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Abstract. The representation of subsurface structures is an
essential aspect of a wide variety of geoscientific investiga-
tions and applications, ranging from geofluid reservoir stud-
ies, over raw material investigations, to geosequestration, as
well as many branches of geoscientific research and applica-
tions in geological surveys. A wide range of methods exist
to generate geological models. However, the powerful meth-
ods are behind a paywall in expensive commercial packages.
We present here a full open-source geomodeling method,
based on an implicit potential-field interpolation approach.
The interpolation algorithm is comparable to implementa-
tions in commercial packages and capable of constructing
complex full 3-D geological models, including fault net-
works, fault–surface interactions, unconformities and dome
structures. This algorithm is implemented in the program-
ming language Python, making use of a highly efficient un-
derlying library for efficient code generation (Theano) that
enables a direct execution on GPUs. The functionality can be
separated into the core aspects required to generate 3-D ge-
ological models and additional assets for advanced scientific
investigations. These assets provide the full power behind our
approach, as they enable the link to machine-learning and
Bayesian inference frameworks and thus a path to stochastic
geological modeling and inversions. In addition, we provide
methods to analyze model topology and to compute gravity
fields on the basis of the geological models and assigned den-
sity values. In summary, we provide a basis for open scien-
tific research using geological models, with the aim to foster
reproducible research in the field of geomodeling.

1 Introduction

We commonly capture our knowledge about relevant geo-
logical features in the subsurface in the form of geological
models, as 3-D representations of the geometric structural
setting. Computer-aided geological modeling methods have
existed for decades, and many advanced and elaborate com-
mercial packages exist to generate these models (e.g., Go-
CAD, Petrel, GeoModeller). But even though these packages
partly enable an external access to the modeling functional-
ity through implemented APIs or scripting interfaces, it is a
significant disadvantage that the source code is not accessi-
ble, and therefore the true inner workings are not clear. More
importantly still, the possibility to extend these methods is
limited – and, especially with the current rapid development
of highly efficient open-source libraries for machine-learning
and computational inference (e.g., TensorFlow, Stan, pymc,
PyTorch, Infer.NET), the integration into other computational
frameworks is limited.

However, there is to date no fully flexible open-source
project that integrates state-of-the-art geological model-
ing methods. Conventional 3-D construction tools (CAD,
e.g., pythonOCC, PyGem) are only useful to a limited ex-
tent, as they do not consider the specific aspects of subsurface
structures and the inherent sparcity of data. Open source GIS
tools exist (e.g., QGIS, gdal), but they are typically limited
to 2-D (or 2.5-D) structures and do not facilitate the model-
ing and representation of fault networks, complex structures
like overturned folds or dome structures, or combined strati-
graphic sequences.

With the aim to close this gap, we present GemPy,
an open-source implementation of a modern and pow-
erful implicit geological modeling method based on a
potential-field approach. The method was first introduced by
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Figure 1. Example of models generated using GemPy. (a) Synthetic model representing a reservoir trap, visualized in Paraview (Stamm,
2017); (b) Geological model of the Perth basin (Australia) rendered using GemPy on the in-built Python in Blender (see Appendix F for
more details), spheres and cones represent the input data.

Lajaunie et al. (1997) and it is grounded on the mathematical
principles of universal cokriging. In distinction to surface-
based modeling approaches (see ; Caumon et al., 2009, for a
good overview), these approaches allow for the direct inter-
polation of multiple conformal sequences in a single scalar
field, and the consideration of discontinuities (e.g., meta-
morphic contacts, unconformities) through the interaction
of multiple sequences (Lajaunie et al., 1997; Mallet, 2004;
Calcagno et al., 2008; Caumon, 2010; Hillier et al., 2014).
Also, these methods allow for the construction of complex
fault networks and enable, in addition, a direct global in-
terpolation of all available geological data in a single step.
This last aspect is relevant as it facilitates the integration
of these methods into other diverse workflows. Most im-
portantly, we show how we can integrate the method into
novel and advanced machine-learning and Bayesian infer-
ence frameworks (Salvatier et al., 2016) for stochastic ge-
omodeling and Bayesian inversion. Recent developments in
this field have seen a surge in new methods and frame-
works, e.g., using gradient-based Monte Carlo methods (Du-
ane et al., 1987; Hoffman and Gelman, 2014) or varia-
tional inferences (Kucukelbir et al., 2017), making use of
efficient implementations of automatic differentiation (Rall,
1981) in novel machine-learning frameworks. For this rea-
son, GemPy is built on top of Theano, which provides not
only the mentioned capacity to efficiently compute gradients
but also provides optimized compiled code (for more de-
tails see Sect. 2.3.2). In addition, we utilize pandas for data
storage and manipulation (McKinney, 2011), Visualization
Toolkit (vtk) Python-bindings for interactive 3-D visualiza-
tion (Schroeder et al., 2004), the de facto standard 2-D vi-
sualization library Matplotlib (Hunter, 2007) and NumPy for
efficient numerical computations (Walt et al., 2011). Our im-
plementation is specifically intended for combination with
other packages to harvest efficient implementations in the
best possible way.

Especially in this current time of rapid development
of open-source scientific software packages and powerful

machine-learning frameworks, we consider an open-source
implementation of a geological modeling tool as essential.
We therefore aim to open up this possibility to a wide com-
munity, by combining state-of-the-art implicit geological
modeling techniques with additional sophisticated Python
packages for scientific programming and data analysis in an
open-source ecosystem. The aim is explicitly not to rival the
existing commercial packages with well-designed graphical
user interfaces, underlying databases and highly advanced
workflows for specific tasks in subsurface engineering, but to
provide an environment to enhance existing methodologies
as well as give access to an advanced modeling algorithm for
scientific experiments in the field of geomodeling.

In the following, we will present the implementation of
our code in the form of core modules, related to the task of
geological modeling itself, and additional assets, which pro-
vide the link to external libraries, e.g., to facilitate stochas-
tic geomodeling and the inversion of structural data. Each
part is supported and supplemented with Jupyter notebooks
that are available as additional online material and part of
the package documentation, which enable the direct testing
of our methods (see Sect. A3). These notebooks can also be
directly executed in an online environment (Binder). We en-
courage the reader to use these Jupyter tutorial notebooks to
follow along the steps explained in the following. Finally, we
discuss our approach, specifically with respect to alternative
modeling approaches in the field, and provide an outlook to
our planned future work for this project.

2 CORE – geological modeling with GemPy

In this section, we describe the core functionality of GemPy:
the construction of 3-D geological models from geological
input data (surface contact points and orientation measure-
ments) and defined topological relationships (stratigraphic
sequences and fault networks). We begin with a brief review
of the theory underlying the implemented interpolation algo-
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rithm. We then describe the translation of this algorithm and
the subsequent model generation and visualization using the
Python front end of GemPy and how an entire model can be
constructed by calling only a few functions. Throughout the
text, we include code snippets with minimal working exam-
ples to demonstrate the use of the library.

After describing the simple functionality required to con-
struct models, we go deeper into the underlying architecture
of GemPy. This part is not only relevant for advanced users
and potential developers but also highlights a key aspect: the
link to Theano (Theano Development Team, 2016), a highly
evolved Python library for efficient vector algebra and ma-
chine learning, which is an essential aspect required for mak-
ing use of the more advanced aspects of stochastic geomod-
eling and Bayesian inversion, which will also be explained in
the subsequent sections.

2.1 Geological modeling and the potential-field
approach

2.1.1 Concept of the potential-field method

The potential-field method developed by Lajaunie et al.
(1997) is the central method to generate the 3-D geologi-
cal models in GemPy, which has already been successfully
deployed in the modeling software GeoModeller 3-D (see
Calcagno et al., 2008). The general idea is to construct an in-
terpolation function Z(x0)where x is any point in the contin-
uous three-dimensional space (x,y,z) ∈ R3, which describes
the domainD as a scalar field. The gradient of the scalar field
will follow the planar orientation of the stratigraphic struc-
ture throughout the volume or, in other words, every possible
isosurface of the scalar field will represent every synchronal
deposition of the layer (see Fig. 2).

Let’s break down what we actually mean by this: imagine
that a geological setting is formed by a perfect sequence of
horizontal layers piled one above the other. If we know the
exact timing of when one of these surfaces was deposited,
we would know that any layer above had to occur afterwards
while any layer below had to be deposited earlier in time. Ob-
viously, we cannot have data for each of these infinitesimal
synchronal layers, but we can interpolate the “date” between
them. In reality, the exact year of the synchronal deposition is
meaningless – as it is not possible to remotely obtain accurate
estimates. What has value to generate a 3-D geomodel is the
location of those synchronal layers and especially the litho-
logical interfaces where the change of physical properties are
notable. Because of this, instead of interpolating time, we use
a simple dimensionless parameter that we simply refer to as
scalar field value.

The advantages of using a global interpolator instead of in-
terpolating each layer of interest independently are twofold:
(i) the location of one layer affects the location of others in
the same depositional environment, making it impossible for
two layers in the same potential field to cross; and (ii) it en-

Figure 2. Example of scalar field. The input data are formed by six
points distributed in two layers (x1

α i
and x2

α i
) and two orientations

(xβ j ). An isosurface connects the interface points and the scalar
field is perpendicular to the foliation gradient.

ables the use of data between the interfaces of interest, open-
ing the range of possible measurements that can be used in
the interpolation.

The interpolation function is obtained as a weighted inter-
polation based on universal cokriging (Chiles and Delfiner,
2009). Kriging or Gaussian process regression (Matheron,
1981) is a spatial interpolation that treats each input as a ran-
dom variable, aiming to minimize the covariance function to
obtain the best linear unbiased predictor (for a detailed de-
scription see Chap. 3 in Wackernagel, 2013). Furthermore,
it is possible to combine more than one type of data, i.e.,
a multivariate case or cokriging, to increase the amount of
information in the interpolator, as long as we capture their
relation using a cross-covariance. The main advantage in our
case is to be able to utilize orientations sampled from differ-
ent locations in space for the estimation. Simple kriging, as
a regression, only minimizes the second moment of the data
(or variances). However, in most geological settings, we can
expect linear trends in our data, i.e., the mean thickness of a
layer varies across the region linearly. This trend is captured
using polynomial drift functions to the system of equations
in what is called universal kriging.

