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Abstract. The accuracy of trajectory calculations performed
by Lagrangian particle dispersion models (LPDMs) depends
on various factors. The optimization of numerical integration
schemes used to solve the trajectory equation helps to maxi-
mize the computational efficiency of large-scale LPDM sim-
ulations. We analyzed global truncation errors of six explicit
integration schemes of the Runge–Kutta family, which we
implemented in the Massive-Parallel Trajectory Calculations
(MPTRAC) advection module. The simulations were driven
by wind fields from operational analysis and forecasts of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) at T1279L137 spatial resolution and 3 h temporal
sampling. We defined separate test cases for 15 distinct re-
gions of the atmosphere, covering the polar regions, the mid-
latitudes, and the tropics in the free troposphere, in the upper
troposphere and lower stratosphere (UT/LS) region, and in
the middle stratosphere. In total, more than 5000 different
transport simulations were performed, covering the months
of January, April, July, and October for the years 2014 and
2015. We quantified the accuracy of the trajectories by cal-
culating transport deviations with respect to reference simu-
lations using a fourth-order Runge–Kutta integration scheme
with a sufficiently fine time step. Transport deviations were
assessed with respect to error limits based on turbulent diffu-
sion. Independent of the numerical scheme, the global trun-
cation errors vary significantly between the different regions.
Horizontal transport deviations in the stratosphere are typi-
cally an order of magnitude smaller compared with the free
troposphere. We found that the truncation errors of the six nu-
merical schemes fall into three distinct groups, which mostly

depend on the numerical order of the scheme. Schemes of
the same order differ little in accuracy, but some methods
need less computational time, which gives them an advan-
tage in efficiency. The selection of the integration scheme and
the appropriate time step should possibly take into account
the typical altitude ranges as well as the total length of the
simulations to achieve the most efficient simulations. How-
ever, trying to summarize, we recommend the third-order
Runge–Kutta method with a time step of 170 s or the mid-
point scheme with a time step of 100 s for efficient simu-
lations of up to 10 days of simulation time for the specific
ECMWF high-resolution data set considered in this study.
Purely stratospheric simulations can use significantly larger
time steps of 800 and 1100 s for the midpoint scheme and the
third-order Runge–Kutta method, respectively.

1 Introduction

Lagrangian particle dispersion models (LPDMs) have proven
to be useful for understanding the properties of atmospheric
flows, particularly for problems related to transport, disper-
sion, and mixing of tracers and other atmospheric properties
(e.g., Lin et al., 2012; Bowman et al., 2013). Commonly used
LPDMs include the Flexible Particle (FLEXPART) model
(Stohl et al., 2005), the Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT) model (Draxler and Hess,
1998), the Numerical Atmospheric-dispersion Modelling
Environment (NAME) (Jones et al., 2007), and the Stochas-
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tic Time-Inverted Lagrangian Transport (STILT) model (Lin
et al., 2003). While all these models are applied to solve simi-
lar tasks, they differ in specific choices such as the numerical
methods or vertical coordinates that are used. In this study,
we apply the rather new Massive-Parallel Trajectory Calcu-
lations (MPTRAC) model (Hoffmann et al., 2016), which
was recently developed at the Jülich Supercomputing Centre,
Germany. MPTRAC was primarily designed to conduct tra-
jectory calculations for large-scale simulations on massive-
parallel computing architectures. Computational efficiency is
an important aspect during the development of such a model.

LPDMs simulate transport and diffusion of atmospheric
tracers based on trajectory calculations for many air parcels
that move with the fluid flow in the atmosphere. The accuracy
of these calculations has been the subject of numerous stud-
ies (e.g., Kuo et al., 1985; Rolph and Draxler, 1990; Seib-
ert, 1993; Stohl et al., 1995; Stohl and Seibert, 1998; Stohl
et al., 2001; Davis and Dacre, 2009). According to reviews
of Stohl (1998) and Bowman et al. (2013), trajectory calcu-
lations have errors that arise from three sources: (i) errors in
the gridded winds themselves, which could result from mea-
surement errors that enter the analyzed fields through the data
assimilation process or from Eulerian model approximations,
such as subgrid-scale parameterizations; (ii) sampling errors
that follow from the fact that velocity fields are available only
at finite spatial and temporal resolution and must be inter-
polated to particle locations; and (iii) local and global trun-
cation errors that originate from the use of an approximate
numerical scheme to integrate the trajectory equation in time
at a single time step or integrated over multiple time steps,
respectively.

Bowman et al. (2013) point out that (i) and (ii) are usu-
ally the limiting factors for the accuracy of trajectory cal-
culations, whereas high numerical accuracy and significant
reduction of local truncation errors can be achieved by re-
ducing the size of the time step of the numerical integration
scheme, which will also reduce the global truncation errors.
However, note that the final transport deviation is not just an
accumulation of local truncation errors, because local errors
will be amplified in a way that is flow-dependent. The de-
pendency on the flow may cause significant variability in the
global truncation errors, in particular if the integration cov-
ers time periods of several days. The size of the time step is
usually the most important factor that controls the trade-off
between numerical accuracy and computation time. An ap-
propriate selection of the numerical scheme and the size of
the time step is mandatory to maximize computational effi-
ciency. This is particularly important for large-scale simula-
tions, like Lagrangian transport simulations aiming at emis-
sion estimation by means of inverse modeling (e.g., Stohl
et al., 2011; Heng et al., 2016) or long-term simulations cou-
pled to chemistry climate models (e.g., Hoppe et al., 2014).

In the following, we present an assessment of six numer-
ical integration schemes, all belonging to the class of ex-
plicit Runge–Kutta methods (e.g., Press et al., 2002; Butcher,

2008), for atmospheric trajectory calculations. Seibert (1993)
studied the truncation errors of some of these schemes
based on analytic flow types such as purely rotational flow,
purely deformational flow, wave flow, and accelerated de-
formational flow. Here, we decided to focus on tests with
realistic wind fields obtained from high-resolution opera-
tional analyses and forecasts provided by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). The
T1279L137 ECMWF operational analysis data used here
have 16 km effective horizontal resolution and 180–750 m
vertical resolution at 2–32 km altitude. We estimated the
global truncation errors of the numerical methods for five lat-
itude bands and three altitude ranges of the atmosphere, cov-
ering the free troposphere, the upper troposphere and lower
stratosphere (UT/LS) region, and the middle stratosphere.
The simulations were used to study the seasonal error vari-
ability for the years 2014 and 2015. We systematically as-
sessed trade-offs between accuracy and computation time to
infer the computational efficiency of the integration methods.
Using the most recent meteorological data, the results will be
of interest for many current and future LPDM studies using
ECMWF operational data or other meteorological data sets
with comparable resolution.

In Sect. 2, we present the advection module of the La-
grangian particle dispersion model MPTRAC together with
an overview on the meteorological data. The selected numer-
ical integration schemes and the diagnostic variables are in-
troduced and the experimental setup is described. Section 3
shows transport deviations from case studies followed by a
general analysis of the error behavior in terms of error growth
rates and region-specific characteristics. Scalability and per-
formance on a high-performance computing system are dis-
cussed. In Sect. 4, we conclude with suggestions for the best-
suited integration schemes and optimal time step choice in
order to achieve the most effective simulations of large-scale
problems on current high-performance computing systems.

