In the second option the bottom friction coefficient is
computed according to Blumberg and Mellor (1987) and has
the following form:

Cd = (ln((0.5hb+ zh)/zh)/κ)
−2,

where hb is the thickness of the bottom layer. It is also pos-
sible to prescribe Cd or zh as a function of the horizontal
coordinate at the initialization step.

2.4 Boundary conditions

The boundary conditions for the dynamical Eqs. (1)–(2) are
those of no-slip on the solid boundary ∂Q1,

u
∣∣
∂Q1 = 0.

As is well known, the formulation of open boundary con-
ditions faces difficulties. They are related to either the lack
or incompleteness of information demanded by the theory,
for example on velocity components at the open boundary.
Furthermore, whatever the external information, it may con-
tradict the solution inside the computational domain, leading
to instabilities that are frequently expressed as small-scale
vortex structures forming near the open boundary. The pro-
cedure reconciling the external information with the solution
inside the domain becomes of paramount importance. We use
two approaches. The first one is to use a function whereby ad-
vection and horizontal diffusion are smoothly tapered to zero
in the close vicinity of open boundary ∂Q2. Such tapering
makes the equations quasi-hyperbolic at the open boundary
so that the formulation of one condition (for example, for the
elevation, ζ

∣∣
∂Q2 = ζ0) is possible (Androsov et al., 1995).

The other approach is to adapt the external information. It
is applied to scalar fields and will be explained further.

Note that despite simplifications, barotropic and baroclinic
perturbations may still disagree at the open boundary, leading
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to instabilities in its vicinity. In this case an additional buffer
zone is introduced with locally increased horizontal diffusion
and bottom friction.

Dynamic boundary conditions on the top and bottom spec-
ify the momentum fluxes entering the ocean. Neglecting the
contributions from horizontal viscosities, we write

ϑ
∂u

∂z

∣∣
ζ = τζ /ρ0,

ϑ
∂u

∂z
|−h = τh/ρ0 = Cd|uh|uh.

The first one sets the surface momentum flux to the wind
stress at the surface (τζ ), and the second one sets the bottom
momentum flux to the frictional flux at the bottom (τh), with
uh the bottom velocity.

Now we turn to the boundary conditions for the scalar
quantities obeying Eq. (4). This is a three-dimensional
parabolic equation and the boundary conditions are deter-
mined by its leading (diffusive) terms. We impose the no-flux
condition on the solid boundary ∂Q1 and the bottom z=−h.

The conditions at the open boundary ∂Q2 are given for
outflow and inflow; see, e.g., Barnier et al. (1995) and March-
esiello et al. (2001):

2t + a2x + b2y =−
1
τ
(2−20) ,

where 20 is the given field value, usually a climato-
logical one or relying on data from a global numerical
model or observations. If the phase velocity components
and a =−2t2x/G, b =−2t2y/G, andG= [(∂2/∂x)2+
(∂2/∂y)2]−1 (Raymond and Kuo, 1984), 2 propagates out
of the domain, and one sets τ = τ0. If it propagates into the
domain, a and b are set to zero and τ = τ0 , with τ0 � τ0.
The parameter τ is determined experimentally and com-
monly is from hours to days. In the FESOM-C such an adap-
tive boundary condition is routinely applied for temperature
and salinity, yet it can also be used for any components of a
solution.

At the surface the fluxes are due to the interaction with the
atmosphere:

ϑ2
∂T

∂z

∣∣
ζ = Q̂(x,y, t)/ρ0cp, (8)

ϑ2
∂S

∂z

∣∣
ζ = 0, (9)

where Q̂ is the heat flux excluding shortwave radiation,
which has been included as a volume heat source in the tem-
perature equation, with cp the specific heat of seawater. The
impact of the precipitation–evaporation has been included as
a volume source in the continuity equation. In the presence of
rivers, their discharge is added either as a prescribed inflow
at the open boundary in the river mouth or as volume sources
of mass, heat, and momentum distributed in the vicinity of
the open boundary. In the first case it might create an initial
shock in elevation, so the second method is safer.

3 Temporal discretization

As is common in coastal models, we split the fast and slow
motions into, respectively, barotropic and baroclinic subsys-
tems (Lazure and Dumas, 2008; Higdon, 2008; Gadd, 1978;
Blumberg and Mellor, 1987; Deleersnijder and Roland,
1993). The reason for this splitting is that surface gravity
waves (external mode) are fast and impose severe limitations
on the time step, whereas the internal dynamics can be com-
puted with a much larger time step. The time step for the
external mode τ2-D is limited by the speed of surface grav-
ity waves, and that for the internal mode, τ3-D, by the speed
of internal waves or advection. The ratio Mt = τ3-D/τ2-D de-
pends on applications, but is commonly between 10 and 30.
In practice, additional limitations are due to vertical advec-
tion or wetting and drying processes. We will further use the
indices k and n to enumerate the internal and external time
steps, respectively.

The numerical algorithm passes through several stages. In
the first stage, based on the current temperature and salin-
ity fields (time step k), the pressure is computed from hy-
drostatic equilibrium Eq. (6) and then used to compute the
baroclinic pressure gradient ρ−1

0 ∇p = g∇ζ
k
+ gρ−1

0 ∇I
k
+

ρ−1
0 ∇patm. We use an asynchronous time stepping, assum-

ing that integration of temperature and salinity is half-step
shifted with respect to momentum. The index k on I implies
that it is centered between k and k+1 of momentum integra-
tion. The elevation in the expression above is taken at time
step k, which makes the entire estimate for ∇p only first-
order accurate with respect to time.