2.1.2 Adjustments to structural geological modeling

So far we have shown what we want to obtain and how
universal cokriging is a suitable interpolation method to get
there. In the following, we will describe the concrete steps
from taking our input data to the final interpolation function
Z(x0), where x0 refers to the estimated quantity for some in-
tegrable measure p0. Much of the complexity of the method
comes from the difficulty of keeping highly nested nomen-
clature consistent across literature. For this reason, we will
try to be especially verbose regarding the mathematical ter-
minology based primarily on Chiles et al. (2004). The terms
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of potential field (original coined by Lajaunie et al., 1997)
and scalar field (preferred by the authors) are used inter-
changeably throughout the paper. The result of a kriging in-
terpolation is a random function and hence both interpolation
function and random function are used to refer to the func-
tion of interest, Z(x0). The cokriging nomenclature quickly
grows convoluted, since it has to consider p random func-
tions Zi , with p being the number of distinct parameters in-
volved in the interpolation, sampled at different points x of
the three-dimensional domain R3. Two types of parameters
are used to characterize the scalar field in the interpolation:
(i) layer interface points xα describing the respective isosur-
faces of interest, usually the interface between two layers;
and (ii) the gradients of the scalar field, xβ , or in geologi-
cal terms, poles of the layer, i.e., normal vectors to the dip
plane. Therefore, gradients will be oriented perpendicular to
the isosurfaces and can be located anywhere in space. We
will refer to the main random function Zα – the scalar field
itself – simply as Z, and its set of samples as xα , while the
second random function Zβ – the gradient of the scalar field –
will be referred to as ∂Z/∂u with u being any unit vector and
its samples as xβ . We can capture the relationship between
the scalar field Z and its gradient as

∂Z
∂u
(x)= lim

ρ→0

Z(x+ u)−Z(x)
ρ

. (1)

It is also important to keep the values of every individual
synchronal layer identified since they have the same scalar
field value. Therefore, samples that belong to a single layer k
will be expressed as a subset denoted using superscript as xkα
and every individual point by a subscript, xkα i (see Fig. 2).

Note that in this context the scalar field property α is
dimensionless. The only mathematical constrain is that the
value must increase in the direction of the gradient, which
in turn describes the stratigraphic deposition. Therefore the
two constraints we want to conserve in the interpolated scalar
field are (i) all points belonging to a determined interface xkα i
must have the same scalar field value (i.e., there is an isosur-
face connecting all data points)

Z(xkαi )−Z(xkα0
)= 0, (2)

where xkα0
is a reference point of the interface and (ii) the

scalar field will be perpendicular to the gradient (poles in
geological nomenclature) xβ anywhere in 3-D space. It is
important to mention that the choice of the reference points
xkα0

has no effect on the results.
Considering Eq. (2), we do not care about the exact value

at Z(xkαi ) as long as it is constant at all points xkαi . Therefore,
the random function Z in the cokriging system (Eq. 4) can
be substituted by Eq. (2). This formulation entails that the
specific scalar field values will only depend on the gradients
and hence at least one gradient is necessary to keep the sys-
tem of equations defined. The advantage of this mathematical
construction is that by not fixing the values of each interface

Z(xkα), the compression of layers – i.e., the rate of change
of the scalar field – will only be defined by the gradients
∂Z/∂u. This allows us to propagate the effect of each gra-
dient beyond the surrounding interfaces creating smoother
formations.

The algebraic dependency between Z and ∂Z/∂u (Eq. 1)
gives a mathematical definition of the relation between the
two variables, avoiding the need of an empirical cross-
variogram and instead enabling the use of the derivation of
the covariance function. This dependency must be taken into
consideration in the computation of the drift of the first mo-
ment as well having a different function for each of the vari-
ables,

λF1+ λF2 = f10, (3)

where F1 is a polynomial of degree n, F2 its derivative be-
tween the input data xα and xβ , and f10 corresponds to the
same polynomial to the objective point x0. Having taken this
into consideration, the resulting cokriging system takes the
following form: C∂Z/∂u, ∂Z/∂v C∂Z/∂u,Z U∂Z/∂u

CZ, ∂Z/∂u CZ,Z UZ
U′
∂Z/∂u U′Z 0


 λ∂Z/∂u, ∂Z/∂v λ∂Z/∂u,Z

λZ, ∂Z/∂u λZ,Z
µ∂u µu

=
 c∂Z/∂u, ∂Z/∂v c∂Z/∂u,Z

cZ, ∂Z/∂u cZ,Z
f 10 f 20

 , (4)

where C∂Z/∂u is the gradient covariance matrix; CZ,Z the
covariance matrix of the differences between each interface
point to reference points in each layer,

Cxrα i , x
s
α j
= Cxrα, i x

s
α, j
−Cxrα, 0 x

s
α, j
−Cxrα, i x

s
α, 0
+Cxrα, 0 x

s
α, 0

(5)

(see Appendix B2 for further analysis); CZ, ∂Z/∂u encapsu-
lates the cross-covariance function; and UZ and U′

∂Z/∂u are
the drift functions and their gradients, respectively. On the
right-hand side we find the matrix of independent terms,
c∂Z/∂u, ∂Z/∂v being the gradient of the covariance function to
the point x of interest; cZ, ∂Z/∂u the cross-covariance; cZ,Z
the actual covariance function; and f 10 and f 20 the gradi-
ent of the drift functions and the drift functions themselves,
respectively. Lastly, the unknown vectors are formed by the
corresponding weights, λ, and constants of the drift functions
µ. A more detail inspection of this system of equations is car-
ried out in Appendix B.

As we can see in Eq. (4), it is possible to solve the kriging
system for the scalar field Z (second column in the weights
vector), as well as its derivative ∂Z/∂u (first column in the
weights vector). Even though the main goal is the segmen-
tation of the layers, which is done using the value of Z
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(see Sect. 2.2.1), the gradient of the scalar field can be used
for further mathematical applications, such as meshing, geo-
physical forward calculations or locating geological struc-
tures of interest (e.g., spill points of a hydrocarbon trap).

Furthermore, since the choice of covariance parameters is
ad hoc (Appendix D shows the covariance function used in
GemPy), the uncertainty derived by the kriging interpolation
does not bear any physical meaning. This fact promotes the
idea of only using the mean value of the kriging solution. For
this reason it is recommended to solve the kriging system
(Eq. 4) in its dual form (Matheron, 1981, see Appendix C).

2.2 Geological model interpolation using GemPy

2.2.1 From scalar field to geological block model

In most scenarios the goal of structural modeling is to de-
fine the spatial distribution of geological structures, such as
layers, interfaces and faults. In practice, this segmentation is
usually done either by using a volumetric discretization or by
depicting the interfaces as surfaces.

The result of the kriging interpolation is the random func-
tion Z(x) (and its gradient ∂Z/∂u(x), which we will omit in
the following), which allows for the evaluation of the value
of the scalar field at any given point x in space. From this
point on, the easiest way to segment the domains is to dis-
cretize the 3-D space (e.g., we use a regular grid in Fig. 3).
First, we need to calculate the scalar value at every inter-
face by computing Z(xkα,i) for every interface ki . Once we
know the value of the scalar field at the interfaces, we evalu-
ate every point of the mesh and compare their value to those
at the interfaces, identifying every point of the mesh with
a topological volume. Each of these compartmentalizations
will represent each individual domain, i.e., each lithology of
interest (see Fig. 3a).

At the time of this manuscript’s preparation, GemPy only
provides rectilinear grids but it is important to notice that the
computation of the scalar field happens in continuous space,
and therefore allows for the use of any type of mesh. The
result of this type of segmentation is referred to in GemPy as
a lithology block.

The second alternative segmentation consists of locating
the layer isosurfaces. GemPy makes use of the marching cube
algorithm (Lorensen and Cline, 1987) provided by the scikit-
image library (van der Walt et al., 2014). The basics of the
marching cube algorithm are quite intuitive. (i) First, we dis-
cretize the volume in 3-D voxels and by comparison we look
to see if the value of the isosurface we want to extract falls
within the boundary of every single voxel; (ii) if so, for each
edge of the voxel, we interpolate the values at the corners
of the cube to obtain the coordinates of the intersection be-
tween the edges of the voxels and the isosurface of interest,
commonly referred to as vertices; (iii) those intersections are
analyzed and compared against all possible configurations to
define the simplices (i.e., the vertices that form an individual

polygon) of the triangles. Once we obtain the coordinates of
vertices and their correspondent simplices, we can use them
for visualization (see Sect. 3.1) or any subsequent computa-
tion that may make use of them (e.g., weighted voxels). For
more information on meshing algorithms refer to Geuzaine
and Remacle (2009).

2.2.2 Combining scalar fields: depositional series and
faults

In reality, most geological settings are formed by a concate-
nation of depositional phases partitioned by unconformity
boundaries and subjected to tectonic stresses that displace
and deform the layers. While the interpolation is able to rep-
resent realistic folding – given enough data – the method fails
to describe discontinuities. To overcome this limitation, it is
possible to combine several scalar fields to recreate the de-
sired result.

So far the implemented discontinuities in GemPy are un-
conformities and infinite faults. Both types are computed by
specific combinations of independent scalar fields. We call
these independent scalar fields series (from stratigraphic se-
ries in accordance to the use in GeoModeller 3-D; Calcagno
et al., 2008), and in essence they represent a subset of
grouped interfaces – either layers or fault planes – that are
interpolated together and therefore their spatial location af-
fect each other. To handle and visualize these relationships,
we use a so-called sequential pile, representing the order –
from the first scalar field to the last – and the grouping of
the layers (see Fig. 3). It is interesting to point out that the
sequential pile only controls the order of each individual se-
ries. Within each series, the stratigraphic sequence is strictly
determined by the geometry and the interpolation algorithm.

Modeling unconformities is rather straightforward. Once
we have grouped the layers into their respective series,
younger series will overlay older ones beyond the uncon-
formity. The scalar fields themselves, computed for each of
these series, could be seen as a continuous depositional se-
quence in the absence of an unconformity.
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Listing 1. Code to generate a single scalar field model (as seen in Fig. 2) and plotting a section of a regular grid (Fig. 3a) and extracting
surfaces points at the interfaces.