2 Methods and data

2.1 Lagrangian particle dispersion model

In this study, we apply the Lagrangian particle dispersion
model MPTRAC (Hoffmann et al., 2016) to conduct trajec-
tory calculations. MPTRAC has been developed to support
the analysis of atmospheric transport processes in the free
troposphere and stratosphere. In recent studies, it has been
used to perform transport simulations for volcanic eruptions
and to reconstruct time- and height-resolved emission rates
for these events (Heng et al., 2016; Hoffmann et al., 2016;
Wu et al., 2017). An intercomparison of meteorological anal-
yses and MPTRAC trajectory calculations with superpres-
sure balloon observations in the Antarctic lower stratosphere
was presented by Hoffmann et al. (2017). The primary task
of MPTRAC is to solve the trajectory equation for atmo-
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spheric air parcels. Its advection module calculates air par-
cel trajectories based on given wind fields. In another mod-
ule, turbulent diffusion and subgrid-scale wind fluctuations
are simulated by adding stochastic perturbations to the tra-
jectories, following the approach of the FLEXPART model
(Stohl et al., 2005). Additional modules can simulate the
sedimentation of air parcels and the decay of particle mass.
For this study, only the advection module was activated.
MPTRAC is particularly suited for ensemble simulations on
supercomputers due to its efficient Message Passing Interface
(MPI)/Open Multi-Processing (OpenMP) hybrid paralleliza-
tion.

2.2 ECMWF operational analysis

Air parcel transport in MPTRAC is driven by given wind
fields. In principle, any gridded data produced by general cir-
culation models, atmospheric reanalyses, or operational anal-
yses and forecasts can be used for this purpose. Reanalyses
and forecasts benefit from well-established meteorological
data assimilation methods (Rabier et al., 2000; Buizza et al.,
2005) which help to better constrain the modeled circulation
fields to reality. While atmospheric reanalyses (e.g., Kalnay
et al., 1996; Dee et al., 2011; Rienecker et al., 2011) typi-
cally have a horizontal resolution of ≈ 100 km or less, the
resolution of operational forecast products has been contin-
uously improving during the last decades. In this study, we
use horizontal and vertical winds from ECMWF operational
analyses and forecasts (ECMWF, 2013, 2015) for the years
2014 and 2015 produced in spectral truncation T1279, which
corresponds to a horizontal resolution of about 16 km. Ver-
tically, the data consist of 137 levels reaching from the sur-
face up to 0.01 hPa. For usage with MPTRAC, the wind fields
were retrieved on model levels with a longitude–latitude grid
with 0.125◦× 0.125◦ resolution and have been interpolated
vertically to 114 pressure levels in the troposphere and strato-
sphere up to 5 hPa with the help of the Climate Data Opera-
tors (CDO, 2015). The 12-hourly analyses were combined
with short-term forecasts in between to obtain data with
a 3-hourly time step. Hoffmann et al. (2016) showed that
ECMWF operational analyses and forecasts outperform cur-
rent reanalysis data products in terms of transport deviations
for simulations of volcanic sulfur dioxide emissions in the
upper troposphere and stratosphere. Hoffmann et al. (2017)
showed the same for the trajectory calculations for superpres-
sure balloon observations in the Antarctic lower stratosphere.

Example wind fields from the operational data are pre-
sented in Fig. 1. Horizontal and vertical wind velocities
from the ECMWF operational analysis for 1 January 2015
(00:00 UTC) are shown for three pressure levels in the strato-
sphere, in the UT/LS region, and in the free troposphere. At
about 24 km altitude, the global wind fields are dominated
by a meandering band of high horizontal wind speed at high
northern latitudes indicating the wintertime polar vortex, to-
gether with weaker tropical easterlies. Stratospheric wind

speeds in the extratropical summer hemisphere are generally
slow compared to the winter hemisphere. Enhanced horizon-
tal wind speeds at about 12 km altitude are connected with
UT/LS jet streams over both hemispheres and are highest for
the subtropical jet stream situated at around 30◦ N with max-
ima over the western Pacific reaching more than 100 m s−1

locally. In the free troposphere, typical weather patterns from
the moving high- and low-pressure systems over the midlat-
itudes exhibit the highest horizontal wind speeds but with
stronger spatial variability than in the stratosphere. The verti-
cal wind velocities mostly vary on short spatial scales of sev-
eral 100 km or less, often associated with atmospheric grav-
ity waves (e.g., Preusse et al., 2009; Hoffmann et al., 2013).
In the troposphere, also contiguous areas of high vertical ve-
locities with extensions of 1000 km or more occur close to
strong pressure systems. Other high vertical wind speeds are
connected with the polar vortex and the jet streams. Strong
vertical winds are also observed at the Intertropical Conver-
gence Zone (ITCZ) which is located around 10◦ N–20◦ S for
January. Note that many of the small-scale features identi-
fied here cannot be found in lower-resolution data sets such
as global meteorological reanalyses.

2.3 Numerical methods for trajectory calculations

Lagrangian particle dispersion models calculate the trajecto-
ries of individual particles or infinitesimally small air parcels
over time. The trajectory of each air parcel is defined by the
trajectory equation

dx

dt
= v (x(t), t) . (1)

Here, x = (x,y,z) denotes the position and v = (u,v,ω) the
velocity of the air parcel at time t . In MPTRAC, the hori-
zontal position (x,y) of the air parcel is defined by longitude
and latitude, which requires spherical coordinate transforma-
tions to relate it to the horizontal wind (u,v). The vertical
coordinate z is related to pressure p by the hydrostatic equa-
tion, and the vertical velocity is given by ω = dp/dt . The
wind vector v at any position x is obtained by means of a
4-D linear interpolation of the meteorological data, which is
a common approach in many LPDMs (Bowman et al., 2013).
The analytic solution of the trajectory equation is given by

x(t1)= x0+

t1∫
t0

v (x(t), t)dt, (2)

with initial position x0 at start time t0 and end time t1. In this
study, the performance of six numerical schemes to solve the
trajectory equation is analyzed. All schemes belong to the
class of explicit Runge–Kutta methods; for an overview of
these methods, see, e.g., (Butcher, 2008).

The explicit Euler method likely poses the most simple
way to solve the trajectory equation. The numerical solution
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Figure 1. ECMWF operational analysis horizontal wind speed (a, c, e) and vertical velocity (b, d, f) at about 24 km (a, b), 12 km (c, d), and
5 km (e, f) altitude on 1 January 2015 (00:00 UTC). Black lines indicate the latitude bands considered in our analysis. Note that color bar
ranges have been adjusted for each height level to make local structures visible.

is obtained from Eq. (2) by means of a first-order Taylor se-
ries approximation. Hence, it is also referred to as the “zero
acceleration” scheme. The iteration scheme of the explicit
Euler method (referred to as the Euler method below) is given
by

xn+1 = xn+1t v (xn, tn) , (3)

where 1t = tn+1− tn refers to the time step. The Euler
method is a first-order Runge–Kutta method; i.e., the local
truncation error for each time step is on the order ofO(1t2),
whereas the total accumulated error at any given time is on
the order of O(1t).