At the second stage, the predictor values of the three-
dimensional horizontal velocity are determined as

ũk+1
−uk = τ3-D(−f k×u−∇ ·uu+∇ · (K∇u))AB3

− τ3-Dρ
−1
0 ∇p+ τ3-D∂zϑ∂zũ

k+1
− τ3-D∂z(wu)AB3.

Here K is the coefficient of horizontal viscosity, and AB3
implies the third-order Adams–Bashforth estimate. The hori-
zontal viscosity operator can be made biharmonic or replaced
with filtering as discussed in the next chapter.

To carry out mode splitting, we write the horizontal ve-
locity as the sum of the vertically averaged one u and the
deviation thereof (pulsation) u′:

u= u+u′,

u=
1
H

ζ∫
−h

udz,

ζ∫
−h

u′ = 0.

By integrating the system in Eqs. (1)–(3) vertically between
the bottom and surface, with regard for the kinematic bound-
ary conditions ∂tζ +u∇ζ = w on the surface, −u∇h= w at
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the bottom, and time discretization, we get(
ζ n+1
− ζ n

)
+ τ2-D∇(Hu)AB3

= 0,

un+1
−un = τ2-D(−f k×u−∇ ·uu+∇ · (K∇u))AB3

− τ2-D(g∇ζ )
AM4
+ τ2-D

(
τζ /ρ0− τh

)
− τ2-DR

′

3-D

− τ2-Dgρ
−1
0 ∇I

k
.

Here a specific version of AB3 is used: uAB3
= (3/2+

β)uk − (1/2+ 2β)uk−1
+βuk−2, with β = 0.281105 for

stability reasons (Shchepetkin and McWilliams, 2005);
AM4 implies the Adams–Multon estimate ζAM4

= δζ n+1
+

(1− δ− γ − ε)ζ n+ γ ζ n−1
+ εζ n−2, taken with δ = 0.614,

γ = 0.088, and ε = 0.013 (Shchepetkin and McWilliams,
2005). In the equations above τζ and τh are the surface (wind)
and bottom stresses, respectively, and ∇I is the vertically in-
tegrated gradient of baroclinic pressure. The term R′3-D con-
tains momentum advection and horizontal dissipation of the
pulsation velocity integrated vertically:

R′3-D =
1
H k

 ζ∫
−h

∇ ·u′u′
−

ζ∫
−h

∇ ·
(
K∇u′

)k.
In this expression H k is the total fluid depth at time step k,
H k
= h+ ζ k . This term is computed only on the baroclinic

time step and kept constant through the integration of the
internal mode.

The bottom friction is taken as

τh = Cd|u|
n
(
un+1

−un
)
/H n+1

+Cd |̃uh|
k+1ũk+1

h /H n+1.

The first part of bottom friction is needed to increase stabil-
ity, while the second part estimates the correct friction, with
ũk+1
h the horizontal velocity vector in the bottom cell on the

predictor time step.
The system of vertically averaged equations is stepped ex-

plicitly (except for the bottom friction) throughMt time steps
of duration τ2-D (index n) to “catch up” the k+ 1 baroclinic
time step. The update of elevation is made first, followed by
the update of vertically integrated momentum equations.

At the “corrector” step, the 3-D velocities are corrected to
the surface elevation at k+ 1:

uk+1
=
4
k
i

4
k+1
i

ũk+1
+

(
uk+1
−uP

)
,

with uP = 1
H k+1

∑ζ
−h

(̃
uk+1
4
k
i

)
, where i is the vertical in-

dex. Here 4ki and 4k+1
i are the thicknesses of the ith layer

calculated on respective baroclinic time steps. The layer
thickness is 4ki =4iH

k , where 4i is the unperturbed verti-
cal grid spacing. This correction removes the barotropic com-
ponent of the predicted velocity and combines the result with
the computed barotropic velocity. We will suppress the layer
index i where it is unambiguous.

The final step in the dynamical part calculates the trans-
formed vertical velocity wk+1 from 3-D continuity Eq. (2).
It is used in the next predictor step. Note that in the predictor
step the computations of vertical viscosity are implicit.

New horizontal velocities, the so-called “filtered” ones, are
used for advection of a tracer. They are given by the sum of
the filtered depth mean and the baroclinic part of the “pre-
dicted” velocities (Deleersnijder, 1993),

uk+1
F =

4
k
i

4
k+1
i

ũk+1
+

(
uF −uP

)
,

with uF = 1
MtH k+1

∑n=Mt

n=1
(
unH n

)
. The procedure of “fil-

tering” removes possible high-frequency components in the
barotropic velocity. It also improves accuracy because it in
essence works toward centering the contribution of the ele-
vation gradient. Once the filtered velocity is computed, the
vertical velocity is updated to match it.

The equation for temperature is taken in the conservation
form

4
k+1T k+1

=4
kT k − τ3-D

[
∇ ·

(
uk+1
F 4

kT ∗
)
+wFtT

∗
t −wFbT

∗

b

]
+D+ τ3-DR+ τ3-DC,

where D combines the terms related to diffusion, wFt,wFb,
Tt, and Tb are the vertical transport velocity and temperature
on top and bottom of the layer, and T ∗ is computed through
the second-order Adams–Bashforth estimate.R is the bound-
ary thermal flux (either from the surface or due to river dis-
charge). The last term in the equation above is

C = T
∂4i

∂t
=−T

(
∇(4iuF )

k+1
+ ∂z(4iwF )

k+1
)
.

Its two constituents combine to zero because of continuity.
Keeping this term makes sense if computations of advection
are split into horizontal and vertical substeps. The salinity is
treated similarly.