Faults are modeled by the inclusion of an extra drift term
into the kriging system (Marechal, 1984):

C∂Z/∂u, ∂Z/∂v C∂Z/∂u,Z U∂Z/∂u F∂Z/∂u
CZ, ∂Z/∂u CZ,Z UZ FZ
U′
∂Z/∂u U′Z 0 0

F′
∂Z/∂u F′Z 0 0



λ∂Z/∂u, ∂Z/∂v λ∂Z/∂u,Z
λZ, ∂Z/∂u λZ,Z
µ∂u µu
µ∂f µf

=


c∂Z/∂u, ∂Z/∂v c∂Z/∂u,Z
cZ, ∂Z/∂u cZ,Z

f 10 f 20
f 10 f 20

 , (6)

which is a function of the faulting structure. This means that
for every location x0 the drift function will take a value de-
pending on the fault compartment – i.e., a segmented domain
of the fault network – and other geometrical constrains such
as spatial influence of a fault or variability in the offset. To
obtain the offset effect of a fault, the value of the drift func-
tion has to be different at each of its sides. The level of com-
plexity of the drift functions will determine the quality of the
characterization as well as its robustness. Furthermore, finite
or localized faults can be recreated by selecting an adequate
function that describes those specific trends.

The computation of the segmentation of fault compart-
ments (called fault block in GemPy) – prior to the inclusion
of the fault drift functions that depend on this segmentation –
can be performed with the potential-field method itself. In the
case of multiple faults, individual drift functions have to be
included in the kriging system for each fault, representing the

subdivision of space that they produce. Naturally, younger
faults may offset older tectonic events. This behavior is repli-
cated by recursively adding drift functions of younger faults
to the computation of the older fault blocks. To date, the fault
relations – i.e., which faults offset others – is described by
the user in a Boolean matrix. An easy-to-use implementation
to generate fault networks is being worked on at the time of
the manuscript preparation.

An important detail to consider is that drift functions will
bend the isosurfaces according to the given rules, but they
will conserve their continuity. This differs from the intuitive
idea of offset, where the interface presents a sharp jump. This
fact has a direct impact on the geometry of the final model,
and can, for example, affect certain meshing algorithms. Fur-
thermore, in the ideal case of choosing the perfect drift func-
tion, the isosurface would bend exactly along the faulting
plane. In the current state, GemPy only includes the addition
of an arbitrary integer to each segmented volume. This limits
the quality to a constant offset, decreasing the sharpness of
the offset as data deviates from that constraint. Any deviation
from this theoretical concept results in a bending of the lay-
ers as they approximate the fault plane to accommodate the
data, potentially leading to overly smooth transitions around
the discontinuity.

2.3 “Under the hood”: the GemPy architecture

2.3.1 The graph structure

The architecture of GemPy follows the Python Software
Foundation recommendations of modularity and reusability
(van Rossum et al., 2001). The aim is to divide all function-
ality into small independent logical units in order to avoid du-
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Figure 3. Example of different lithological units and their relation
to scalar fields; (a) Simple stratigraphic sequence generated from
a scalar field as product of the interpolation of interface points and
orientation gradients; (b) Addition of an unconformity horizon from
which the unconformity layer behaves independently from the older
layers by overlying a second scalar field; (c) Combination of uncon-
formity and faulting using three scalar fields.

plication, facilitate readability and make changes to the code
base easier.

GemPy’s architecture was designed from the ground up to
accommodate an automatic differentiation (AD) library. The

main constraint is that the mathematical functions need to
be continuous from the variables (in probabilistic jargon pri-
ors) to the cost function (or likelihoods), and therefore the
code must be written in the same language (or at the very
least compatible) to automatically compute the derivatives.
In practice, this means that any operation involved in the AD
must be coded symbolically using the library Theano (see
Sect. 2.3.2 for further details). Writing symbolically requires
a priori declaration of all algebra, from variables that will
behave as latent parameters – i.e., the parameters we try to
tune for optimization or uncertainty quantification – to all in-
volved constants and the specific mathematical functions that
relates them. These statements generate a so-called graph
that symbolically encapsulates all the logic that enables us
to perform further analysis on the logic itself (e.g., differ-
entiation or optimization). However, the rigidity when con-
structing the graph dictates the whole design of input data
management.

GemPy encapsulates this creation of the symbolic graph
in its module theanograph. Due to the significant com-
plexity in programming symbolically, features included in
GemPy that heavily rely on external libraries are not written
in Theano yet. The current functionality written in Theano
can be seen in the Fig. 4 and it essentially encompasses all
the interpolation of the geological modeling (Sect. 2.1) as
well as forward calculation of the gravity (Sect. 3.2).

Regarding data structure, we make use of the Python pack-
age pandas (McKinney, 2011) to store and prepare the input
data for the symbolic graph (red nodes in Fig. 4), or other
processes such as visualization. All of the methodology to
create, export and manipulate the original data is encapsu-
lated in the class DataManagement. This class has several
child classes to facilitate specific precomputation manipula-
tions of data structures (e.g., for meshing). The aim is to have
all constant data prepared before any inference or optimiza-
tion is carried out to minimize the computational overhead of
each iteration as much as possible.

It is important to keep in mind that, in this structure, once
data enters the part of the symbolic graph, only algebraic op-
erations are allowed. This limits the use of many high-level
coding structures (e.g., dictionaries or undefined loops) and
external dependencies. As a result of that, the preparation of
data must be exhaustive before starting the computation. This
includes ordering the data within the arrays and passing the
exact lengths of the subsets we will need later on during the
interpolation or the calculation of many necessary constant
parameters. The preprocessing of data is done within the sub-
classes of DataManagement, the InterpolatorData
class – of which an instance is used to call the Theano graph
– and InterpolatorClass, which creates the Theano
variables and compiles the symbolic graph.

The rest of the package is formed by a (always growing)
series of modules that perform different tasks using the ge-
ological model as input (see Sect. 3 and the Assets area in
Fig. 4).
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Listing 2. Extension of the code in Listing 1 to generate an unconformity by using two scalar fields. The corresponding model is shown in
Fig. 3b).

Listing 3. Code to generate a model with an unconformity and a fault using the three scalar fields model (as seen in Fig. 3c) and the
visualization 3-D using VTK (see Fig. 5).

2.3.2 Theano

Efficiently solving a large number of algebraic equations, and
especially their derivatives, can easily get unmanageable in
terms of both time and memory. Up to this point we have ref-
erenced Theano many times and its related terms such as AD
or symbolic programming. In this section we will provide the
motivation for its use and why its capabilities make all the

difference in making implicit geological modeling available
for uncertainty analysis.

Theano is a Python package that takes over many of the
optimization tasks in order to create a computationally fea-
sible code implementation. Theano relies on the creation
of symbolical graphs that represent the mathematical ex-
pressions to compute. Most of the extended programming
paradigms (e.g., procedural languages and object-oriented
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Figure 4. Graph of the logical structure of GemPy logic. There are several levels of abstraction represented. (i) The first division is between
the implicit interpolation of the geological modeling (dark gray) and other subsequent operations for different objectives (light gray). (ii) All
the logic required to perform automatic differentiation is presented under the Theano label (in purple). (iii) The parts under labels “Looping
pile” (green) and “Single potential field” (gray) divide the logic to control the input data of each necessary scalar field and the operations
within one of them. (iv) Finally, each superset of parameters is color coded according to their probabilistic nature and behavior in the graph:
in blue, stochastic variables (priors or likelihoods); in yellow, deterministic functions; and in red, the inputs of the graph, which are either
stochastic or constant depending on the problem.

programming) are sequentially executed without any interac-
tion with the subsequent instructions. In other words, a later
instruction has access to the memory states but is clueless
about the previous instructions that have modified mentioned
states. In contrast, symbolic programming defines, from the
beginning to the end, not only the primary data structure but
also the complete logic of a function, which in turn enables
the optimization (e.g., redundancy) and manipulation (e.g.,
derivatives) of its logic.

Within the Python implementation, Theano creates an
acyclic network graph where the parameters are represented
by nodes, while the connections determine mathematical op-
erators that relate them. The creation of the graph is done

in the class theanograph. Each individual method corre-
sponds to a piece of the graph starting from the input data all
the way to the geological model or the forward gravity (see
Fig. 4, purple Theano area).

The symbolic graph is later analyzed to perform the opti-
mization, the symbolic differentiation and the compilation to
a faster language than Python (C or CUDA). This process is
computationally demanding and therefore it must be avoided
as much as possible.

Among the most outstanding optimizers included with
Theano (for a detailed description see Theano Development
Team, 2016), we can find (i) the canonicalization of the
operations to reduce the number of duplicated computa-
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tions, (ii) specialization of operations to improve consecutive
element-wise operations, (iii) in-place operations to avoid
duplications of memory or (iv) OpenMP parallelization for
CPU computations. These optimizations and more can speed
up the code by an order of magnitude.

However, although Theano code optimization is useful, the
real game changer is its capability to perform AD. There is
extensive literature explaining in detail the method and its re-
lated intuitions since it is a core algorithm to train neural net-
works (e.g., a detailed explanation is given by Baydin et al.,
2015). Here, we will highlight the main differences with nu-
merical approaches and how they can be used to improve the
modeling process.