MPTRAC currently uses the explicit midpoint method as
its default numerical integration scheme:

xn+1 = xn+1t v

(
xn+

1t

2
v (xn, tn) , tn+

1t

2

)
. (4)

First, the “midpoint” is calculated using an Euler step with
half the time step,1t/2. The final step is calculated using the
wind vector at the midpoint of the Euler step. The midpoint
method is a second-order Runge–Kutta method. The local
truncation error is on the order of O(1t3), giving a global
error on the order ofO(1t2). The method is computationally
more expensive than the Euler method, but errors generally
decrease faster in the limit 1t→ 0.
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The scheme of Petterssen (1940) is popular in many
LPDMs (e.g., Stohl, 1998; Bowman et al., 2013). It is de-
fined by

xn+1,0 = xn+1t v (xn, tn) , (5)

xn+1,l = xn+
1t

2

(
v (xn, tn)+ v

(
xn+1,l−1, tn+1

))
, (6)

with l being an index counting the number of inner iterations
carried out as part of each time step. If no inner iterations are
performed, the scheme is equivalent to the Euler method. If
one inner iteration is carried out, the method is also known
as Heun’s method, another type of a second-order explicit
Runge–Kutta method. An increasing number of inner iter-
ations can help to improve the accuracy of the solution in
situations with rather complex wind fields. If the local wind
field is smooth, it results in fewer iterations and less com-
puting time. We applied the Petterssen scheme with up to
seven inner iterations and did not tune the convergence limit
for the inner iterations for efficiency, as we were mostly in-
terested in good accuracy of the solutions. An additional test
was conducted with a fixed number of two iterations to assess
possible improvements of the Petterssen scheme with respect
to Heun’s method.

In this study, we also evaluated specific third- and fourth-
order explicit Runge–Kutta methods (RK3 and RK4). The
third-order method used here is defined by

xn+1 = xn+1t

(
1
6
k1+

4
6
k2+

1
6
k3

)
, (7)

with wind vectors ki at the specific quadrature nodes:

k1 = v (xn, tn) , (8)

k2 = v

(
xn+

1t

2
k1, tn+

1t

2

)
, (9)

k3 = v (xn−1t k1+ 21t k2, tn+1t) . (10)

The classical fourth-order Runge–Kutta method is defined by

xn+1 = xn+1t

(
1
6
k1+

2
6
k2+

2
6
k3+

1
6
k4

)
, (11)

with wind vectors

k1 = v (xn, tn) , (12)

k2 = v

(
xn+

1t

2
k1, tn+

1t

2

)
, (13)

k3 = v

(
xn+

1t

2
k2, tn+

1t

2

)
, (14)

k4 = v (xn+1t k3, tn+1t) . (15)

For these methods, the local truncation error is on the order
of O(1tp+1), while the total accumulated error is on the or-
der of O(1tp), with p referring to the order of the method.

The classical fourth-order Runge–Kutta method is the high-
est order Runge–Kutta method for which the number of func-
tion calls matches its order. It typically provides a good ratio
of accuracy and computation time. Any fifth-order method
requires at least six function calls, which causes more over-
head.

2.4 Evaluation of trajectory calculations

A common way to compare sets of test and reference trajec-
tories is to calculate transport deviations (Kuo et al., 1985;
Stohl et al., 1995; Stohl, 1998). Transport deviations are cal-
culated by averaging the individual distances of correspond-
ing air parcels from the test and reference data sets at a given
time. The reference data set could be the known analytical
solution for an idealized test case, it could be based on ob-
servations like balloon trajectories, or it could be obtained
by using a numerical integration method known to be highly
accurate for real wind data. Absolute horizontal and vertical
transport deviations at time t are calculated according to

AHTD(t)=
1
N

N∑
i=1

√
[Xi(t)− xi(t)]2+ [Yi(t)− yi(t)]2, (16)

AVTD(t)=
1
N

N∑
i=1
|Zi(t)− zi(t)|, (17)

with Xi(t), Yi(t), and Zi(t) as well as xi(t), yi(t), and zi(t)
referring to the air parcel coordinates of the test and reference
data sets, respectively. Each data set contains N air parcels.
To calculate the horizontal distances, we first converted the
spherical coordinates of the air parcels to Cartesian coordi-
nates and then calculated the Euclidean distance of the Carte-
sian coordinates. This approach approximates spherical dis-
tances with ≥ 99 % accuracy for distances up to 3000 km.
Vertical distances are calculated based on pressure and the
hydrostatic equation. Relative horizontal transport deviations
(RHTDs) and relative vertical transport deviations (RVTDs)
are calculated by dividing the absolute transport deviations
by the horizontal or vertical path lengths of the trajectories,
respectively.

According to the definition, the transport deviations are
calculated as mean absolute deviations of the air parcel dis-
tances. Although the mean absolute deviation is a rather intu-
itive approach to measure statistical dispersion, we note that
it is not necessarily the most robust measure, as it can be
influenced significantly by outliers. Such outliers of rather
large individual transport deviations exist in some of our sim-
ulations. Strong error growth of individual trajectories can
occur once the test and reference trajectories are significantly
separated from each other, meaning that the air parcels are lo-
cated in completely different wind regimes. To mitigate this
issue, we decided to report also the median of the absolute
and relative transport deviations of the individual air parcels
as an additional statistical measure. The median absolute de-
viation is a much more robust statistical measure. In all cases

www.geosci-model-dev.net/11/575/2018/ Geosci. Model Dev., 11, 575–592, 2018



580 T. Rößler et al.: Truncation errors of trajectory calculations

considered here, we found that the median absolute deviation
is smaller than the mean absolute deviation. This indicates
that the distributions of transport deviations are skewed to-
wards larger outliers. Note that skewed distributions of trans-
port deviations have also been reported in other LPDM inter-
comparison and validation studies (e.g., Stohl et al., 2001).

2.5 Considerations on time steps and error limits

Since our test cases are based on real meteorological data,
we obtained the reference data to calculate the transport de-
viations using the most accurate integration method available
to us with a sufficiently short time step. Sensitivity tests us-
ing variable time steps down to 30 s showed that the numer-
ical solution from the RK4 method converges for time steps
of 60 s or less, in the sense that transport deviations rela-
tive to simulations with a time step of 120 s do not change
significantly. In particular, comparing simulations with time
steps of 120 s and 60 s, the median horizontal deviation is
less than 7 km and the median vertical deviation is less than
10 m for up to 10 days of simulation time. Alternatively, fol-
lowing Seibert (1993), we may also evaluate the Courant–
Friedrichs–Lewy (CFL) criterion, 1t ≤1x/umax, to estab-
lish a time step estimate for the reference simulations. Based
on an effective horizontal resolution of 1x ≈ 16 km and a
maximum horizontal wind speed of umax ≈ 120 m s−1, we
find that1t ≤ 130 s is needed to ensure sufficiently fine sam-
pling of the ECMWF data. Therefore, we selected a time step
of 60 s to calculate the reference trajectories.