In simulations of coastal dynamics it is often necessary to
simulate flooding and drying events. Explicit time stepping
methods of solving the external mode are well suited for this
(Luyten et al., 1999; Blumberg and Mellor, 1987; Shchep-
etkin and McWilliams, 2005). The algorithm to account for
wetting and drying will be presented in the next section. We
only note that computations are performed on each time step
of the external mode.

4 Spatial discretization

In the finite-volume method, the governing equations are in-
tegrated over control volumes, and the divergence terms, by
virtue of the Gauss theorem, are expressed as the sums of
respective fluxes through the boundaries of control volumes.
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Figure 1. Schematic of mesh structure. Velocities are located at cen-
troids (red circles) and elevation at vertices (blue circles). A scalar
control volume associated with vertex v1 is formed by connecting
neighboring centroids to edge centers. The control volumes for ve-
locity are the triangles and quads themselves. The lines passing
through two neighboring centroids (e.g., c1 and c2) are broken in
a general case at edge centers. Their fragments are described by the
left and right vectors directed to centroids (sl and sr for edge e).
Edge e is defined by its two vertices v1 and v2 and is considered
to be directed to the second vertex. It is also characterized by two
elements c1 and c2 to the left and to the right, respectively.

For the cell-vertex discretization the scalar control volumes
are formed by connecting cell centroids with the centers of
edges, which gives the so-called median-dual control vol-
umes around mesh vertices. The vector control volumes are
the mesh cells (triangles or quads) themselves, as schemati-
cally shown in Fig. 1.

The basic structure to describe the mesh is the array of
edges given by their vertices v1 and v2, and the array of two
pointers c1 and c2 to the cells on the left and on the right
of the edge. There is no difference between triangles, quads,
or hybrid meshes in the cycles that assemble fluxes. Quads
and triangles are described through four indices to the ver-
tices forming them; in the case of triangles the fourth index
equals the first one. The treatment of triangles and quads dif-
fers slightly in computations of gradients as detailed below.
We will use symbolic notation e(c) for the list of edges form-
ing cell c, e(v) for the list of edges connected to vertex v, and
v(c) for the list of vertices defining cell of element c.

In the vertical direction we introduce a σ coordinate
(Phillips, 1957):

σ =
z+h

h+ ζ
, 1≤ σ ≤ 0.

The lower and upper horizontal faces correspond to the
planes σ = 0 and σ = 1, respectively. The vertical grid spac-
ing is defined by the selected set of σi . The spacing of σi
is horizontally uniform in the present implementation (but it
can be varying) and can be selected as equidistant or based
on a parabolic function with high vertical resolution near the

surface and bottom in the vertical,

σi =−

(
i− 1
N − 1

)%
+ 1,

whereN is the number of vertical layers. Here % = 1(2) gives
the uniform (parabolic) distribution of vertical layers. One
more possibility to use refined resolution near the bottom or
surface is implemented through the formula by Burchard and
Bolding (2002):

σi =
tanh

[(
Lh+Lζ

)
(N−i)
(N−1) −Lh

]
+ tanhLh

tanhLh+ tanhLζ
− 1,

where Lh and Lζ are the number of layers near the bottom
and surface, respectively.

The vertical grid spacing is recalculated on each baroclinic
time step for the vertices where ζ is defined. It is interpolated
from vertices to cells and to edges. The vectors of horizontal
velocity and tracers are located in the middle of vertical lay-
ers (index i+ 1/2), but the vertical velocity is at full layers.

4.1 Divergence and gradients

The divergence operator on scalar control volumes is com-
puted as∫
v

∇ · (4u)dS =
∑
e=e(v)

[
(4un`)l+ (4un`)r

]
,

where the cycle is over edges containing vertex v, the indices
l and r imply that the estimates are made on the left and right
segments of the control volume boundary attached to the cen-
ter of edge e, n is the outer normal, and ` the length of the
segment (see Fig. 1). With vectors sl and sr connecting the
midpoint of edge e with the cell centers on the left and on the
right, we get (n`)l = k× sl and similar, but with the minus
sign for the right element (k is a unit vertical vector). The
mean cell values, for example layer thickness on the cell, can
be defined as 4c =

∑
v=v(c)4vwcv, where wcv = 1/3 on tri-

angles and wcv = Scv/Sc for quads (Sc cell area and Scv, the
part of it in the scalar control volume around the vertex).

Gradients of scalar quantities are needed on cells and are
computed as∫
c

∇ζdS =
∑
e=e(c)

(n`ζ )e,

where summation is over the edges of cell c, the normal and
length are related to the edges, and ζ is estimated as the mean
over edge vertices.

The gradients of velocities on cells can be needed for the
computation of viscosity and the momentum advection term.
They are computed through the least squares fit based on the
velocities on neighboring cells:

L=
∑
n=n(c)

(
uc−un−

(
αx,αy

)
rcn
)2
=min.

Geosci. Model Dev., 12, 1009–1028, 2019 www.geosci-model-dev.net/12/1009/2019/



A. Androsov et al.: FESOM-C: coastal dynamics on hybrid meshes 1015

Here rcn = (xcn,ycn) is the vector connecting the cen-
ter of c to that of its neighbor n. Their solution can be
reformulated in terms of two matrices (computed once
and stored) with coefficients axcn =

(
xcnY

2
− ycnXY

)
/d and

a
y
cn =

(
ycnX

2
− xcnXY

)
/d , acting on velocity differences

and returning the derivatives. Here d =X2Y 2
−(XY)2,X2

=∑
n=n(c)x

2
cn, Y 2

=
∑
n=n(c)y

2
cn, and XY =

∑
n=n(c)xcnycn.