Many of the most advanced algorithms in computer sci-
ence rely on an inverse framework, i.e., the result of a for-
ward computation, f (x), influences the value of one or many
of the x latent variables (e.g., neuronal networks, optimiza-
tions, inferences). The most emblematic example of this
is the optimization of a cost function. All these problems
can be described as an exploration of a multidimensional
manifold f : RN → R. Hence the gradient of the function
∇f =

(
∂f
∂x1
,
∂f
∂x2
, · · ·,

∂f
∂xn

)
becomes key for an efficient anal-

ysis. In the case that the output is also multidimensional, i.e.,
f : RN → RM , the entire manifold gradient can be expressed
by the Jacobian matrix

Jf =


∂f1
∂x1

· · ·
∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · ·
∂fm
∂xn

 (7)

of dimension N ·M , where N is the number of variables and
M the number of functions that depend on those variables.
Now the question is how we compute the Jacobian matrix in
a consistent and efficient manner. The most straightforward
methodology consists of approximating the derivative by nu-
merical differentiation and applying finite-difference approx-
imations, e.g., a forward finite-difference scheme:

∂fi

∂xi
= lim
h→0

f (xi +h)− f (xi)

h
, (8)

where h is a discrete increment. The main advantage of nu-
merical differentiation is that it only computes f , evaluated
for different values of x, which makes it very easy to im-
plement it in any available code. By contrast, a drawback
is that for every element of the Jacobian we are introduc-
ing an approximation error that can eventually lead to math-
ematical instabilities. But above all, the main limitation is
the need of 2 ·M ·N evaluations of the function f , which
quickly becomes prohibitively expensive to compute in high-
dimensional problems.

The alternative is to create the symbolic differentiation of
f . This encompasses decomposing f into its primal opera-
tors and applying the chain rule to the correspondent trans-
formation by following the rules of differentiation to obtain

f ′. However, symbolic differentiation is not enough since the
application of the chain rule leads to exponentially large ex-
pressions of f ′ in what is known as “expression swell” (Co-
hen, 2003). Luckily, these large symbolic expressions have
a high level of redundancy in their terms. This allows us to
exploit this redundancy by storing the repeated intermediate
steps in memory and simply invoking them when necessary,
instead of computing the whole graph every time. This divi-
sion of the program into subroutines to store the intermediate
results – which are invoked several times – is called dynamic
programming (Bellman, 2013). The simplified symbolic dif-
ferentiation graph is ultimately what is called AD (Baydin
et al., 2015). Additionally, in a multivariate/multi-objective
case the benefits of using AD increase linearly as the differ-
ence between the number of parameters N and the number
of objective functions M gets larger. By applying the same
principle of redundancy explained above – this time between
intermediate steps shared across multiple variables or multi-
ple objective functions – it is possible to reduce the number
of evaluations necessary to compute the Jacobian either to N
in forward-propagation or to M in back-propagation, plus a
small overhead on the evaluations (for a more detailed de-
scription of the two modes of AD see Cohen, 2003).

Theano provides a direct implementation of the back-
propagation algorithm, which means in practice that a new
graph of similar size is generated per cost function (or, in the
probabilistic inference, per likelihood function; see Sect. 3.4
for more detail). Therefore, the computational time is inde-
pendent of the number of input parameters, opening the door
to solving high-dimensional problems.

3 Assets – model analysis and further use

In this second half of the paper we will explore different fea-
tures that complement and expand the construction of the
geological model itself. These extensions are just some ex-
amples of how GemPy can be used as a geological model-
ing engine for diverse research projects. The numerous li-
braries in the open-source ecosystem allow us to choose the
best narrow-purpose tool for very specific tasks. Considering
the visualization of GemPy for instance: matplotlib (Hunter,
2007) for 2-D visualization, vtk for fast and interactive 3-
D visualization, steno3D for sharing block model visualiza-
tions online, or even the open-source 3-D modeling soft-
ware Blender (Blender Online Community, 2017) for creat-
ing high-quality renderings and virtual reality are only some
examples of the flexibility that the combination of GemPy
with other open-source packages offers. In the same fashion,
we can use the geological model as a basis for the subsequent
geophysical simulations and process simulations. Because of
Python’s modularity, combining distinct modules to extend
the scope of a project to include the geological modeling
process into a specific environment is effortless. In the next
sections we will dive into some of the built-in functionality
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implemented to date on top of the geological modeling core.
Current assets are (i) 2-D and 3-D visualizations, (ii) forward
calculation of gravity, (iii) topology analysis, (iv) uncertainty
quantification (UQ), and (v) full Bayesian inference.

3.1 Visualization

The segmentation of meaningful units is the central task of
geological modeling. It is often a prerequisite for engineer-
ing projects or process simulations. An intuitive 3-D visu-
alization of a geological model is therefore a fundamental
requirement.

For its data and model visualization, GemPy makes use
of freely available tools in the Python module ecosystem to
allow the user to inspect data and modeling results from all
possible angles. The fundamental plotting library matplotlib
(Hunter, 2007), enhanced by the statistical data visualiza-
tion library seaborn (Waskom et al., 2017), provides the 2-D
graphical interface to visualize input data and 2-D sections
of scalar fields and geological models. In addition, making
use of the capacities of pyqt implemented with matplotlib,
we can generate interactive sequential piles, where the user
can not only visualize the temporal relation of the different
unconformities and faulting events but also modify it using
intuitive drag-and-drop functionality (see Fig. 5).

On top of these features, GemPy offers in-built 3-D vi-
sualization based on the open-source Visualization Toolkit
(VTK; Schroeder et al., 2004). It provides users with an in-
teractive 3-D view of the geological model, as well as three
additional orthogonal viewpoints (see Fig. 5). The user can
decide to plot just the data, the geological surfaces or both.
In addition to just visualizing the data in 3-D, GemPy makes
use of the interaction capabilities provided by vtk to allow
the user to move input data points on the fly via drag-and-
drop functionality. Combined with GemPy’s optimized mod-
eling process (and the ability to use GPUs for efficient model
calculation), this feature allows for data modification with
real-time updating of the geological model (in the order of
milliseconds per scalar field). This functionality can not only
improve the understanding of the model but can also help the
user to obtain the desired outcome by working directly in 3-
D space while getting direct visual feedback on the modeling
results. However, due to the exponential increase in compu-
tational time with respect to the number of input data and the
model resolution, very large and complex models may have
difficulties to render fast enough to perceive continuity on
conventional computer systems.

For additional high-quality visualization, we can generate
vtk files using pyevtk. These files can later be loaded into ex-
ternal VTK viewer as Paraview (Ayachit, 2015) in order to
take advantage of its intuitive interface and powerful visu-
alization options. Another natural compatibility exists with
Blender (Blender Online Community, 2017) due to its use of
Python as front end. Using the Python distribution included
within a Blender installation, it is possible to import, run and

automatically represent GemPy’s data and results (Fig. 1, see
Appendix F for code extension). This not only allows users
to render high-quality images and videos but also to visualize
the models in virtual reality, making use of the Blender game
engine and some of the plug-ins that enable this functionality.

For sharing models, GemPy also includes functionality
to upload discretized models to the Steno 3-D platform (a
freemium business model). Here, it is possible to visualize,
manipulate and share the model with any number of people
effortlessly by simple invitations or the distribution of a link.

In short, GemPy is not limited to a unique visualization
library. Currently GemPy lends support to many of the avail-
able visualization options to fulfill the different needs of the
developers accordingly. However, these are not by all means
the only possible alternatives and in the future we expect that
GemPy will be employed as the back end of other projects.

3.2 Gravity forward modeling

In recent years gravity measurements have increased in qual-
ity (Nabighian et al., 2005) and is by now a valuable addi-
tional geophysical data source to support geological model-
ing. There are different ways to include the new information
into the modeling workflow, and one of the most common is
via inversions (Tarantola, 2005). Geophysics can validate the
quality of the model in a probabilistic or optimization frame-
work, but also by back-propagating information geophysics
can automatically improve the modeling process itself. As
a drawback, simulating forward geophysics adds a signifi-
cant computational cost and increases the uncertainty to the
parametrization of the model. However, due to the amount of
uncorrelated information – often continuous in space – the
inclusion of geophysical data in the modeling process usu-
ally becomes significant to evaluate the quality of a given
model.

GemPy includes built-in functionality to compute forward
gravity conserving the AD of the package. It is calculated
from the discretized block model applying the method of
Nagy (1966) for rectangular prisms in the Z direction,

Fz = Gρ |||x ln(y+ r)+ y ln(x+ r)

− zarctan
(
xy

zr

)
|
x2
x1
|
y2
y1 |
z2
z1
, (9)

where x, y and z are the Cartesian components from the mea-
suring point of the prism; r the Euclidean distance and Gρ
the average gravity pull of the prism. This integration pro-
vides the gravitational pull of every voxel for a given density
and distance in the component z. Taking advantage of the im-
mutability of the involved parameters, with the exception of
density, allows us to precompute the decomposition of tz –
i.e., the distance-dependent side of Eq. (9) – leaving just its
product with the weight Gρ ,

Fz =Gρ · tz, (10)

as a recurrent operation.
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Figure 5. In-built vtk 3-D visualization of GemPy provides an interactive visualization of the geological model (a) and three additional
orthogonal viewpoints (b) from different directions.

Figure 6. Forward gravity response overlayed on top of a 3-D lithol-
ogy block sliced on the Y direction.

As an example, we show here the forward gravity response
of the geological model in Fig. 3c. The first important de-
tail is the increased extent of the interpolated model to avoid
boundary errors. In general, a padding equal to the maximum
distance used to compute the forward gravity computation
would be the ideal value. In this example (Fig. 6) we add
10 km to the X and Y coordinates. The next step is to de-
fine the measurement 2-D grid – i.e., where to simulate the
gravity response and the densities of each layer. The densities
chosen are 2.92, 3.1, 2.61 and 2.92 kg m−3 for the basement,
“Unconformity” layer (i.e., the layer on top of the unconfor-
mity), Layer 1 and Layer 2, respectively.

The computation of forward gravity is a required step to-
wards a fully coupled gravity inversion. Embedding this step
into a Bayesian inference allows us to condition the initial
data used to create the model to the final gravity response.
This idea will be further developed in Sect. 3.4.2.

