Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 12, issue 1
Geosci. Model Dev., 12, 1–32, 2019
https://doi.org/10.5194/gmd-12-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 1–32, 2019
https://doi.org/10.5194/gmd-12-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 02 Jan 2019

Development and technical paper | 02 Jan 2019

GemPy 1.0: open-source stochastic geological modeling and inversion

Miguel de la Varga et al.

Related authors

Constraining stochastic 3-D structural geological models with topology information using Approximate Bayesian Computation using GemPy 2.1
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-136,https://doi.org/10.5194/gmd-2020-136, 2020
Preprint under review for GMD
Short summary
Actors, actions, and uncertainties: optimizing decision-making based on 3-D structural geological models
Fabian Antonio Stamm, Miguel de la Varga, and Florian Wellmann
Solid Earth, 10, 2015–2043, https://doi.org/10.5194/se-10-2015-2019,https://doi.org/10.5194/se-10-2015-2019, 2019

Related subject area

Numerical Methods
Development of a semi-Lagrangian advection scheme for the NEMO ocean model (3.1)
Christopher Subich, Pierre Pellerin, Gregory Smith, and Frederic Dupont
Geosci. Model Dev., 13, 4379–4398, https://doi.org/10.5194/gmd-13-4379-2020,https://doi.org/10.5194/gmd-13-4379-2020, 2020
Short summary
Efficient multi-scale Gaussian process regression for massive remote sensing data with satGP v0.1.2
Jouni Susiluoto, Alessio Spantini, Heikki Haario, Teemu Härkönen, and Youssef Marzouk
Geosci. Model Dev., 13, 3439–3463, https://doi.org/10.5194/gmd-13-3439-2020,https://doi.org/10.5194/gmd-13-3439-2020, 2020
Short summary
PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations
Olivier Pannekoucke and Ronan Fablet
Geosci. Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020,https://doi.org/10.5194/gmd-13-3373-2020, 2020
Short summary
Simple algorithms to compute meridional overturning and barotropic streamfunctions on unstructured meshes
Dmitry Sidorenko, Sergey Danilov, Nikolay Koldunov, Patrick Scholz, and Qiang Wang
Geosci. Model Dev., 13, 3337–3345, https://doi.org/10.5194/gmd-13-3337-2020,https://doi.org/10.5194/gmd-13-3337-2020, 2020
Short summary
Development of a two-way-coupled ocean–wave model: assessment on a global NEMO(v3.6)–WW3(v6.02) coupled configuration
Xavier Couvelard, Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Fabrice Ardhuin, Rachid Benshila, and Gurvan Madec
Geosci. Model Dev., 13, 3067–3090, https://doi.org/10.5194/gmd-13-3067-2020,https://doi.org/10.5194/gmd-13-3067-2020, 2020
Short summary

Cited articles

Aug, C.: Modélisation géologique 3D et caractérisation des incertitudes par la méthode du champ de potentiel: PhD thesis, PhD thesis, ENSMP, Paris, 2004.
Ayachit, U.: The ParaView Guide: A Parallel Visualization Application, Kitware, Inc., USA, 2015.
Bardossy, G. and Fodor, J.: Evaluation of Uncertainties and Risks in Geology: New Mathematical Approaches for their Handling, Springer, Berlin, Germany, 2004.
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.: Automatic differentiation in machine learning: a survey, arXiv preprint arXiv:1502.05767, 2015.
Bellman, R.: Dynamic Programming, Courier Corporation, Dover Books on Computer Science, 366 pp., ISBN:9780486317199, 2013.
Publications Copernicus
Download
Short summary
GemPy is an open-source Python-based 3-D structural geological modeling software, which allows the implicit (i.e. automatic) creation of complex geological models from interface and orientation data. GemPy is implemented in the programming language Python, making use of a highly efficient underlying library, Theano, for efficient code generation that performs automatic differentiation. This enables the link to probabilistic machine-learning and Bayesian inference frameworks.
GemPy is an open-source Python-based 3-D structural geological modeling software, which allows...
Citation