The maximum tolerable error limits for trajectory calcula-
tions depend on the individual application of course. How-
ever, as a guideline, we here provide physically motivated
error limits that are of particular interest regarding LPDM
simulations. LPDMs consider both advection and diffusion
to simulate dispersion. Clearly, the numerical errors of the
trajectory calculations representing the advective part should
be smaller than the particle spread caused by diffusion. Con-
sidering a simple model of Gaussian diffusion, the standard
deviations of the horizontal and vertical particle distributions
are given by σx =

√
2Dx t and σz =

√
2Dzt , respectively.

Typical vertical diffusivity coefficients are Dz ≈ 1 m2 s−1 in
the free troposphere (Pisso et al., 2009) andDz ≈ 0.1 m2 s−1

in the lower stratosphere (Legras et al., 2003). Assuming a
typical scale ratio of horizontal to vertical wind velocity of
≈ 200 (Pisso et al., 2009), corresponding horizontal diffu-
sivity coefficients areDx ≈ 40000 m2 s−1 in the troposphere
and Dx ≈ 4000 m2 s−1 in the stratosphere. The correspond-
ing horizontal spread after 10 days is σx ≈ 260 km in the
troposphere and σx ≈ 85 km in the stratosphere. The verti-
cal spread is σz ≈ 1300 m in the troposphere and σz ≈ 415 m
in the stratosphere. However, note that these values should
only be considered as a guideline. Local diffusivities may be
an order of magnitude smaller or larger than these values,
depending on the individual atmospheric conditions.

2.6 Experiment configuration

In this study, we analyzed the errors of trajectory calcula-
tions in 15 regions of the atmosphere, covering rather dis-
tinct conditions in terms of pressure, temperature, and winds.
The globe was divided into five latitude bands: polar latitudes
(90 to 65◦ S and 65 to 90◦ N; 23.9× 106 km2 surface area in
each hemisphere), midlatitudes (65 to 20◦ S and 20 to 65◦ N;
143.9× 106 km2 surface area in each hemisphere), and trop-
ical latitudes (20◦ S to 20◦ N; 174.2× 106 km2 total surface
area). The selected three altitude layers cover the free tropo-
sphere (2 to 8 km; 24 ECMWF model levels), the UT/LS re-
gion (8 to 16 km; 24 levels), and the lower and middle strato-
sphere (16 to 32 km; 31 levels). These regions are of ma-
jor interest regarding various applications of transport sim-
ulations using MPTRAC and other LPDMs. The planetary
boundary layer was not considered here, because MPTRAC
lacks a more sophisticated parameterization scheme for dif-
fusion needed for simulations in this layer. As the atmo-
spheric conditions depend on the season and vary from year
to year, we selected 1 January, 1 April, 1 July, and 1 Octo-
ber of the years 2014 and 2015 as start times for the simula-
tions. All simulations cover a time period of 10 days. In each
region, 500 000 trajectory seeds were uniformly distributed.
Although this is already a large number of trajectory seeds,
this is still undersampling of the effective resolution of the
ECMWF data by as much as a factor of 4.5 in the polar tro-
posphere and up to a factor of 42 in the tropical stratosphere.
Nevertheless, initial tests with different numbers of trajectory
seeds showed that our results are statistically significant. In
all regions, we tested time steps of 60, 120, 240, 480, 900,
1800, and 3600 s for each of the six integration schemes. In
total, more than 5000 individual transport simulations were
performed, consisting of more than 2.5× 109 individual tra-
jectories.

Here, the atmospheric regions have been defined by means
of fixed latitude and altitude boundaries. This is arguably
a rather simple approach compared to physically motivated
separation criteria based on equivalent latitudes or the dy-
namical tropopause. However, the simple approach may still
reflect how the model is initialized and used in different ap-
plications in practice. An important consequence of our ap-
proach is that part of the air parcels leave their initial region
during the course of simulation. Table 1 provides the frac-
tion of air parcels that remain in their initial region after 5
and 10 days of simulation time. In the stratosphere, we found
fractions of 48–88 % after 5 days and 36–78 % after 10 days
in the different latitude bands. In the UT/LS region, the frac-
tions are lower, i.e., 32–55 % after 5 days and 14–40 % after
10 days. In the troposphere, the fractions are even lower, i.e.,
32–48 % after 5 days and 10–24 % after 10 days. The lowest
fractions are found for the polar latitudes for all altitude lay-
ers, being the smallest regions in terms of surface area. The
horizontal wind maps shown in Fig. 1 suggest that planetary
wave activity and meandering of the westerly jets between
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Table 1. Fractions of air parcels remaining in initial regions during the course of the simulations. SH indicates the Southern Hemisphere and
NH indicates the Northern Hemisphere.

SH polar lat. SH midlat. Tropical lat. NH midlat. NH polar lat.
(90–65◦ S) (65–20◦ S) (20◦ S–20◦ N) (20–65◦ N) (65–90◦N)

After 5 days of simulation time:

Stratosphere (16–32 km) 66 % 86 % 88 % 78 % 48 %
UT/LS region (8–16 km) 42 % 55 % 44 % 53 % 32 %
Troposphere (2–8 km) 32 % 46 % 48 % 44 % 32 %

After 10 days of simulation time:

Stratosphere (16–32 km) 54 % 77 % 78 % 67 % 36 %
UT/LS region (8–16 km) 25 % 40 % 19 % 36 % 14 %
Troposphere (2–8 km) 13 % 21 % 24 % 20 % 10 %

midlatitudes and high latitudes are responsible for the low
fractions at polar latitudes. We also found that the fractions
decrease from the stratosphere to the troposphere. This may
be attributed to stronger fluctuations in the wind field asso-
ciated with deep convection and eddy diffusivity in the tro-
posphere. Although a substantial fraction of air parcels may
leave their initial region during the simulations, we decided
to not filter and exclude those trajectories in our analyses.
The trajectories that leave the regions are more likely related
to higher wind velocities. Excluding those trajectories would
cause a strong bias towards short trajectories, representing
only the lower wind velocities in the statistical analysis.