3.3 Topology

The concept of topology provides a useful tool to describe
adjacency relations in geomodels, such as stratigraphic con-
tacts or across-fault connectivity (for a more detailed in-
troduction see Thiele et al., 2016a, b). GemPy has in-built
functionality to analyze the adjacency topology of its gener-
ated models as region adjacency graphs (RAGs), using the
topology_compute method (see Listing 6). It can be di-
rectly visualized on top of model sections (see Fig. 7), where
each unique topological region in the geomodel is repre-
sented by a graph node, and each connection as a graph edge.
The function outputs the graph object G, the region centroid
coordinates, a list of all the unique node labels and two look-
up tables to conveniently reference node labels and litholo-
gies

To analyze the model topology, GemPy makes use of
a general connected component labeling (CCL) algorithm
to uniquely label all separated geological entities in 3-
D geomodels. The algorithm is provided via the widely
used, open-source, Python-based image processing library
scikit-image (van der Walt et al., 2014) by the function
skimage.measure.label, which is based on the opti-
mized algorithms of Fiorio and Gustedt (1996) and Wu et al.
(2005). But just using CCL on a 3-D geomodel fails to dis-
criminate a layer cut by a fault into two unique regions be-
cause in practice both sides of a fault are represented by the
same label. To achieve the detection of edges across the fault,
we need to precondition the 3-D geomodel matrix, which
contains just the lithology information (layer id), with a 3-
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Listing 4. Computing forward gravity of a GemPy model for a given 2-D grid (see Fig. 6).

Figure 7. Section of the example geomodel with overlaid topology
graph. The geomodel contains eight unique regions (graph nodes)
and 13 unique connections (graph edges). White edges represent
stratigraphic and unconformity connections, while black edges cor-
respond to across-fault connections.

D matrix containing the information about the faults (fault
block id). We multiply the binary fault array (0 for foot wall,
1 for hanging wall) with the maximum lithology value in-
cremented by one. We then add it to the lithology array to
make sure that layers that are in contact across faults are as-

signed a unique integer in the resulting array. This yields
a 3-D matrix that combines the lithology information and
the fault block information. This matrix can then be suc-
cessfully labeled using CCL with a 2-connectivity stamp,
resulting in a new matrix of uniquely labeled regions for
the geomodel. From these, an adjacency graph is generated
using skimage.future.graph.RAG, which created a
RAG of all unique regions contained in a 2-D or 3-D ma-
trix, representing each region with a node and their adja-
cency relations as edges, successfully capturing the topol-
ogy information of our geomodel. The connections (edges)
are then further classified into either stratigraphic or across-
fault edges to provide further information. If the argument
compute_areas=True was given, the contact area for
the two regions of an edge is automatically calculated (num-
ber of voxels) and stored inside the adjacency graph.

3.4 Stochastic geomodeling and probabilistic
programming

Raw geological data are noisy and measurements are usu-
ally sparse. As a result, geological models contain significant
uncertainties (Wellmann et al., 2010; Bardossy and Fodor,
2004; Lark et al., 2013; Caers, 2011; McLane et al., 2008;

www.geosci-model-dev.net/12/1/2019/ Geosci. Model Dev., 12, 1–32, 2019



14 M. de la Varga et al.: GemPy

Listing 5. Topology analysis of a GemPy geomodel.

Chatfield, 1995) that must be addressed thoughtfully to reach
a plausible level of confidence in the model. However, treat-
ing geological modeling stochastically implies many consid-
erations. (i) From the tens or hundreds of variables involved
in the mathematical equations, which ones should be latent?
(ii) Can we filter all the possible outcomes that represent un-
reasonable geological settings? (iii) How can we use other
sources of data – especially geophysics – to improve the ac-
curacy of the inference itself?

The answers to these questions are still actively debated
in research and are highly dependent on the type of math-
ematical and computational framework chosen. Uncertainty
quantification and its logical extension into probabilistic ma-
chine learning will not be covered in the depth in this pa-
per due to the broad scope of the subject. However, the main
goal of GemPy is to serve as main generative model within
these probabilistic approaches and as such we will provide
a demonstration of how GemPy fits on the workflow of our
previous work (de la Varga and Wellmann, 2016; Wellmann
et al., 2017) as well as how this work may set the founda-
tions for an easier expansion into the domain of probabilistic
machine learning in the future.

As we have seen so far, the cokriging algorithm enables
the construction of geological models for a wide range of
geometric and topological settings with a limited number of
parameters (Fig. 4, red):

– geometric parameters; interface points xα , i.e., the three
Cartesian coordinates x, y and z; and orientations xβ ,
i.e., the three Cartesian coordinates x, y and z and the
plane orientation normal Gx, Gy and Gz;

– geophysical parameters, e.g., density;

– model parameters, e.g., covariance at distance zero C0
(i.e., nugget effect) or the range of the covariance r (see
Appendix D for an example of a covariance function).

Therefore, an implicit geological model is simply a graph-
ical representation of a deterministic mathematical operation
of these parameters and as such any of these parameters are
suitable to behave as latent variables. From a probabilistic

point of view GemPy would act as the generative model that
links two or more data sets.

GemPy is fully designed to be coupled with probabilistic
frameworks, in particular with pymc3 (Salvatier et al., 2016)
as both libraries are based on Theano.

pymc is a series of Python libraries that provide intuitive
tools to build and subsequently infer complex probabilistic
graphical models (PGM; see Koller and Friedman, 2009, and
Fig. 8 as an example of a PGM). These libraries offer expres-
sive and clean syntax to write and use statistical distributions
and different samplers. At the moment, two main libraries
coexist due to their different strengths and weaknesses. On
the one hand, we have pymc2 (Patil et al., 2010) written in
FORTRAN and Python. pymc2 does not allow for gradient-
based sampling methods, since it does not have AD capa-
bilities. However, for that same reason, the model construc-
tion and debugging are more accessible. Furthermore, not
computing gradients enables an easy integration with third
party libraries and easy extensibility to other scientific li-
braries and languages. Therefore, for prototyping and lower
dimensionality problems, where the posterior can be tracked
by Metropolis–Hasting methods (Haario et al., 2001), pymc2
is still the go-to choice.

On the other hand, the latest version, pymc3 (Salvatier
et al., 2016), allows for the use of next-generation gradient-
based samplers such as No-U-Turn Sampler (Hoffman and
Gelman, 2014) or Automatic Variational Inference (Kucukel-
bir et al., 2015). These sampling methods are proving to be
a powerful tool to deal with multidimensional problems, i.e.,
models with a high number of uncertain parameters (Betan-
court et al., 2017). The weakness of these methods are that
they rely on the computation of gradients, which in many
cases cannot be manually derived. To circumvent this lim-
itation pymc3 makes use of the AD capabilities of Theano.
Being built on top of Theano confers the Bayesian inference
process with all the capabilities discussed in Sect. 2.3.2 in
exchange for the clarity and flexibility that pure Python pro-
vides.

In this context, the purpose of GemPy is to fill the gap
of complex algebra between the prior data and observations,
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such as geophysical responses (e.g., gravity or seismic in-
versions) or geological interpretations (e.g., tectonics, model
topologies). Since GemPy is built on top of Theano as well,
the compatibility with both libraries is relatively straightfor-
ward. However, being able to encode most of the conceivable
probabilistic graphical models derived from, often, diverse
and heterogeneous data would be a Herculean task. For this
reason most of the construction of the PGM has to be coded
by the user using the building blocks that the pymc packages
offer (Bishop, 2013; Patil et al., 2010; Koller and Friedman,
2009, and see Listing 6). By doing so, we can guarantee full
flexibility and adaptability to the necessities of every individ-
ual geological setting.

For this paper we will use pymc2 for its higher readabil-
ity and simplicity. pymc3 architecture is analogous with the
major difference that the PGM is constructed in Theano –
and therefore symbolically coded (for examples using pymc3
and GemPy check the online documentation detailed in Ap-
pendix A2).

3.4.1 Uncertainty quantification

An essential aspect of probabilistic programming is the in-
herent capability to quantify uncertainty. Monte Carlo error
propagation (Ogilvie, 1984) has been introduced in the field
of geological modeling a few years ago (Wellmann et al.,
2010; Jessell et al., 2010; Lindsay et al., 2012), exploiting
the automation of the model construction that implicit algo-
rithms offer.

In this paper, for example Fig. 9 “priors”, we fit a normal
distribution of standard deviation 300 m around the Z axis
of the interface points in the initial model (Fig. 3c). In other
words, we allow the interface points that define the model
to oscillate independently along the Z axis randomly – us-
ing normal distributions – and we subsequently compute the
geomodels that these new data describe. The choice of only
perturbing the Z axis is merely due to computational limita-
tions. Uncertainty tends to be higher in this direction (e.g.,
wells data or seismic velocity); however, there is a lot of
room for further research on the definition of prior data – i.e.,
its choice and probabilistic description – in both directions to
ensure that we properly explore the space of feasible models
and to generate a parametric space as close as possible to the
posterior.

The first step in the creation of a PGM is to define the
parameters that are supposed to be stochastic and the proba-
bility functions that describe them. To do so, pymc2 provides
a large selection of distributions as well as a clear frame-
work to create custom ones. Once we created the stochas-
tic parameters we need to substitute the initial value in the
GemPy database (interp_data in the snippets) for the
corresponding pymc2 objects. Next, we just need to fol-
low the usual GemPy construction process, i.e., calling the
compute_model function and wrapping it using a deter-
ministic pymc2 decorator to describe how this function is part

of the probabilistic model (Fig. 8). After creating the graphi-
cal model we can sample from the stochastic parameters us-
ing Monte Carlo sampling using pymc2 methods.

The suite of possible realizations of the geological model
are stored, as traces, in a database of choice (HDF5, SQL or
Python pickles) for further analysis and visualization.

In 2-D we can display all possible locations of the inter-
faces on a cross section at the center of the model (see Fig. 9,
priors 2-D representation); however, the extension of uncer-
tainty visualization to 3D is not as trivial. GemPy makes use
of the latest developments in uncertainty visualization for 3-
D structural geological modeling (e.g., Lindsay et al., 2012,
2013a, b; Wellmann and Regenauer-Lieb, 2012). The first
method consists of representing the probability of finding a
given geological unit F at each discrete location in the model
domain. This can be done by defining a probability function

pF (x)=
∑
k∈n

IFk (x)

n
, (11)

where n is the number of realizations and IFk (x) is a indica-
tor function of the mentioned geological unit (Fig. 9, prob-
ability shows the probability of finding Layer 1). However,
this approach can only display each unit individually. A way
to encapsulate geomodel uncertainty with a single parame-
ter to quantify and visualize it is by applying the concept of
information entropy (Wellmann and Regenauer-Lieb, 2012),
based on the general concept developed by (Shannon, 1948).
For a discretized geomodel the information entropy H (nor-
malized by the total number of voxels n) can be defined as

H =−

n∑
i=1

pi log2pi, (12)

where pi represents the probability of a layer at cell x. There-
fore, we can use information entropy to reduce the dimen-
sionality of probability fields into a single value at each voxel
as an indication of uncertainty, reflecting the possible number
of outcomes and their relative probability (see Fig. 9, “En-
tropy”).

