Articles | Volume 11, issue 2
https://doi.org/10.5194/gmd-11-575-2018
https://doi.org/10.5194/gmd-11-575-2018
Development and technical paper
 | 
08 Feb 2018
Development and technical paper |  | 08 Feb 2018

Trajectory errors of different numerical integration schemes diagnosed with the MPTRAC advection module driven by ECMWF operational analyses

Thomas Rößler, Olaf Stein, Yi Heng, Paul Baumeister, and Lars Hoffmann

Related authors

Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations
Lars Hoffmann, Albert Hertzog, Thomas Rößler, Olaf Stein, and Xue Wu
Atmos. Chem. Phys., 17, 8045–8061, https://doi.org/10.5194/acp-17-8045-2017,https://doi.org/10.5194/acp-17-8045-2017, 2017
Short summary

Related subject area

Numerical methods
LISFLOOD-FP 8.1: new GPU-accelerated solvers for faster fluvial/pluvial flood simulations
Mohammad Kazem Sharifian, Georges Kesserwani, Alovya Ahmed Chowdhury, Jeffrey Neal, and Paul Bates
Geosci. Model Dev., 16, 2391–2413, https://doi.org/10.5194/gmd-16-2391-2023,https://doi.org/10.5194/gmd-16-2391-2023, 2023
Short summary
Fast approximate Barnes interpolation: illustrated by Python-Numba implementation fast-barnes-py v1.0
Bruno K. Zürcher
Geosci. Model Dev., 16, 1697–1711, https://doi.org/10.5194/gmd-16-1697-2023,https://doi.org/10.5194/gmd-16-1697-2023, 2023
Short summary
Strategies for conservative and non-conservative monotone remapping on the sphere
David H. Marsico and Paul A. Ullrich
Geosci. Model Dev., 16, 1537–1551, https://doi.org/10.5194/gmd-16-1537-2023,https://doi.org/10.5194/gmd-16-1537-2023, 2023
Short summary
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023,https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
A mixed finite-element discretisation of the shallow-water equations
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023,https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary

Cited articles

Bowman, K. P., Lin, J. C., Stohl, A., Draxler, R., Konopka, P., Andrews, A., and Brunner, D.: Input Data Requirements for Lagrangian Trajectory Models, B. Am. Meteorol. Soc., 94, 1051–1058, 2013.
Brioude, J., Angevine, W. M., McKeen, S. A., and Hsie, E.-Y.: Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain, Geosci. Model Dev., 5, 1127–1136, https://doi.org/10.5194/gmd-5-1127-2012, 2012.
Buizza, R., Houtekamer, P. L., Toth, Z., Pellerin, G., Wei, M., and Zhu, Y.: A comparison of the ECMWF, MSC, and NCEP Global ensemble prediction systems, Mon. Weather Rev., 133, 1076–1097, 2005.
Butcher, J. C.: Numerical methods for ordinary differential equations, John Wiley & Sons, 2008.
CDO: Climate Data Operators, available at: http://www.mpimet.mpg.de/cdo (last access: 3 May 2017), 2015.
Download
Short summary
In this study, we performed an assessment of truncation errors and computational efficiency of trajectory calculations using six popular numerical integration schemes of the Runge–Kutta family. More than 5000 transport simulations for different seasons and regions of the free troposphere and stratosphere were conducted, driven by the latest version of ECMWF operational analyses and forecasts. The study provides guidelines to achieve the most accurate and efficient trajectory calculations.