4.2 Momentum advection

We implemented two options for horizontal momentum ad-
vection in the flux form. The first one is linear reconstruction
upwind based on cell control volumes (see Fig. 1). The sec-
ond one is central and is based on scalar control volumes,
with subsequent averaging to cells. In the upwind implemen-
tation we write∫
c

∇ · (u4u)dS =
∑
e=e(c)

(un`4u)e.

For edge e, linear velocity reconstructions on the elements
on its two sides are estimated at the edge center. One of the
cells is c, and let n be its neighbor across e. The respective
velocity estimates will be denoted as uce and une, and up-
wind will be written in the form 2u= uce (1+ sgn(un))+

une (1− sgn(un)), where un= n((uce+une))/2.
The other form is adapted from Danilov (2012). It provides

additional smoothing for momentum advection by comput-
ing flux divergence for larger control volumes. In this case
we first estimate the momentum flux term on scalar control
volumes:∫
v

∇ · (u4u)dS =
∑
e=e(v)

[
(un`4u)l+ (un`4u)r

]
.

The notation here follows that for the divergence. No ve-
locity reconstruction is involved. These estimates are then
averaged to the centers of cells. In both variants of advection
form the fluid thickness is estimated at cell centers.

4.3 Tracer advection

Horizontal advection and diffusion terms are discretized ex-
plicitly in time. Three advection schemes have been imple-
mented. The first two are based on linear reconstruction for
control volume and are therefore second order. The linear re-
construction upwind scheme and the Miura scheme (Miura,
2007) differ in the implementation of time stepping. The first
needs the Adams–Bashforth method to be second order with
respect to time. The scheme by Miura reaches this by esti-
mating the tracer at a point displaced by uτ3-D/2. In both
cases a linear reconstruction of the tracer field for each scalar
control volume is performed:

2R(x,y)=20(xv,yv)+2x(x− xv)+2y(y− yv),

where 20 is the tracer value at vertex, 2x and 2y are the
gradients averaged to vertex locations, and xv and yv the co-
ordinates of vertex v. The fluxes for scalar control volume
faces associated with edge e are computed as∑
e=e(v)

([
(un`42R)l+ (un`42R)r

])
.

The estimate of the tracer is made at the midpoints of the
left and right segments and at points displaced by uτ3-D/2
from them, respectively.

The third approach used in the model is based on the gra-
dient reconstruction. The idea of this approach is to estimate
the tracer at mid-edge locations with a linear reconstruction
using the combination of centered and upwind gradients:
2±e =2vi ± `e(∇2)

±
e /2, where i = 1,2 are the indices of

edge vertices, and gradients are computed as

(∇2)+e =
2
3
(∇2)c+

1
3
(∇2)u and

(∇2)−e =
2
3
(∇2)c+

1
3
(∇2)d.

Here, the upper index c means centered estimates, and u and
d imply the estimates on the up- and down-edge cells.

The advective flux of scalar quantity2 through the face of
the scalar volume

(
Qe =

[
(un`4)l+ (un`4)r

])
associated

with edge e, which leaves the control volume ν1 (see Fig. 1),
is

Qe2e =
1
2
Qe

(
2+e +2

−
e

)
+

1
2
(1− γ ) |Qe|

(
2+e +2

−
e

)
,

where γ is the parameter controlling the upwind dissipation.
Taking γ = 0 gives the third-order upwind method, whereas
γ = 1 gives the centered fourth-order estimate.

A quadratic upwind reconstruction is used in the vertical
with the flux boundary conditions on surface (Eqs. 8 and 9)
and zero flux at the bottom. Other options for horizontal and
vertical advection, including limiters, will be introduced in
the future.

The advection schemes are coded so that their order can
be reduced toward the first-order upwind for a very thin wa-
ter layer to increase stability in the presence of wetting and
drying.

4.4 Viscosity and filtering

Consider the operator ∇A∇u. Its computation follows the
rule∫
c

∇A∇udS =
∑
e=e(c)

A`(n∇u)e.

The estimate of velocity gradient on edge e is symmetrized
following the standard practice (Danilov, 2012) over the val-
ues on neighboring cells. “Symmetrized” means that the es-
timate on edge e is the mean of horizontal velocity gradients
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Figure 2. (a) The bathymetry of the Sylt–Rømø Bight (provided by Hans Burchard, personal communication, 2015) with the location of
station List-auf-Sylt; (b) the regular quasi-quadrilateral MESH-1 (200 m; 16 089 vertices, 15 578 quads, and 176 triangles); (c) the triangular
MESH-2 (14 193 vertices and 27 548 triangles); and (d) the irregular quadrilateral MESH-3 (35 639 vertices, 34 820 quads, and 31 triangles).

computed on elements c and n (notation from article) with
the common edge e: (∇u)e = ((∇u)c+ (∇u)n)/2. The con-
sequence of this symmetrization is that on regular meshes
(formed of equilateral triangles or rectangular quads) the in-
formation from the nearest neighbors is lost. Any irregular-
ity in velocity on the nearest cells will not be penalized. Al-
though unfavorable for both quads and triangles, it has far-
reaching implications for the latter: it cannot efficiently re-
move the decoupling between the nearest velocities, which
may occur for triangular cells. This fact is well known, and
the modification of the scheme above that improves coupling
between the nearest neighbors consists of using the identity

n= rcn/ |rcn| + (n− rcn/ |rcn|) ,

where rcn is the vector connecting the centroid of cells c and
n. The derivative in the direction of rcn is just the difference

between the neighboring velocities divided by the distance,
which is explicitly used to correct n∇u. It is easy to show
that on rectangular quads or equilateral triangles (n and rcn
are collinear) the second term of the expression above will
disappear. This is the harmonic discretization and a bihar-
monic version is obtained by applying the procedure twice.