3.4.2 Geological inversion: gravity and topology

Although computing the forward gravity has its own value
for many applications, the main aim of GemPy is to integrate
all possible sources of information into a single probabilis-
tic framework. The use of likelihood functions in a Bayesian
inference in comparison to simple forward simulation has
been explored by the authors during recent years (de la Varga
and Wellmann, 2016; Wellmann et al., 2017; Schaaf, 2017).
This approach enables us to tune the conditioning of possible
stochastic realizations by varying the probabilistic density
function used as likelihoods. In addition, Bayesian networks
allow us to combine several likelihood functions, generating
a competition among the prior distribution of the input data
and likelihood functions resulting in posterior distributions
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Listing 6. Probabilistic model construction and inference using pymc2 and GemPy: Monte Carlo forward simulation (see Fig. 9, “priors” for
the results).
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Figure 8. Probabilistic graphical model generated with pymc2. Ellipses represent stochastic parameters, while rectangles are deterministic
functions that return intermediated states of the probabilistic model such as the GemPy model.

that best honor all the given information. To give a flavor of
what is possible, we apply custom likelihoods to the previ-
ous example based on topology and gravity constrains in an
inversion.

As we have shown above, topological graphs can repre-
sent the connectivity among the segmented areas of a geo-
logical model. As is expected, stochastic perturbations of the
input data can rapidly alter the configuration of mentioned
graphs. In order to preserve a given topological configura-
tion partially or totally, we can construct specific likelihood
functions. To exemplify the use of a topological likelihood
function, we will use the topology computed in Sect. 3.3 de-
rived from the initial model realization (Figs. 7 or 9, “Likeli-
hoods”) as “ideal topology”. This can be based on an expert
interpretation of kinematic data or deduced from auxiliary
data.

The first challenge is to find a metric that captures the sim-
ilarity of two graphs. As a graph is nothing but a set of nodes
and their edges we can compare the intersection and union
of two different sets using the Jaccard index (Jaccard, 1912;
Thiele et al., 2016a). It calculates the ratio of intersection and
union of two given graphs A and B:

J (A,B)=
|A∩B|

|A∪B|
. (13)

The resulting ratio is zero for entirely different graphs, while
the metric rises as the sets of edges and nodes become more
similar between two graphs and reaches exactly one for an
identical match. Therefore, the Jaccard index can be used to
express the similarity of topology graphs as a single number
we can evaluate using a probability density function. To eval-
uate the likelihood of the simulated model topology we use
a factor potential with a half-Cauchy parametrization (rate
parameter β = 10−3) to constrain our model using the “soft

data” of our topological knowledge (Lauritzen et al., 1990;
Jordan, 1998; Christakos, 2002). This specific parametriza-
tion was chosen due to empirical evidence from different
model runs to allow for effective parameter space exploration
in the used Markov chain Monte Carlo (MCMC) scheme.

Gravity likelihoods aim to exploit the spatial distribution
of density, which can be related to different lithotypes (Den-
tith and Mudge, 2014). To test the likelihood function based
on gravity data, we first generate the synthetic “measured”
data. This was simply done by computing the forward grav-
ity for one of the extreme models (to highlight the effect that
a gravity likelihood can have) generated during the Monte
Carlo error propagation in the previous section. This model
is particularly characterized by its high dip values (Fig. 9,
synthetic model to produce forward gravity). The construc-
tion of the likelihood function is done by applying an L2
norm between each “measured” data point and the forward
computation and evaluating the result by a normal distribu-
tion of mean µ= 0 and with the standard deviation, σ , as
a half-Cauchy prior (rate parameter β = 10−1). This likeli-
hood function will push the model parameters (Fig. 4, red)
in the direction to reduce the L2 norm as much as possible
while keeping the standard deviation around the prior value
(this prior value encapsulates the inherent measurement and
model uncertainty).

Defining the topology potential and gravity likelihood on
the same Bayesian network creates a joint likelihood value
that will define the posterior space. To sample from the pos-
terior we use adaptive Metropolis (Haario et al., 2001, for a
more in depth explanation of samplers and their importance
see de la Varga and Wellmann, 2016). This method varies the
metropolis sampling size according to the covariance func-
tion that gets updated every n iterations. For the results ex-
posed here, we performed 20 000 iterations, tuning the adap-
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Listing 7. Probabilistic model construction and inference using pymc2 and GemPy: Bayesian inference (see Fig. 9 for the results).

tive covariance every 1000 steps (a convergence analysis can
be found in the Jupyter notebooks in the package repository).

As a result of applying likelihood functions we can ap-
preciate a clear change in the posterior (i.e., the possible
outcomes) of the inference. A closer look shows two main
zones of influence, each of them related to one of the like-
lihood functions. On one hand, we observe a reduction of
uncertainty along the fault plane due to the restrictions that
the topology function imposes by conditioning the models to
high Jaccard values. On the other hand, what in the first ex-
ample – i.e., Monte Carlo error propagation, left in Fig. 9

– was just an outlier, due to the influence of the gravity
inversion, now becomes the norm bending the layers pro-
nouncedly. The purpose of this example is to highlight the
functionality. For a realistic study, further detailed adjust-
ments would have to be taken.

4 Discussion

We have introduced GemPy, a Python library for implicit
geomodeling with special emphasis on the analysis of un-
certainty. With the advent of powerful implicit methods to
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Figure 9. Probabilistic programming results on a cross section at the middle of the model (Y = 10000 m). (i) Priors UQ shows the un-
certainty in geological models given stochastic values to the Z position of the input data (standard deviation, σ = 300): (a) 2-D interface
representation; (b) probability of occurrence for Layer 2; (c) information entropy. (ii) Representation of data used as likelihood functions:
(d) ideal topology graph; (e) synthetic model taken as reference for the gravity inversion; (f) reference forward gravity overlain on top of an
XY cross section of the synthetic reference model. Posterior analysis after combining priors and likelihood in a Bayesian inference: (g) 2-D
interface representation; (h) probability of occurrence for Layer 2; (i) information entropy.

automate many of the geological modeling steps, GemPy
builds on these mathematical foundations to offer a reliable
and easy-to-use technology to generate complex models with
only a few lines of code. In many cases – and in research in
particular – it is essential to have transparent software that
allows for full manipulation and understanding of the logic
beneath its front end to honor the scientific method and allow
for reproducibility by using open-access software.

Up until now, implicit geological modeling was limited to
proprietary software suites – for the petroleum industry (Go-
Cad, Petrel, JewelSuite) or the mining sector (MicroMine,
MIRA Geoscience, GeoModeller, Leapfrog) – with an im-
portant focus on industry needs and user experience (e.g.,
graphical user interfaces or data compatibilities). Despite ac-
cess to the APIs of many of these software, their lack of trans-
parency and the inability to fully manipulate any of the al-
gorithms represents a serious obstacle for conducting appro-
priate reproducible research. To overcome these limitations,
many scientific communities – e.g., simpeg in geophysics
(Cockett et al., 2015), astropy in astronomy (Robitaille et al.,
2013) or pynoddy in kinematic structural modeling (Well-
mann et al., 2016) – are moving towards the open-source
framework necessary for the full application of the scientific
method. In this regard, the advent of open-source program-
ming languages such as R or Python are playing a crucial role

in facilitating scientific programming and enabling the cru-
cial reproducibility of simulations and script-based science.
GemPy aims to fill the existing gap of implicit modeling in
the open-source ecosystem in geosciences.

Implicit methods rely on interpolation functions to auto-
mate some or all the construction steps. Different mathemat-
ical approaches have been developed and improved in the
recent years to tackle many of the challenges that particular
geological settings pose (e.g., Lajaunie et al., 1997; Hillier
et al., 2014; Calcagno et al., 2008; Caumon et al., 2013; Cau-
mon, 2010). A significant advantage of some of these meth-
ods is that they directly enable the recomputation of the en-
tire structure when input data are changed or added. Further-
more, they can provide a geologically meaningful interpo-
lation function, e.g., considering deposition time (Caumon,
2010) or potential fields (Lajaunie et al., 1997) to encapsu-
late the essence of geological deposition in different environ-
ments. The creation of GemPy has been made possible at a
moment when the automation of geological modeling via im-
plicit algorithms, as well as the maturity of the Python open-
source ecosystem, reached a point where a few thousand new
lines of code are able to efficiently perform the millions of
linear algebra operations and complex memory management
necessary to create complex geological models. An impor-
tant aspect in GemPy’s design has been the willingness to
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allow users to simply use GemPy as a tool to construct geo-
logical models for different purposes as well as to encourage
users to develop and expand the code base itself. With the
purpose to facilitate a low-entry barrier we have taken two
main structural decisions: (i) a clear separation between core
features and extensible assets and (ii) a combination of func-
tional and object-oriented programming. The aim of this dual
design is to give a user-friendly, easy-to-use front end to the
majority of users while keeping a modular structure of the
code for future contributors.

Using GemPy requires a minimum familiarity with the
Python syntax. The lack of an advanced graphical interface
to place the input data interactively forces the user to provide
data sets with the coordinates and angular data. For this rea-
son, for complex initial models, GemPy could be seen more
as a back-end library required to couple it with software pro-
viding 3-D graphical manipulation. Due to the development
team’s background, GemPy is fully integrated with GeoMod-
eller through the built-in library pygeomod. GemPy is able to
read and modify GeoModeller projects directly, allowing the
user to take advantage of their respective unique features. All
input data of GemPy itself is kept in open, standard Python
formats, making use of the flexible pandas “DataFrames”
and powerful numpy arrays. Hence, every user will be able
to freely manipulate the data at any given point.