3 Results

3.1 Case studies of trajectory calculations

First, we present two case studies that illustrate some of
the common features related to trajectory calculations us-
ing different numerical integration schemes. Figure 2 shows
maps of trajectories that were calculated using the six nu-
merical schemes introduced in Sect. 2.3 with a time step
of 120 s. Figure 3 provides the corresponding absolute
transport deviations with respect to the reference calcula-
tions (RK4 method with 60 s time step). Both case stud-
ies show trajectories that were launched on 1 January 2014
at about 10 km altitude. In the example for the Northern
Hemisphere, the trajectories calculated using the different
schemes agree well (AHTD≤ 200 km and AVTD≤ 600 m)
for the first 6 days. After this point, the Euler solution
shows rapidly growing errors, with an AHTD up to 3900 km
and an AVTD up to 4800 m after 8 days. The Petterssen
scheme and Heun’s method yield AHTDs≤ 200 km and
AVTDs≤ 800 m for about 8 days, before they diverge from
the reference calculation. The midpoint and RK3 method
provide AHTDs≤ 200 km and AVTDs ≤ 800 m until the
end of the simulation (after 10 days). The example for the
Southern Hemisphere illustrates that the onset of rapid er-

ror growth may occur much earlier in time. Here, an AHTD
of 200 km and an AVTD of 800 m are already exceeded af-
ter 3 days by the Euler solution and after 4–6 days by the
solutions from Heun’s method and the Petterssen scheme.
However, although error growth starts earlier, in the South-
ern Hemisphere example, the maximum AHTD remains be-
low 2200 km and the AVTD below 2200 m, which is lower
by a factor of 2 compared with the Northern Hemisphere ex-
ample. Relative transport deviations between the examples
are more similar, as the horizontal trajectory length is about
36 400 km in the Northern Hemisphere but only 14 400 km in
the Southern Hemisphere.

A common feature of the trajectory calculations we found
in the case studies and also in many other situations is that
the numerical integration schemes yield solutions that typi-
cally agree well up to a specific point in time before rapid
error growth begins. Errors grow slowly in the beginning,
but at some point, e.g., if there is strong wind shear locally,
the trajectories may begin to diverge significantly. Shorter
time steps or high-order integration schemes are needed to
properly cope with such situations. The case studies also
show that transport deviations do not necessarily grow mono-
tonically over time. Trajectories may first diverge from and
then reapproach the reference data. Individual local wind
fields can bring trajectories back together by chance. The
case studies also seem to suggest that vertical errors start to
grow earlier than horizontal errors. Furthermore, we note that
the Petterssen scheme mostly provides smaller errors than
Heun’s method. This was expected because the Petterssen
scheme provides iterative refinements compared with Heun’s
method. In both case studies, the midpoint method performs
better than the other second-order methods. However, this is
not valid in general; we also found counterexamples with the
midpoint method performing worse than the other second-
order methods. Both examples generally exhibit large vari-
ability of the errors. This indicates that transport deviations
need to be calculated for large numbers of air parcels to ob-
tain statistically meaningful results.
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Figure 2. Examples of trajectory calculations using different numerical integration schemes. Circles mark the start positions of the trajecto-
ries. Trajectories were launched at an altitude of 10.8 km (a) and 9.7 km (b). The start time is 1 January 2014 (00:00 UTC) for both. Triangles
mark trajectory positions at 00:00 UTC on each day.

3.2 Growth rates of trajectory errors

In this section, we discuss the temporal growth rates of the
trajectory calculation errors from a more general point of
view. Although the magnitude of the truncation errors varies
largely between the schemes and with the time step used for
numerical integration, we found that the transport deviations
typically grow rather monotonically over time if large num-
bers of particles are considered. Hence, we decided to present
errors here using a fixed time step of 120 s for the numerical
integration as a representative example. As the magnitude of
the calculation errors varies largely between the troposphere
and stratosphere, we present the analysis for both regions
separately. The results for the UT/LS region are not shown,
as they just fall in between. We calculated combined trans-
port deviations considering all seasons and latitude bands in
the given altitude range. A more detailed analysis of the total
errors in individual latitude bands and for different seasons
will follow in Sect. 3.3. The influence of the choice of the
time step on the accuracy and performance of the trajectory
calculations will be discussed in Sect. 3.4.

Figure 4 shows the AHTDs and AVTDs of the trajectory
calculations for the troposphere and stratosphere as obtained
with the different numerical schemes. A common feature is
the clustering of the results into three groups, which we at-
tribute to the numerical order of the integration schemes.
The largest truncation errors are produced by the Euler
method, which is a first-order scheme. After 10 days of sim-
ulation time, we found absolute (relative) horizontal trans-
port deviations of 1450 km (14.6 %) in the troposphere and
170 km (1.4 %) in the stratosphere as well as vertical trans-

port deviations of 1150 m (13.3 %) in the troposphere and
194 m (3.5 %) in the stratosphere. The errors derived with
the second-order methods (midpoint, Heun, and Petterssen
scheme) are typically 1–2 orders of magnitude smaller com-
pared to the Euler method. For the midpoint method, we
found horizontal transport deviations of up to 320 km (3.4 %)
in the troposphere and 11 km (0.086 %) in the stratosphere as
well as vertical transport deviations of up to 361 m (3.9 %)
in the troposphere and 14 m (0.18 %) in the stratosphere. The
RK3 and RK4 methods cluster in the third group, with trun-
cation errors being another factor of 2–4 lower than for the
second-order schemes. For the RK3 method, we found hori-
zontal transport deviations of up to 228 km (2.5 %) in the tro-
posphere and 6.7 km (0.048 %) in the stratosphere as well as
vertical transport deviations of up to 272 m (2.9 %) in the tro-
posphere and 8 m (0.099 %) in the stratosphere. We attribute
the fact that there are nearly no differences between the RK3
and RK4 methods to the use of the 4-D linear interpolation
scheme for the meteorological data. Any high-order numeri-
cal integration scheme is not expected to provide large bene-
fits in combination with a low-order interpolation scheme.

From the data presented in Fig. 4, we can also estimate
the temporal growth rates of the calculation errors as well as
the leading polynomial order of the error growth. We found
that error growth typically starts off linear, i.e., with a poly-
nomial order close to 1, but gets nonlinear already after 1–
2 days, with the polynomial order getting significantly larger
than one. For the troposphere, we found a maximum poly-
nomial order of ≈ 3 after 5 days for the AHTDs and of an
order ≈ 2 after 4 days for the AVTDs for the Euler method.
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Figure 3. Absolute horizontal (a, b) and vertical (c, d) transport deviations for the case studies for the Northern Hemisphere (a, c) and
Southern Hemisphere (b, d) presented in Fig. 2. Please note the different ranges of the y axes. Results of the RK3 and RK4 methods are
close to zero in most cases.

The higher-order methods show nonlinearity at even higher
levels, with a maximum polynomial order of≈ 5 after 8 days
for the AHTDs and of≈ 4 after 6 days for the AVTDs for the
RK3 and RK4 methods. The second-order methods are in be-
tween. Due to this nonlinear error growth, the error growth
rates also increase rapidly over time until they reach their
maxima after 10 days; maximal error growth rates for three
selected methods representing first- to third-order Runge–
Kutta schemes are given in Table 2. During the course of the
simulations, the observed error growth is largely dependent
on atmospheric flow patterns. To better assess the influence
of individual atmospheric conditions on the trajectory errors,
we will in the following discriminate between errors after 1
and 10 days, respectively.

3.3 Spatial and temporal variations of trajectory errors

For a more detailed analysis of the regional and seasonal
variations of the total trajectory errors, we focus on the er-
rors after 10 days of simulation time for simulations using
the third-order Runge–Kutta method with a single time step
of 120 s. This is considered to be a representative example,
as other schemes and time steps show similar variations. We
calculated individual transport deviations for all 15 altitude–
latitude regions and for simulations starting at the beginning
of January, April, July, and October 2014 and 2015, respec-
tively. The results are shown in Figs. 5 and 6.