A simpler algorithm is implemented to control grid-scale
noise in the horizontal velocity. It consists of adding to the
right hand for the momentum equation (2-D and 3-D flow) a
term coupling the nearest velocities,

Fc =−

(
1
τf

)∑
n(c)

(un−uc) ,

where τf is a timescale selected experimentally. On regular
meshes this term is equivalent to the Laplacian operator. On
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Figure 3. Potential and kinetic energy. Panels (a, c) are for the total area; panels (b, d) are for the area where the full depth exceeds 1 m.

general meshes it deviates from the Laplacian, yet after some
trivial adjustments it warrants momentum conservation and
energy dissipation (Danilov and Androsov, 2015).

4.5 Wetting and drying algorithm

For modeling wetting and drying we use the method pro-
posed by Stelling and Duinmeijer (2003). The idea of this
method is to accurately track the moving shoreline by em-
ploying the upwind water depth in the flux computations. The
criterion for a vertex to be wet or dry is taken as

{
wet, if Dwd = h+ ζ +hl >Dmin
dry, if Dwd = h+ ζ +hl ≤Dmin,

where Dmin is the critical depth and hl is the topography.
Each cell is treated as

{
wet, if Dwd =minhv(c)+maxζv(c) >Dmin
dry, if Dwd =minhv(c)+maxζv(c) ≤Dmin,

where hv and ζv are the depth and sea surface height at the
vertices v(c) of the cell c. When a cell is treated as dry, the
velocity at its center is set to zero and no volume flux passes
through the boundaries of scalar control volumes inside this
cell.

5 Numerical simulations

In this section we present the results of two model experi-
ments. The first considers tidal circulation in the Sylt–Rømø
Bight. This area has a complex morphometry with big zones
of wetting–drying and large incoming tidal waves. In this
case our intention is to test the functioning of meshes of var-
ious kinds. The second experiment simulates the southeast
part of the North Sea. For this area, an annual simulation of
barotropic–baroclinic dynamics with realistic boundary con-
ditions on open and surface boundaries is carried out and
compared to observations. We note that a large number of
simpler experiments, including those in which analytical so-
lutions are known, were carried out in the course of model
development to test and tune the model accuracy and stabil-
ity. Lessons learned from these were taken into account. We
omit their discussion in favor of realistic simulations.

5.1 Sylt–Rømø experiment

To test the code sensitivity to the type of grid and grid qual-
ity, we computed barotropic tidally driven circulation in the
Sylt–Rømø Bight in the Wadden Sea.

It is a popular area for experiments and test cases (e.g.,
Lumborg and Pejrup, 2005; Ruiz-Villarreal et al., 2005; Bur-
chard et al., 2008; Purkiani et al., 2014). The Sylt and Rømø
islands are connected to the mainland by artificial dams, cre-
ating a relatively small semi-enclosed bight with a circulation
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Figure 4. (a) Full ebb; (b) low water; (c) the residual circulation. Simulation was performed on MESH-1.

pattern well known from observations and modeling (e.g.,
Becherer et al., 2011; Purkiani et al., 2014). It is a tidally
energetic region with a water depth down to 30 m, character-
ized by wide intertidal flats and a rugged coastline. Water is
exchanged with the open sea through a relatively narrow (up
to 1.5 km wide) and deep (up to 30 m) tidal inlet, Lister Dyb.

The bathymetry data for the area were provided by Hans Bur-
chard (personal communication, 2015) and are presented in
Fig. 2.

We constructed three different meshes (Fig. 2) for our
experiments. The first one is a nearly regular quadrilateral
mesh, complemented by triangles that straighten the coast-

Geosci. Model Dev., 12, 1009–1028, 2019 www.geosci-model-dev.net/12/1009/2019/



A. Androsov et al.: FESOM-C: coastal dynamics on hybrid meshes 1019

Figure 5. (a) Sea surface height (SSH) for one tidal period in the station List-auf-Sylt (see Fig. 2); (b) spectrum of the computed M2 tidal
sea level at station List-auf-Sylt on MESH-1; (c) spectrum on MESH-2; and (d) spectrum on MESH-3.

line (MESH-1). Its spatial resolution is 200 m. The second
mesh is purely triangular (MESH-2) with resolution vary-
ing from ∼ 820 to ∼ 90 m. The third mesh was generated
by the Gmsh mesh generator (Geuzaine and Remacle, 2009)
and includes 34 820 quads and 31 triangles with a minimum
cell size of 30 m and maximum size of ∼ 260 m (MESH-3).
All meshes have 21 nonuniform sigma layers in the vertical
direction (refined near the surface and bottom). The wetting–
drying option is turned on. We apply the k−ε turbulence clo-
sure model with transport equations for the turbulent kinetic
energy and the turbulence dissipation rate using the GOTM
library. The second-moment closure is represented by alge-
braic relations suggested by Cheng et al. (2002). The exper-
iment is forced by prescribing elevation due to an M2 tidal
wave at the open boundary (western and northern boundaries
of the domain) provided by Hans Burchard (personal com-
munication, 2015).

Simulations on each mesh were continued until reach-
ing the steady state in the tidal cycle of the M2 wave. The
last tidal period was analyzed. Quasi-stationary behavior is
already established in the second tidal period. The simu-
lated M2 wave is essentially nonlinear during the tidal cycle
judged by the difference in amplitude of two tidal half-cycles.

