Articles | Volume 12, issue 1
https://doi.org/10.5194/gmd-12-1-2019
https://doi.org/10.5194/gmd-12-1-2019
Development and technical paper
 | 
02 Jan 2019
Development and technical paper |  | 02 Jan 2019

GemPy 1.0: open-source stochastic geological modeling and inversion

Miguel de la Varga, Alexander Schaaf, and Florian Wellmann

Related authors

Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021,https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Actors, actions, and uncertainties: optimizing decision-making based on 3-D structural geological models
Fabian Antonio Stamm, Miguel de la Varga, and Florian Wellmann
Solid Earth, 10, 2015–2043, https://doi.org/10.5194/se-10-2015-2019,https://doi.org/10.5194/se-10-2015-2019, 2019

Related subject area

Numerical methods
A joint reconstruction and model selection approach for large-scale linear inverse modeling (msHyBR v2)
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024,https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024,https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary
The Paleochrono-1.1 probabilistic model to derive a common age model for several paleoclimatic sites using absolute and relative dating constraints
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Olander Rasmussen
Geosci. Model Dev., 17, 8735–8750, https://doi.org/10.5194/gmd-17-8735-2024,https://doi.org/10.5194/gmd-17-8735-2024, 2024
Short summary
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
Enhancing Single-Precision with Quasi Double-Precision: Achieving Double-Precision Accuracy in the Model for Prediction Across Scales-Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2986,https://doi.org/10.5194/egusphere-2024-2986, 2024
Short summary

Cited articles

Aug, C.: Modélisation géologique 3D et caractérisation des incertitudes par la méthode du champ de potentiel: PhD thesis, PhD thesis, ENSMP, Paris, 2004.
Ayachit, U.: The ParaView Guide: A Parallel Visualization Application, Kitware, Inc., USA, 2015.
Bardossy, G. and Fodor, J.: Evaluation of Uncertainties and Risks in Geology: New Mathematical Approaches for their Handling, Springer, Berlin, Germany, 2004.
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.: Automatic differentiation in machine learning: a survey, arXiv preprint arXiv:1502.05767, 2015.
Bellman, R.: Dynamic Programming, Courier Corporation, Dover Books on Computer Science, 366 pp., ISBN:9780486317199, 2013.
Download
Short summary
GemPy is an open-source Python-based 3-D structural geological modeling software, which allows the implicit (i.e. automatic) creation of complex geological models from interface and orientation data. GemPy is implemented in the programming language Python, making use of a highly efficient underlying library, Theano, for efficient code generation that performs automatic differentiation. This enables the link to probabilistic machine-learning and Bayesian inference frameworks.