Our simulations show that horizontal errors increase from
typically 20 km in the stratosphere to 100 km in the UT/LS
region and about 200 km in the troposphere. The correspond-
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Figure 4. Absolute horizontal (a, c) and vertical (b, d) transport deviations of trajectory calculations for the stratosphere (a, b) and tropo-
sphere (c, d). The trajectory calculations are based on different numerical schemes but use the same time step (1t = 120 s). Grey lines show
error limits based on particle diffusion.

Table 2. Maximal error growth rates of trajectories. Relative growth rates in pp day−1 are given in parenthesis.

Troposphere Stratosphere

Horizontal Vertical Horizontal Vertical
(km d−1) (m d−1) (km d−1) (m d−1)

Euler method 334 (2.1) 181 (1.0) 43 (0.26) 35 (0.41)
Midpoint method 115 (0.93) 105 (0.89) 3.2 (0.024) 3.3 (0.042)
RK3 method 87 (0.73) 86 (0.74) 1.9 (0.013) 1.9 (0.024)

ing maximum AHTDs are 116, 177, and 470 km, respec-
tively. The corresponding relative errors increase from 0.0
to 0.4 % in the stratosphere, to around 0.1 to 1.0 % in the
UT/LS region, and 1.0 to 4.0 % in the troposphere. As shown

in Fig. 4, the calculation errors in the stratosphere comply on
average with the error limit defined in Sect. 2.5, while the
error limit in the troposphere is reached after about 10 days.
However, as can be seen from Figs. 5 and 6, the total errors
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Figure 5. Mean (thin bars) and median (thick bars) horizontal transport deviations after 10 days of simulation time in different regions for
the RK3 method and 120 s time step. Orange lines show the averages of the four months (January, April, July, and October) and both years
(2014 and 2015). Grey lines show error limits based on diffusion.

Figure 6. Same as Fig. 5 but for vertical transport deviations. Error limits based on diffusion are about 1300 m for the troposphere and 415 m
for the stratosphere, which is beyond the AVTD ranges shown here.
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can vary considerably seasonally and from year to year as
well as between the regions, causing maximum errors of spe-
cific regions to exceed the defined limit. In the stratosphere,
generally the horizontal transport deviations are smaller than
40 km, far below the error limit. An exception is found for
the Northern Hemisphere polar stratosphere in January 2015
with an AHTD of 116 km. Errors are growing from the strato-
sphere towards the troposphere. While stratospheric wind
fields are rather uniform, fluctuations of the wind field be-
come stronger and more frequent at lower altitudes causing
wind speeds and wind directions to vary more strongly. So,
even if travel distances in the troposphere may be relatively
short, transport deviations typically increase with decreasing
altitude.

The trajectory errors at all altitude layers vary with lati-
tude. We focus on the horizontal errors in this case, but ver-
tical errors show similar results. The largest trajectory errors
in the troposphere are found at northern midlatitudes with er-
rors between 245 and 470 km. The meteorological conditions
in tropospheric midlatitudes were expected to cause rela-
tively large errors because of the nature of global circulation:
Rossby waves and baroclinic instability occurring predom-
inantly in this region come along with highly variable wind
patterns. In addition, stronger fluctuations are expected in the
northern midlatitudes compared to the southern midlatitudes
due to the larger land–sea ratio and more complex orography
of the Northern Hemisphere. The errors obtained in the polar
regions are second largest with an average over all seasonal
samples of around 200 km and peak errors in polar summer
of up to 380 km. The simulations for the tropics and south-
ern midlatitudes show smaller errors of less than 200 km and
adhere to the error limit in all test cases. The simulations
for the UT/LS region have their largest AHTDs in the north-
ern midlatitudes with 95 to 177 km. These errors are caused
by the north–south meandering of the jet (Woollings et al.,
2014) and higher small-scale variability of the wind field in
this region. The second largest errors of the simulations in the
UT/LS region occur in the tropics with about 75 km on av-
erage followed by the Arctic and southern midlatitudes with
about 50 km on average. Simulations that cover the Antarc-
tic show the smallest errors in the UT/LS region with about
30 km on average. The errors of the simulations in the strato-
sphere are typically below 25 km, except for January 2015.
Stratospheric trajectory errors in the tropics are larger than in
the other regions, which is probably due to the close vicinity
of the tropical tropopause, which reaches an average altitude
of 16 km near the ITCZ.

The variation of the horizontal errors also exhibits some
seasonal dependencies. This is most prominent for the north-
ern midlatitudes, where maximum errors in all cases occur in
January. During Northern Hemisphere wintertime, land–sea
temperature differences as well as the temperature gradient
between the Arctic and the subtropical regions are largest,
which allows for more intense and complex dynamic pat-
terns to occur than in summer. Our test cases for the Southern

Hemisphere and for the Arctic region do not show a seasonal
behavior as clearly as one could expect. We need to stress
that each simulation lasts only 10 days, which is a relatively
short time interval to analyze seasonal effects. Fast tempo-
ral variations and changes in medium-range weather patterns
can blur out the impact of seasons that is observed here. The
small error differences between polar summer and winter ad-
ditionally can be attributed to the small fraction of parcels
that stay in that region. Only 13 % of the parcels that are rep-
resented by the statistic remained in the polar regions after
10 days of simulation, which weakens our statistics.

Most of our simulations for the corresponding months in
2014 and 2015 differ by less than 20 %; only deviations of a
few individual months differ more strongly but in a similar
range than the seasonal variations. The most striking differ-
ences occur in January in the stratosphere of the northern
polar region. The simulation of 2014 shows small errors of
4 km, while the simulation of 2015 reaches an error of up to
116 km and exceeds the stratospheric error limit. This partic-
ular behavior (which is also present in Fig. 6 with an AVTD
of 132 m) may be related to a specific meteorological situ-
ation during the winter 2014/2015, where a sudden strato-
spheric warming event occurred during the first days of Jan-
uary 2015 and temporarily caused nearly a split of the Arctic
vortex in the lower stratosphere (Manney et al., 2015). Sig-
nificant disturbances of the wind field during this event may
be a reason why trajectory calculations exhibit larger errors.

Vertical and horizontal errors behave very similarly; ex-
trema are found in the same regions. The errors in the strato-
sphere are usually very small and below 10 m. Typical errors
in the UT/LS region and in the troposphere are about 100
and 250 m, respectively. Corresponding maximum errors are
130 m in the stratosphere, 168 m in the UT/LS region, and
470 m in the troposphere. The vertical error limits of 415 m
in the stratosphere and 1300 m in the troposphere are eas-
ily adhered to. Relative vertical errors range 0.0–0.9 % in the
stratosphere, 0.2–1.6 % in the UT/LS region, and 1.2–4.4 %
in the troposphere.

We also calculated the horizontal and vertical median er-
rors for the regions. In general, horizontal and vertical me-
dian errors are much smaller than the mean errors. Small
median deviations show that most trajectories closely follow
the reference. Those parcels that part from the reference usu-
ally diverge strongly, which leads to a high average devia-
tion. The median error is somewhat larger for simulations in
the troposphere, where particle paths are more likely being
affected by synoptic-scale fluctuations of the wind field.