GemPy has built-in functionality to visualize results using
the main visualization libraries offered in Python: matplotlib
for 2-D and vtk for 3-D and allows the user to export .vtk
files for later visualization in common open-source tools for
scientific visualization such as ParaView. Although GemPy
does not include an evolved user interface, we offer a certain
level of interactivity using GemPy’s build-in 3-D visualiza-
tion in VTK and interactive data frames through qgrid. Not
only is the user able to move the input data via drag-and-drop
or changing the data frame, but GemPy can immediately re-
interpolate the perturbed model, enabling an extremely in-
tuitive direct feedback on how the changes made affect the
model. Visualization of vast model ensembles is also possi-
ble in 3-D using slider functionality. Future plans for the vi-
sualization of GemPy include virtual reality support to make
data manipulation and model visualization more immersive
and intuitive to use.

Another important feature of GemPy is the use of sym-
bolic code. The lack of a domain-specific language allows
for the compilation of the code to a highly efficient lan-
guage. Furthermore, since all the logic has to be described
prior to the compilation, memory allocation and paralleliza-
tion of the code can be optimized. Theano uses BLAS (Law-
son et al., 1979) to perform the algebraic operations with out-
of-the-box OpenMP (Dagum and Menon, 1998) capabilities
for multi-core operations. Additionally, parallel GPU com-
putation is available and compatible with the use of CPUs,
which allows the user to define certain operations to a spe-
cific device and even to split big arrays (e.g., grid) to mul-
tiple GPUs. In other words, the symbolic nature of the code

enables the separation of the logic according to the individ-
ual advantages of each device – i.e., sequential computations
to CPUs and parallel calculations to the GPUs – allowing for
better use of the available hardware. Hence, this scheme is
portable to high-performance computing in the same fashion.

Up to now, structural geological models have significantly
relied on the best deterministic and explicit realization that
an expert is able to construct using often noisy and sparse
data. Research into the interpretation uncertainty of geolog-
ical data sets (e.g., seismic data) has recognized the signifi-
cant impact of interpreter education and bias on the extracted
input data for geological models (e.g., Bond et al., 2007;
Bond, 2015). GemPy’s ability to be enveloped into proba-
bilistic programming frameworks such as pymc allows for the
consideration of input data uncertainties and could provide
a free, open-source foundation for developing probabilistic
geomodeling workflows that integrate uncertainties from the
very beginning of data interpretation, through the geomodel
interpolation and up to the geomodel application (e.g., flow
simulations, economic estimations).

In the transition to a world dominated by data and op-
timization algorithms – e.g., deep neural networks or big
data analytics – there are many attempts to apply those ad-
vances in geological modeling (Wang et al., 2017; Gonçalves
et al., 2017). The biggest attempt to use data-driven models in
geology comes from geophysical inversions (Tarantola and
Valette, 1982; Mosegaard and Tarantola, 1995; Sambridge
and Mosegaard, 2002; Tarantola, 2005). Their approaches
consist of using the mismatch of one or many parameters,
comparing model with reality and modifying them accord-
ingly until reaching a given tolerance. However, since this
solution is never unique, it is necessary to enclose the space
of possibilities by some other means. This prior approach
to the final solution is usually made using polygonal or el-
liptic bodies leading to oversimplified geometry of the dis-
tinct lithological units. Other researchers use additional data
– geophysical data or other constrains (Jessell et al., 2010;
Wellmann et al., 2014) – to validate multiple possible real-
izations of geological models generated either automatically
by an interpolation function or manually. Here, the additional
information is used as a hard deterministic filter for what is
reasonable or not. The limitation of pure rejection filtering
is that information does not propagate backward to modify
the latent parameters that characterize the geological mod-
els, which makes computation infeasible to explore high-
dimensional problems. In between these two approaches, we
can find some attempts to reconcile both approaches meeting
somewhere in the middle. An example of this is the approach
followed in the software packages GeoModeller and SKUA.
They optimize the layer densities, and when necessary the
discretized model, to fit the geological model to the observed
geophysical response. The consequence of only altering the
discrete final model is that after optimization the original in-
put data used for the construction of the geological model
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(i.e., interface points and orientation data) gets overwritten
and consequently hard to reproduce.

We propose a more general approach. By embedding the
geological model construction into a probabilistic machine-
learning framework (Bishop, 2013) – i.e., a Bayesian infer-
ence network. In short a Bayesian inference is a mathemati-
cal formulation to update beliefs in the light of new evidence.
This statement applied to geological modeling is translated
into keeping all or a subset of the parameters that generate the
model uncertain and evaluate the quality of the model com-
paring its mismatch with additional data or geological knowl-
edge encoded mathematically (de la Varga and Wellmann,
2016). In this way, we are able to utilize available informa-
tion not only in a forward direction to construct models but
also propagate information backwards in an inverse scheme
to refine the probabilistic distributions that characterize the
modeling parameters. Compared with previous approaches,
we do not only use the inversion to improve a deterministic
model but instead to learn about the parameters that define
the model to begin with. In recent years, we have shown how
this approach may help close the gap between geophysical
inversions and geological modeling in an intuitive manner
(Wellmann et al., 2017). At the end of the day, Bayesian in-
ferences operate in a very similar way to how humans do,
we create our best guess model; we compare it to the geo-
physical data or our geological knowledge, and in the case of
disagreement we modify the input of the geological model in
the direction we think is the best to honor the additional data.

Despite the convincing mathematical formulation of
Bayesian inferences, there are caveats to be dealt with for
practical applications. As mentioned in Sect. 3.4, the effec-
tive computational cost to perform such algorithms have pro-
hibited its use beyond research and simplified models. How-
ever, recent developments in MCMC methods enable more
efficient ways to explore the parametric space and hence
open the door to a significant increase in the complexity
of geological models. An in-depth study of the impact of
gradient-based MCMC methods in geological modeling will
be carried out in a future publication.

Nevertheless, performing AD does not come free of cost.
The required code structures limit the use of libraries that do
not perform AD themselves, which in essence imposes a re-
quirement to rewrite most of the mathematical algorithms in-
volved in the Bayesian network. Under these circumstances,
we have rewritten in the potential field method Theano – with
many of the add-ons developed in recent years (Calcagno
et al., 2008) – and the computation of forward gravity re-
sponses for discrete rectangular prisms.

Currently GemPy is in active development moving to-
wards three core topics: (i) increasing the probabilistic
machine-learning capabilities by exploiting gradient-based
methods and new types of likelihoods, (ii) post-processing of
uncertainty quantification and its relation to decision theory
and information theory, and (iii) exploring the new catalog
of virtual reality and augmented reality solutions to improve

the visualization of both the final geological models and the
building environment. Ideally GemPy will function as a plat-
form to create a vibrant open-source community to push for-
ward geological modeling into the new machine-learning era.
Therefore, we hope to include functionality developed by
other external users into the main package.

In conclusion, GemPy has evolved to a full approach for
geological modeling in a probabilistic programming frame-
work. The lack of available open-source tools in geological
modeling and the necessity of writing all the logic symbol-
ically has pushed the project to an unexpected stand-alone
size. However, this would not have been possible without the
immense, ever-growing, open-source community that pro-
vide numerous high-quality libraries that enable the creation
of powerful software with relatively few new lines of code.
And in the same fashion, we hope the community will make
use of our library to perform geological modeling transpar-
ently and reproducibly, and incorpore the uncertainties inher-
ent to earth sciences.

Code availability. GemPy is a free, open-source Python library
licensed under the GNU Lesser General Public License v3.0
(GPLv3). It is hosted on the GitHub repository https://github.com/
cgre-aachen/gempy (https://doi.org/10.5281/zenodo.1186118; de la
Varga et al., 2018).
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Appendix A: GemPy package information

A1 Installation

Installing GemPy can be done in two ways: (i) either
by cloning the GitHub repository with $ git clone
https://github.com/cgre-aachen/gempy.git (last access: 17
December 2018) and then manually installing it by run-
ning the Python setup script in the repository: $ python
install.py (ii) or by using the Python Package In-
dex (PyPI) with the command $ pip install gempy,
which directly downloads and installs the library.

A2 Documentation

GemPy’s documentation is hosted on http://gempy.
readthedocs.io/ (last access: 17 December 2018), which
provides a general overview of the library and multiple
in-depth tutorials. The tutorials are provided as Jupyter
notebooks, which provide the convenient combination of
documentation and executable script blocks in one docu-
ment. The notebooks are part of the repository and located
in the tutorials folder. See http://jupyter.org/ (last access:
17 December 2018) for more information on installing and
running Jupyter notebooks.

A3 Jupyter notebooks

We provide Jupyter notebooks as part of the online documen-
tation. These notebooks can be executed in a local Python
environment (if the required dependencies are correctly in-
stalled, see above). In addition, static versions of the note-
books can currently be inspected directly on the GitHub
repository web page or through the use of nbviewer. In ad-
dition, it is possible to run interactive notebooks through the
use of binder (provided through https://mybinder.org at the
time of writing). For more details and up-to-date informa-
tion, please refer to the repository page https://github.com/
cgre-aachen/gempy.

A4 Unit tests

The GemPy package contains a set of tests, which can be
executed in the standard Python testing environment. If you
cloned or downloaded the repository, then these tests can be
directly performed by going to the package folder and run-
ning the pytest command: $ pytest

If all tests are successful, you are ready to continue.
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Appendix B: Kriging system expansion

The following equations have been derived from the work in
Aug (2004); Lajaunie et al. (1997) and Chiles and Delfiner
(2009).

B1 Gradient covariance matrix C∂Z/∂u

The gradient covariance matrix, C∂Z/∂u, is made up of as
many variables as gradient directions that are taken into con-
sideration. In 3-D, we would have the Cartesian coordinate
dimensions – Z/∂x, Z/∂y and Z/∂z – and therefore they will
derive from the partial differentiation of the covariance func-
tion σ(xi,xj ) of Z.