Figure 3 shows the behavior of potential and kinetic en-
ergies in the entire domain, and the right panels show the
energies computed over the areas deeper than 1 m. The re-
sults are sensitive to the meshes, which is explained fur-
ther. The smallest tidal energy is simulated on the triangular
mesh (MESH-2). The reason is that with the same value of
the timescale τf in the filter used by us in these simulations,
the effective viscous dissipation is much higher on a triangu-
lar mesh than on quadrilateral meshes of similar resolution.
However, the solutions on quadrilateral meshes are also dif-
ferent, and this time the reason is the difference in the details

of representing very shallow areas on meshes of various res-
olution (MESH-3 is finer than MESH-1). The difference be-
tween the simulations on two quadrilateral meshes is related
to the potential energy and comes from the difference in the
elevation simulated in the areas subject to wetting and drying
(see Fig. 8). Note that the velocities and layer thickness are
small in these areas, so the difference between kinetic ener-
gies in Fig. 3c and d is small.

The average currents, sea level, and residual circulation
simulated on MESH-1 are presented in Fig. 4. The results
of this experiment show good agreement with the previously
published results of Ruiz-Villarreal et al. (2005).

An example spectrum of level oscillations on station List-
auf-Sylt from model results is presented in Fig. 5. The ampli-
tude of the M2 wave on quad meshes (MESH-1 and MESH-
3) slightly exceeds 80 cm and is a bit smaller on MESH-2.
Similar behavior is seen for the second harmonics (M4) ex-
pressing nonlinear effects in this region. We tried to com-
pare model simulation with the observations (https://www.
pegelonline.wsv.de/gast/start, last access: 28 February 2019).
For comparison, the observations were taken for the first half
of January 2018. Figure 6 presents the range of fluctuations
for the whole period. As is seen, the main tidal wave M2 has
a smaller amplitude (about 70 cm) than in simulations. How-
ever, the high-frequency part of the spectrum is very noisy
because of atmospheric loading and winds. If the analysis is
performed for separate tidal cycles in cases of strong wind
and no wind, the correspondence with observations is recov-
ered in the second case.

Of particular interest is the convergence of the solution on
different meshes. For comparison the solutions simulated on
MESH-2 and MESH-3 were interpolated to MESH-1. The
comparison was performed for the full tidal cycle and is
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Figure 6. (a) Spectrum of the observation tidal sea level at station List-auf-Sylt (see Fig. 2) from 1 to 15 January 2018; (b) spectrum of the
observation SSH for one tidal period with strong wind (1 January 2018); and (c) spectrum of the observation SSH for one tidal period with
no wind (14 January 2018).

shown in Fig. 7, which presents histograms of the differ-
ences.

For the solutions on MESH-1 and MESH-3 values at more
than 80 % of points agree within the range of ±1 cm for the
elevation (the maximum tidal wave exceeds 1 m) and within
the range of ±1 cm s−1 for the velocity (the maximum hor-
izontal velocity is about 120 cm s−1). Thus, the agreement
between simulations on quadrilateral MESH-1 and MESH-3
is also maintained on a local level. The agreement becomes
worse when comparing solutions on triangular MESH-2 and

quadrilateral MESH-1. Here the share of points with larger
deviations is noticeably larger.

Spatial patterns of the differences for elevations and veloc-
ities simulated on different meshes are presented in Figs. 8
and 9, respectively. Substantial differences for the elevation
are located in wetting and drying zones. This is related to
the sensitivity of the wetting and drying algorithm to the cell
geometry. For the horizontal velocity the difference between
the solutions is defined by the resolution of bottom topogra-
phy in the most energetically active zone on the quadrilateral
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Figure 7. Histograms of the difference between solutions for the tidal cycle of the M2 wave on MESH-1 and MESH-2 (a, c, e) and on
MESH-1 and MESH-3 (b, d, f). Top, middle, and bottom rows correspond to the difference in elevation and the u and v components of
velocity, respectively.

meshes (see residual circulation in Fig. 4). The difference
between the triangular grid and quadrilateral grid has a noisy
character and is seen in the regions of strongest depth gradi-
ents.

5.2 Southeast North Sea circulation

Here we present the results of realistic simulations of cir-
culation in the southeastern part of the North Sea. The area
of simulations is limited by the Dogger Bank and Horns
Rev (Denmark) on the north and the border between Bel-
gium and the Netherlands on the west. It is characterized
by complex bathymetry with strong tidal dynamics (Maß-
mann et al., 2010; Idier et al., 2017). The related estuar-
ine circulation (Burchard et al., 2008; Flöser et al., 2011),

strong lateral salinity, and nutrient gradients and river plumes
(Voynova et al., 2017; Kerimoglu et al., 2017) are important
aspects of this area. In our simulations, the mesh consists
of mainly quadrilateral cells. The mesh is constructed with
Gmsh (Geuzaine and Remacle, 2009) using the Blossom-
Quad method (Remacle et al., 2012). It includes 31 406 quads
and only 32 triangles. The mesh resolution (defined as the
distance between vertices) varies between 0.5 and 1 km in the
area close to the coast and Elbe estuary, coarsening to and 4–
5 km at the open boundary (Fig. 10). The mesh contains five
sigma layers in the vertical.

Bathymetry from the EMODnet Bathymetry Consortium
(2016) has been used. Model runs were forced by 6-hourly
atmospheric data from NCEP/NCAR Reanalysis (Kalnay et
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Figure 8. Spatial distribution of the elevation differences for a full tidal period for MESH-1 and MESH-2 (a) and for MESH-1 and MESH-
3 (b).