To summarize, the relative errors of 2–4 % in the tropo-
sphere show that this layer is more difficult to solve and that
relatively large uncertainties remain even if the absolute er-
ror limit is adhered to. The stratospheric relative errors of
about 1 % are less critical for the integration method. The
large difference of the trajectory errors between altitude re-
gions suggests that lower-order integration schemes or larger
time steps could be used in the stratosphere to save compu-
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tation time without causing significant errors. Tropospheric
northern midlatitudes are the most challenging areas for nu-
merical integration.

3.4 Computational efficiency

In this section, we focus on the computational efficiency
of the numerical integration schemes, which is assessed in
terms of the trade-off between computational accuracy of and
the computation time required for the trajectory calculations.
As the computational efficiency depends, to some extent, on
the problem size and the computer architecture that is ap-
plied, we will discuss the scalability of the application first.
Our scalability tests were performed on the Jülich Research
on Exascale Cluster Architectures (JURECA) supercomputer
(Jülich Supercomputing Centre, 2016). JURECA is equipped
with two Intel Xeon E5-2680 v3 Haswell central processing
units (CPUs) per compute node. Each node is equipped with
2× 12= 24 physical compute cores, operating at 2.5 GHz
clock speed. The CPUs support two-way simultaneous mul-
tithreading (SMT); i.e., each node provides up to 48 logical
cores. A runtime improvement of up to 50 % can be expected
due to the SMT feature.1

As an example, Fig. 7 shows results of scaling tests of
the advection module using the midpoint scheme with a time
step of 120 s for different numbers of particles and OpenMP
threads. Note that the MPI parallelization of MPTRAC is
only used for ensemble simulations, which are conducted in-
dependently on multiple nodes. The scalability of the MPI
parallelization is mostly limited by I/O issues, which is be-
yond the scope of this study. For the OpenMP paralleliza-
tion, we found that the CPU time scales linearly with the
number of particles for large numbers of particles (on the
order of 104 to 107). The computation per time step and par-
ticle requires between 0.31×10−6 and 9.0×10−6 s comput-
ing time, depending on the number of the OpenMP threads.
For small numbers of particles (less than or equal to 104),
the minimum computing time is limited by a constant off-
set of 6.3× 10−5s to 4.3× 10−3 s (depending on the number
of threads) that can be attributed to the OpenMP paralleliza-
tion overhead and load imbalances. Figure 7 also shows the
speedup of the OpenMP parallelization for growing numbers
of threads. We found that the advection module of MPTRAC
provides good to excellent parallel efficiency for large num-
bers of particles. The computational efficiency is about 83 %
for up to 24 physical threads and for 105 to 106 particles.
It is also found that the code provides additional speedup if
the SMT capabilities of the compute nodes are used, in par-
ticular for very large numbers of particles (on the order of
106 to 107). For smaller number of particles (104 or less),
the speedup is limited by the overhead of the OpenMP par-
allelization and by load imbalances, which can also become

1See http://www.fz-juelich.de/ias/jsc/EN/Expertise/
Supercomputers/JURECA/UserInfo/SMT.html (last access:
12 December 2016).

Figure 7. Scaling behavior in terms of CPU time (a) and speedup of
the code (b) used to calculate trajectories with the midpoint method
and a time step of 120 s for different numbers of particles (np) and
OpenMP threads (nt). Colored curves refer to different numbers of
OpenMP threads (a) or different total numbers of particles (b). Dot-
ted lines show ideal scaling behavior.

significant for larger numbers of parcels if SMT is not en-
abled for all cores jointly. The fastest simulations for a set of
about 102 parcels are possible with four cores. A total of 12
cores should be used when 103 parcels are simulated. For 104

parcels, the simulations with 24 cores are fastest. For 105 or
more parcels, all 48 cores (which includes SMT) should be
used. LPDM simulations will typically use large numbers of
particles (more than 105) to obtain statistically significant re-
sults. MPTRAC will not be affected by significant scaling
issues on the JURECA supercomputer in this regime.

As a measure of computational efficiency, Fig. 8 illustrates
the trade-off between computational accuracy, in terms of the
AHTD, and computational time. In particular, Fig. 8 illus-
trates how this trade-off depends on the selection of the time
step for the different integration schemes. Note that the hard-
ware, especially the memory cache, affects the six integra-
tion schemes differently. A single call to the wind interpola-
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Figure 8. Trade-off between computational accuracy and total CPU-time requirements of the trajectory calculations after 24 h (a, c) and
10 days (b, d). Colored curves refer to different integration schemes. Dots along the curves indicate time steps of 3600, 1800, 900, 480, 240,
and 120 s (from left to right). Horizontal lines refer to the maximum tolerable error limits as defined in Sect. 2.5. The Petterssena scheme
always uses two inner iterations, which is one more than for Heun’s method. The Petterssenb scheme uses up to seven iterations with strict
convergence criteria.

tion function is up to 50 % cheaper for a higher-order method
compared to Euler’s method, because the cache is used more
efficiently. Results are shown separately for the troposphere
and stratosphere after 24 h and 10 days. The trajectory errors
after 24 h are shown, as they are expected to be less affected
by individual meteorological conditions than the errors after
10 days. The errors of the higher-order integration schemes
with a time step of 120 s are on the order of 80–200 m in the
troposphere. The errors of the simulations in the stratosphere
are about 10 times smaller and the discrepancy between the
error in the troposphere and stratosphere becomes even larger
to a factor of about 25 when the global truncation errors af-
ter 10 days are analyzed. The errors in the troposphere us-
ing a time step of 120 s are on the order of 200–350 km af-

ter 10 days, which shows the nonlinear error growth and the
large impact of the atmospheric conditions on trajectory er-
rors. The troposphere is much more challenging for the inte-
gration methods than the stratosphere, as already discussed
in Sect. 3.2 and 3.3. From this analysis, we find that de-
spite being the fastest method, the Euler method usually has
the lowest computational efficiency because of its low accu-
racy. The second-order methods as well as the RK3 and RK4
methods yield much smaller truncation errors, in particular
for short time steps. Among the second-order methods, our
implementation of the Petterssen scheme has the lowest com-
putational efficiency, which is due to the fact that we tuned
the convergence criteria for this method for accuracy rather
than speed. The accuracy of the Petterssen scheme with one
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iteration (Heun’s method) is somewhat worse than the mid-
point method. When two iterations of the Petterssen scheme
are computed, the transport deviations are closer to those ob-
tained with the midpoint method. The best efficiency, which
we define as lowest computational costs when adhering to
our error limit, is mostly obtained with the midpoint and RK3
methods. The additional iterations of the Petterssen scheme
improve the accuracy, but they are too computationally ex-
pensive for our model. In general, a well-defined conver-
gence limit for the number of iterations is needed for an ef-
ficient application. The RK4 method does not provide any
benefits in combination with the low-order 4-D linear inter-
polation scheme for the meteorological data. In fact, the RK4
method is slightly less efficient than the RK3 method due to
the higher numerical costs.