As in our case the directional derivatives used are the three
Cartesian directions; we can rewrite gradients covariance,
C∂Z/∂u, ∂Z/∂v , for our specific case as

C∂Z/∂x, ∂Z/∂y, ∂Z/∂z = C∂Z/∂x, ∂Z/∂x C∂Z/∂x, ∂Z/∂y C∂Z/∂x, ∂Z/∂z
C∂Z/∂y, ∂Z/∂x C∂Z/∂y, ∂Z/∂y C∂Z/∂y, ∂Z/∂z
C∂Z/∂z, ∂Z/∂x C∂Z/∂z, ∂Z/∂y C∂Z/∂z, ∂Z/∂z

 . (B1)

Notice, however, that covariance functions by definition
are described in a polar coordinate system, and therefore
it will be necessary to apply the chain rule for directional
derivatives. Considering an isotropic and stationary covari-
ance we can express the covariance function as

σ(xi,xj )= C(r) (B2)

with

r =
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2
y +h
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and hu as the distance ui − uj in the given direction (usu-
ally Cartesian directions). Therefore, since we aim to derive
CZ(r) with respect to an arbitrary direction u, we must apply

the directional derivative rules as follows:
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Substituting:

C∂Z/∂u, ∂Z/∂u = C
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While in the case of two different directions the covariance
will be

C∂Z/∂u, ∂Z/∂v =
∂2CZ(r)
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with
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we have

C∂Z/∂u, ∂Z/∂v = C
′
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This derivation is independent to the covariance function of
choice. However, some covariances may lead to mathemati-
cal indeterminations if they are not sufficiently differentiable.
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Figure B1. 2-D representation of the decomposition of the orientation vectors into Cartesian axes. Each Cartesian axis represents a variable
of a sub-cokriging system. The dashed green line represents the covariance distance, ra , for the covariance of the gradient.

Figure B2. Distances r involved in the computation of the interface subsystem of the interpolation. Because all covariances are relative to a
reference point xi

α,0, all four covariances with their respective distances, ra, rb, rc and rd , must be taken into account (Eq. B14).

B2 Interface covariance matrix

In a practical sense, keeping the value of the scalar field at
every interface unfixed forces us to consider the covariance
between the points within an interface as well as the covari-
ance between different layers following equation

Cxrα i , x
s
α j
=

ra︷ ︸︸ ︷
Cxrα, i x

s
α, j
−

rb︷ ︸︸ ︷
Cxrα, 0 x

s
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−
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Cxrα, i x

s
α, 0
+
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Cxrα, 0 x

s
α, 0
.

(B14)

This leads to the subdivision of the cokriging system re-
specting the interfaces:
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Combining Eqs. (5) and (B15) the covariance for the prop-
erty scalar field will look like
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B3 Cross-covariance

In a cokriging system, the relation between the interpo-
lated parameters is given by a cross-covariance function. As
we saw above, the gradient covariance is subdivided into
covariances with respect to the three Cartesian directions
(Eq. B1), while the interface covariance is detached from the
covariances matrices with respect to each individual interface
(Eq. B15). In the same manner, the cross-covariance will re-
flect the relation of every interface to each gradient direction,

CZ, ∂Z/∂u = (B17)

Cx1
α 1, ∂Z(xβ 1)/∂x
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.

.

.
.
.
.

. . .
.
.
.

Cx1
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Cx1
α 1, ∂Z(xβ 2)/∂y
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.

.

.
.
.
.

. . .
.
.
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Cx1
α 1, ∂Z(xβ j−1)/∂z
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. . . Cxrα i , ∂Z(xβ j−1)/∂z

Cx1
α 1, ∂Z(xβ j )/∂z Cx1

α 2, ∂Z(xβ j )/∂z . . . Cxrα i , ∂Z(xβ j )/∂z


.

As the interfaces are relative to a reference point per
laterxkα0

the value of the covariance function will be the dif-
ference between this point and the rest on the same layer,

Cxrα i , ∂Z(xβ j )/∂x =

ra︷ ︸︸ ︷
CZ(xrα i ), ∂Z(xβ j )/∂x

−

rb︷ ︸︸ ︷
CZ(xrα 0), ∂Z(xβ j )/∂x

, (B18)

with the covariance of the scalar field being a function of the
vector r , its directional derivative is analogous to the previ-
ous derivations:

CZ, ∂Z/∂u =
∂CZ(r)

∂r

∂r

∂hu
=−

hu

r
C′Z. (B19)

B4 Universal matrix

As the mean value of the scalar field is going to be always un-
known, it needs to be estimated from data itself. The simplest
approach is to consider the mean constant for the whole do-
main, i.e., ordinary kriging. However, in the scalar field case
we can assume a certain drift towards the direction of the ori-
entations. Therefore, the mean can be written as a function of
known basis functions:

µ(x)=

L∑
l=0

alf
l(x), (B20)

where l is the grade of the polynomials used to describe the
drift. Because of the algebraic dependence of the variables,
there is only one drift and therefore the unbiasedness can be
expressed as

UZλ1+U∂Z/∂uλ2 = f10. (B21)

Consequently, the number of equations are determined ac-
cording to the grade of the polynomial and the number of
equations forming the properties matrices, Eqs. (B22) and
(B23):
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U∂Z/∂u = (B23)
xβ1 xβ2 . . . xβ1 xβ2 . . . xβi−1 xβi
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Figure B3. Distances ra and rb involved in the computation of the cross-covariance function. In a similar fashion as before, all interface
covariance are computed relative to a reference point in each layer xi

α,0.

Appendix C: Kriging estimator

In normal kriging the right-hand term of the kriging system
(Eq. 4) corresponds to covariances and drift matrices of di-
mensions m× n, where m is the number of elements of the
data sets – either xα or xβ – and n the number of locations
where the interpolation is performed, x0.

Since, in this case, the parameters of the variogram func-
tions are arbitrarily chosen, the kriging variance does not
hold any physical information of the domain. As a result of
this, being interested in only the mean value, we can solve the
kriging system in the dual form (Chiles and Delfiner, 2009;
Matheron, 1981):

Z(x0)=
[
a′
∂Z/∂u, ∂Z/∂v b′Z,Z c′

]
 c∂Z/∂u, ∂Z/∂v c∂Z/∂u,Z

cZ, ∂Z/∂u cZ,Z
f 10 f 20

 , (C1)

wherea∂Z/∂u, ∂Z/∂v
bZ,Z
c

=
∂Z

0
0


 C∂Z/∂u, ∂Z/∂v C∂Z/∂u,Z U∂Z/∂u

CZ, ∂Z/∂u CZ,Z UZ
U′
∂Z/∂u U′Z 0

−1

(C2)

noticing that the 0 on the second row appears due to the fact
that we are interpolating the difference of scalar fields instead
of the scalar field itself Eq. (2).

Appendix D: Example of covariance function: cubic

The choice of the covariance function will govern the shape
of the isosurfaces of the scalar field. As opposed to other

kriging uses, here the choice cannot be based on empirical
measurements. Therefore, the choice of the covariance func-
tion is merely arbitrary trying to mimic, as far as possible,
coherent geological structures.

The main requirement to take into consideration when the
time comes to choose a covariance function is that it has to
be twice differentiable, h2, at the origin in order to be able to
calculate C∂Z/∂u, ∂Z/∂v as we saw in Eq. (B13). The use of a
Gaussian model C(r)= exp−(r/a)2 and the non-divergent
spline C(r)= r4Log(r) and their correspondent flaws are
explored in Lajaunie et al. (1997).

The most widely used function in the potential field
method is the cubic covariance due to mathematical robust-
ness and its coherent geological description of the space.

C(r)= (D1){
C0(1− 7( r

a
)2+ 35

4 (
r
a
)3− 7

2 (
r
a
)5+ 3

4 (
r
a
)7) for 0≤ r ≤ a,

0 for r ≥ a.

with a being the range and C0 the variance in the data. The
value of a determines the maximum distance that a data point
influences another. Since, we assume that all data belong to
the same depositional phase, it is recommended to choose
values close to the maximum extent to interpolate in order
to avoid mathematical artifacts. For the values of the covari-
ance at 0 and nuggets effects, so far only ad hoc values have
been used. It is important to notice that the only effect that
the values of the covariance in the potential-field method has
is to weight the relative influence of both cokriging parame-
ters (interfaces and orientations) since the absolute value of
the field is meaningless. Regarding the nugget effect, the au-
thors’ recommendation is to use fairly small nugget effects to
give stability to the computation – since we normally use the
kriging mean, it should not have further impact to the result.
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Figure D1. Representation of a cubic variogram and covariance for an arbitrary range and nugget effect.

Appendix E: Model checking and diagnostics

Estimating convergence of MCMC simulations. Here we
show selected plots to evaluate convergence of the MCMC
process. In Fig. E2, we present trace plots for selected pa-
rameters, and, in Fig. E1, the corresponding plots of the cal-
culated Geweke statistics (Geweke, 1991). These parameters
have been selected to show the overall range of convergence
and trace behavior. Overall, the sampling algorithm performs
well, although in some cases the step length could be ad-
justed further. Also, the Geweke statistics for some param-
eters fall partly outside of 2 standard deviations, indicating
that the chain may not have fully converged. As described in
the Discussion, we will attempt to address these issues with
the use of a faster implementation of the modeling algorithm
and by considering better sampling strategies in future work.

Appendix F: Blender integration

Throughout the paper we have mentioned and show Blender
visualizations (Fig. 1b). The first step to obtain them is to
be able to run GemPy in Blender’s integrated Python code
(there are several tutorials online to use external libraries in
Blender). Once it is running, we can use Blender’s library
bpy to generate Blender’s actors directly from code. Here we
include the code listing with the extra functions necessary to
automatically create GemPy models in Blender.
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Figure E1. Geweke values of the parameters belonging to the inference of all likelihoods. Every point represents the mean of separated
intervals of the chain. If interval A and interval B belong to the same distribution, most of the Z score should fall within 2 SD.

Figure E2. Traces of the parameters belonging to the inference with all likelihoods. The asymptotic behavior probes ergodicity. The first
1000 iterations (not displayed here) were used as burn-in and are not represented here.

Geosci. Model Dev., 12, 1–32, 2019 www.geosci-model-dev.net/12/1/2019/



M. de la Varga et al.: GemPy 29

Listing F8. Extra functionality needed to create GemPy models in Blender.
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