Figure 9. Spatial distribution of the difference between the hori-
zontal velocities for the full tidal period of an M2 wave: u compo-
nent (a, b); v component (c, d). The differences are between MESH-
1 and MESH-2 (a, c) and MESH-1 and MESH-3 (b, d).

Figure 10. The area of the southeast North Sea experiment with
mesh (black lines). The red dot indicates the position of the Cux-
haven station. This mesh includes 31 406 quads and 32 triangles.

al., 1996) and daily resolved observed river runoff (Radach
and Pätsch, 2007; Pätsch and Lenhart, 2011). Salinity and
temperature data on the open boundary were extracted from
hindcast simulations based on TRIM-NP (Weisse et al.,
2015). The sea surface elevation at the open boundary was
prescribed in terms of amplitudes and phase for M2 and
M4 tidal waves derived from the previous simulations of the
North Sea (Maßmann et al., 2010; Danilov and Androsov,
2015). Data for temperature and salinity from the TRIM-NP
model were used to initialize model runs for 1 year. The re-
sults of these runs were used as initial conditions for a 10-
month final simulation.

The validation of simulated amplitudes and phases of the
M2 tidal wave is presented in Fig. 11. This wave is the main
tidal constituent in this region. It enters the domain at the
western boundary and propagates along the coast as a Kelvin
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Figure 11. The simulated M2 tidal map in the south North Sea experiment compared to observations. The amplitude is in meters (a, c) and
phase (b, d) in degrees. (a, b) Model-to-observation graphs; the numbers correspond to station numbers shown in (c, d). The color shows the
amplitude in (a) and phase in (b), and the filled circles show the observational data. The red circle indicates the position of Cuxhaven station.
The total vector error is 0.24 m for 53 stations.

wave. The phase field is characterized by two amphidromic
points. We used the observed values from Ole Baltazar An-
dersen (personal communication, 2008). for the comparison.
The simulated amplitudes are generally slightly smaller than
the observed ones (Fig. 11). The deviations in amplitudes can
be explained by uncertainty in model bathymetry and the use
of a constant bottom friction coefficient. The phases of the
M2 wave are well reproduced by the model. We characterize
its accuracy by the total vector error:

µ=
1
N

N∑
n=1

(
(A∗ cosϕ∗−Acosϕ)2+ (A∗ sinϕ∗−Asinϕ)2

)1/2

n
,

whereA∗, ϕ∗ andA, ϕ are the observed and computed ampli-
tudes and phases, respectively, at N stations. The total vector
error is 0.24 m for 53 stations in the entire simulated domain,
which presents a reasonably good result for this region given
the domain size. From the results of comparison it is seen that
observations at some stations, such as station 7 in the open
sea, differ considerably from the amplitude and phase at the
close stations. The comparison will improve if such outlier
stations are excluded.

To validate the simulated temperature and salinity we used
data from the COSYNA database (Baschek et al., 2017) and
ICES database (http://www.ices.dk, last access: 28 Febru-
ary 2019). Comparisons of modeled surface temperature and
salinity show good Pearson correlation coefficients of 0.98
and 0.9 with RMSD values of 1.24 and 0.98, respectively.
The model can represent both seasonal changes in sea sur-
face temperature (SST) and salinity (SSS), as well as lateral
gradients (not shown) reasonably well. The modeled and ob-
served SSS for Cuxhaven station is presented in Fig. 12 for
simulations with the Miura advection scheme.

The observations are from the station located in the mouth
of the Elbe River near the coast. They are characterized
by a tidal amplitude in excess of 1.5 m, a horizontal salin-
ity gradient of 0.35 PSU km−1 (during spring tide up to
0.45 PSU km−1) (https://www.portal-tideelbe.de, last access:
28 February 2019, and Kappenberg et al., 2018), and an ex-
tended wetting and drying area around this station. The sim-
ulation is in good agreement with tidal filtered mean SSS
(Fig. 12). The model represents the summer flood event dur-
ing June–July well.
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Figure 12. Modeled (blue line) and observed (gray dots and dashed black lines) sea surface salinity (SSS) at the Cuxhaven station. The
station is positioned at the mouth of the Elbe River between stations 9 and 13 in Fig. 11. Panel (a) shows 9 months of simulations, and panel
(b) shows results from two selected days in May. The blue (modeled with the Miura advection scheme) and thick dashed black (observation)
lines in (a) show running-mean SSS with a time window of 10 periods for theM2 tidal wave. Thin dashed black lines are 1 standard deviation
bounds of the running-mean observed SSS in (a).

Figure 13. Sea surface salinity on 26 June 2013. Filled contours are
model results, and colored lines are observational data from Ferry-
Box (FunnyGirl) (Petersen, 2014).

Figure 13 shows the calculated surface salinity field in part
of the simulated domain on 26 June 2013 in comparison with
the observational data from FerryBox (FunnyGirl) (Petersen,
2014). As can be seen from the plot, there is a high consis-
tency of the simulated results with observational data.

6 Discussion

6.1 Triangles vs. quads: numerical performance

We examine the computational efficiency by comparing the
CPU time needed to simulate five tidal periods of anM2 wave
on MESH-1 and MESH-2 in the Sylt–Rømø experiment, as
presented in Fig. 14. The number of vertices of the quadri-
lateral MESH-1 is approximately ∼ 1.13 that of triangular
MESH-2, but the numbers of elements relate as ∼ 0.57. We
have found that the total CPU times are in an approximate
ratio of 1.62 (triangles / quads). The simulations were per-
formed with the same time steps.