Figure 8 also allows us to more accurately establish the in-
dividual optimal time steps of the integration methods with
respect to the error limits defined in Sect. 2.5. This approach
is similar to the well-known discrepancy principle (Engl
et al., 1996), where the time step is considered as a tuning
factor so that the truncation errors of the methods match an a
priori known error bound. To provide estimates for all meth-
ods, we use linear extra- and interpolation to determine the
largest time step that still adheres to the error limit. After
24 h, when trajectory errors are mostly influenced by trunca-
tion errors, the diffusivity-based error limit is not particularly
strict, which allows us to use large time steps for the cal-
culations. In fact, even the results obtained with the longest
time step of 1 h adhere to the error limit for the higher-order
methods as shown in Fig. 8. After 10 days, the diffusivity-
based error limit is a lot more difficult to achieve. In ad-
dition to the truncation errors, the trajectory errors are also
significantly affected by the atmospheric flow patterns (e.g.,
diffluent flows or bifurcations). For the troposphere, we de-
rived time steps of about 100 s for the Petterssen scheme,
Heun’s method, and the midpoint method, and about 170 s
for the RK3 and RK4 methods. For the stratosphere, we
found time steps of about 800 s for the Petterssen scheme,
Heun’s method, and the midpoint method, and time steps of
about 1100 s for the RK3 and RK4 methods.

4 Summary and conclusions

In this study, we characterized global truncation errors of
trajectory calculations after 1 and 10 days in the free tropo-
sphere, in the UT/LS region, and in the stratosphere. Trans-
port simulations were conducted with the LPDM MPTRAC,
driven by wind fields from T1279L137 ECMWF operational
analyses and forecasts in 2014 and 2015, with an effective
horizontal resolution of about 16 km and 3 h time intervals.
We analyzed the computational performance of the simula-
tions in terms of accuracy and CPU-time costs of six explicit
integration schemes that belong to the Runge–Kutta family.
The truncation errors of the schemes for a given time step

were found to cluster into three groups that are related to the
order of the method: (i) the first-order Euler method, (ii) the
second-order methods (midpoint method, Heun’s method,
and Petterssen’s scheme), and (iii) the higher-order methods,
which are the common RK3 and RK4 methods. Different
methods within each group provide similar accuracy in terms
of error growth rates and transport deviations.

Based on more than 5000 individual transport simulations,
each consisting of 500 000 trajectories, we further analyzed
horizontal and vertical transport deviations in relation to alti-
tude, latitude, as well as seasonal and year-to-year variability.
The trajectory errors after 24 h were analyzed as they are ex-
pected to be less affected by individual flow patterns. The
errors of the simulations in the troposphere have 10 times
larger errors compared to the simulations in the stratosphere.
After 10 days, the trajectory errors vary more substantially
inside the climatological regions because of the stronger in-
fluence of individual atmospheric flow patterns. We found
that tropospheric simulations require more accurate integra-
tion methods or significantly shorter time steps to keep errors
within physically motivated error limits than simulations for
the stratosphere. We attribute this to larger small-scale varia-
tions in the high-resolution meteorological input data. Cal-
culation errors also depend on the latitude band, with the
northern midlatitudes having the largest errors in each al-
titude layer. Seasonal error variations and differences from
year to year are clearly visible from our simulations, but in
some cases the number of samples still seems to be too small
to deduce robust statistics. One example is the large errors
that are associated with a sudden stratospheric warming in
the northern stratosphere in January 2015, which suggests
that part of the total error is due to situation-dependent fac-
tors. However, a robust feature seems to be a northern midlat-
itude winter maximum in the troposphere and stratosphere,
existent in both years (2014 and 2015).

All integration methods discussed here are in principle
suited and have already been used for Lagrangian particle
dispersion and trajectory model simulations. To decide which
method is most efficient in state-of-the-art high-performance
computing systems, we analyzed the trade-off between com-
putational accuracy and computational time. This trade-off
is largely controlled by the time step used for numerical in-
tegration. The Euler method requires very short time steps
to achieve reasonably accurate results and is generally not
considered to be an efficient method. Heun’s method and the
iterative Petterssen scheme are more accurate at the same
computational costs. The midpoint method and the RK3
method usually provided the most efficient simulations with
MPTRAC; i.e., these methods provide the most accurate re-
sults at the lowest computational costs. Note that the RK4
method is slightly more expensive than the RK3 method if
it is applied together with a low-order linear interpolation
scheme for the meteorological data.

This study uses up-to-date meteorological data as provided
by current global weather forecast models, with a spatial res-
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olution that is much finer than in former trajectory studies
(Seibert, 1993; Stohl and Seibert, 1998; Stohl et al., 2001;
Harris et al., 2005). Previous studies suggest that a time in-
terval of 3 h for the meteorological data may be too large
for the fine spatial resolution (Stohl et al., 1995; Brioude
et al., 2012; Bowman et al., 2013). Pisso et al. (2010) found
that using hourly wind fields in their ensemble LPDM recon-
structions did not add significant information on the large-
scale atmospheric dynamics and suggested to use 3-hourly
wind fields for ECMWF operational data in T511 spectral
resolution (corresponding to a horizontal resolution of about
40 km). Given the higher spatial resolution of meteorological
data and the short integration time steps used here, it would
be interesting to study the effect of shorter time intervals for
the driving data on the trajectory errors; however, for the time
being, we decided to restrict ourselves to the temporal res-
olution as specified in the user guide to ECMWF forecast
products even if finer data are available.

The high resolution requires adjustment of the time step,
as the commonly used time steps of 10 min to 1 h are far be-
yond yielding convergence with high-resolution meteorolog-
ical data. Given an effective horizontal resolution of 16 km
and applying the CFL criterion, the time step needs to be
shorter than about 130 s to achieve convergence. From our
simulations, we found that time steps of 100 s for the mid-
point method and 170 s for the RK3 method provide ac-
curate results in the troposphere for up to 10 days. Purely
stratospheric applications can be solved with time steps of
800 s (midpoint method) and 1100 s (RK3 method) because
of lower total errors in this altitude layer.

In this study, we considered a range of popular and well-
established integration schemes for trajectory calculations in
LPDMs. However, the large variability of regional and sea-
sonal errors found here suggests that applications may benefit
from more advanced numerical techniques. Adaptive quadra-
ture by means of variable time stepping as recommended by
earlier studies (Walmsley and Mailhot, 1983; Maryon and
Heasman, 1988; Seibert, 1993) could be taken up for future
research.

Code and data availability. We downloaded operational analyses
and forecasts from the European Centre for Medium-Range
Weather Forecasts (ECMWF, 2013, 2015). See reference for fur-
ther details on data availability and restrictions. ECMWF data have
been processed for usage with MPTRAC by means of the Cli-
mate Data Operators (CDO, 2015). The version of the MPTRAC
model that was used for this study along with the model initial-
izations are available under the terms and conditions of the GNU
General Public License, version 3, from the repository at https:
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