Articles | Volume 12, issue 1
https://doi.org/10.5194/gmd-12-1-2019
https://doi.org/10.5194/gmd-12-1-2019
Development and technical paper
 | 
02 Jan 2019
Development and technical paper |  | 02 Jan 2019

GemPy 1.0: open-source stochastic geological modeling and inversion

Miguel de la Varga, Alexander Schaaf, and Florian Wellmann

Related authors

Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021,https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Actors, actions, and uncertainties: optimizing decision-making based on 3-D structural geological models
Fabian Antonio Stamm, Miguel de la Varga, and Florian Wellmann
Solid Earth, 10, 2015–2043, https://doi.org/10.5194/se-10-2015-2019,https://doi.org/10.5194/se-10-2015-2019, 2019

Related subject area

Numerical methods
Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary
Introducing Iterative Model Calibration (IMC) v1.0: a generalizable framework for numerical model calibration with a CAESAR-Lisflood case study
Chayan Banerjee, Kien Nguyen, Clinton Fookes, Gregory Hancock, and Thomas Coulthard
Geosci. Model Dev., 18, 803–818, https://doi.org/10.5194/gmd-18-803-2025,https://doi.org/10.5194/gmd-18-803-2025, 2025
Short summary
Development of a high-order global dynamical core using the discontinuous Galerkin method for an atmospheric large-eddy simulation (LES) and proposal of test cases: SCALE-DG v0.8.0
Yuta Kawai and Hirofumi Tomita
Geosci. Model Dev., 18, 725–762, https://doi.org/10.5194/gmd-18-725-2025,https://doi.org/10.5194/gmd-18-725-2025, 2025
Short summary
A joint reconstruction and model selection approach for large-scale linear inverse modeling (msHyBR v2)
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024,https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024,https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary

Cited articles

Aug, C.: Modélisation géologique 3D et caractérisation des incertitudes par la méthode du champ de potentiel: PhD thesis, PhD thesis, ENSMP, Paris, 2004.
Ayachit, U.: The ParaView Guide: A Parallel Visualization Application, Kitware, Inc., USA, 2015.
Bardossy, G. and Fodor, J.: Evaluation of Uncertainties and Risks in Geology: New Mathematical Approaches for their Handling, Springer, Berlin, Germany, 2004.
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.: Automatic differentiation in machine learning: a survey, arXiv preprint arXiv:1502.05767, 2015.
Bellman, R.: Dynamic Programming, Courier Corporation, Dover Books on Computer Science, 366 pp., ISBN:9780486317199, 2013.
Download
Short summary
GemPy is an open-source Python-based 3-D structural geological modeling software, which allows the implicit (i.e. automatic) creation of complex geological models from interface and orientation data. GemPy is implemented in the programming language Python, making use of a highly efficient underlying library, Theano, for efficient code generation that performs automatic differentiation. This enables the link to probabilistic machine-learning and Bayesian inference frameworks.
Share