The 3-D velocity part takes approximately the same CPU
time as the computation of vertically averaged velocity and
elevation (external mode). Operations on elements, which in-
clude the Coriolis and bottom friction terms as well as com-
putations of the gradients of velocity and scalars, are approx-
imately twice as cheap on quadrilateral meshes as expected.
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Figure 14. CPU time on two meshes, MESH-1 (black line) and MESH-2 (red line), for the Sylt–Rømø experiment. The CPU time for 3-D
velocity (a), external mode (b), and the total CPU time (c).

Figure 15. Temperature section along the channel as simulated on the quadrilateral mesh (a). The two inserts show the area adjacent to the
open boundary on the purely triangular mesh (a) and the mesh for which the vicinity of the open boundary is rendered with quads (c). The
dashed rectangle shows the area of the inserts. Numerical instability evolves on a purely triangular mesh (blue ellipse).

Computations of viscosity and momentum transport are car-
ried out in a cycle over edges, which is 1.5 times shorter for
meshes made of quadrilateral elements and warrants a sim-
ilar gain of ∼ 1.5 in performance on quadrilateral meshes.
In our simulation, the net gain was ∼ 1.62 times on MESH-
1 compared to MESH-2, despite the fact that the number of
vertices is 13 % larger than on MESH-2. The model is stable
on the quadrilateral meshes with smaller horizontal viscosity,
which is also an advantage.

6.2 Triangles vs. quads: open boundaries

The presence of open boundaries is a distinctive feature of
regional models. The implementation of robust algorithms
for the open boundary is more complicated on unstructured
triangular meshes than on structured quadrilateral meshes.
For example, it is more difficult to cleanly assess the propa-
gation of perturbations toward the boundary in this case. In
addition, spurious inertial modes can be excited on triangu-
lar meshes in the case of the cell-vertex discretization used
by us, which in practice leads to additional instabilities in
the vicinity of the open boundary. The ability to use hybrid
meshes is very helpful in this case. Indeed, even if the mesh is
predominantly triangular, the vicinity of the open boundary
can be constructed of quadrilateral elements.

We illustrate improvements of the dynamics in the vicinity
of the open boundary by simulating baroclinic tidal dynamics
in an idealized channel with an underwater sill. The channel

is 12 km in length and 3 km in width, with a maximum depth
of 200 m near the open boundary. The sill, with a height of
150 m, is located in the central part of the channel. The flow
is forced at the open boundaries by a tide with the period of
anM2 wave and amplitude of 1 cm, applied in antiphase. The
left part of the channel contains denser waters than the right
one.

Three meshes were used for these simulations. The first
one is a quadrilateral mesh with a horizontal resolution of
200 m refined to 20 m in the vicinity of the underwater sill.
The second one is a purely triangular mesh obtained from the
quadrilateral mesh by splitting quads into triangles. The third
mesh is predominantly triangular, but for the zones close to
the open boundary it is also quadrilateral.

Figure 15 illustrates that at times close to the maximum
inflow (8 h 20 m), a strong computational instability due to
the interaction between baroclinic and barotropic flow com-
ponents evolves on the right open boundary on the triangu-
lar mesh, eventually leading to the blowup of the solution
(see the left insert). However, by replacing triangles in a
small domain adjacent to the open boundary with quadrilat-
eral cells we stabilize the numerical solution (see the right
insert), which allows us to cleanly handle the directions nor-
mal and tangent to the boundary.
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7 Conclusions

We described the numerical implementation of the three-
dimensional unstructured-mesh model FESOM-C, relying
on FESOM2 and intended for coastal simulations. The model
is based on a finite-volume cell-vertex discretization and
works on hybrid unstructured meshes composed of triangles
and quads.

We illustrated the model performance with two test simu-
lations.

Sylt–Rømø Bight is a closed Wadden Sea basin charac-
terized by a complex morphometry and high tidal activity.
A sensitivity study was carried out to elucidate the depen-
dence of simulated surface elevation and horizontal velocity
on mesh type and quality. The elevation simulated in zones of
wetting and drying may depend on the mesh structure, which
may lead to distinctions in the simulated energy on different
meshes. The total energy comparison shows that on the tri-
angular MESH-2, having approximately the same number of
vertices as MESH-1, the solution is more dissipative; higher
dissipation is generally needed to stabilize it against spurious
inertial modes.

The second experiment deals with the southeastern part
of the North Sea. Computation relied on the boundary in-
formation from hindcast simulations by the TRIM-NP and
realistic atmospheric forcing from NCEP/NCAR. Modeling
results agree both qualitatively and quantitatively with obser-
vations for the full period of simulation.

Future development of the FESOM-C will include cou-
pling with the global FESOM2 (Danilov et al., 2017), the
addition of monotonic high-order schemes and sea ice from
FESOM2, and various modules that would increase the func-
tionality of FESOM-C.

Code and data availability. The version of FESOM-C v.2 used
to carry out simulations reported here can be accessed from
https://doi.org/10.5281/zenodo.2085177. The General Ocean Tur-
bulence Model (GOTM) (Burchard et al., 1999) implemented
into the FESOM-C code is published under the GNU Pub-
lic License and can be freely used. The meshes are con-
structed with the Gmsh software (Geuzaine and Remacle, 2009).
Bathymetry used in the model simulation (Southeast North Sea
experiment) is received from the EMODnet Bathymetry Con-
sortium (2016) database (https://doi.org/10.12770/c7b53704-999d-
4721-b1a3-04ec60c87238) and is freely available online. The
TRIM-NP model is used to initialize runs for 1 year (Weisse et al.,
2015). NCEP/NCAR reanalysis atmospheric forcing data (Kalnay
et al., 1996) used in the model are freely available online.
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