Articles | Volume 11, issue 7
Development and technical paper
13 Jul 2018
Development and technical paper |  | 13 Jul 2018

A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications

Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet

Related authors

Improving soil moisture and runoff simulations at 3 km over Europe using land surface data assimilation
Bibi S. Naz, Wolfgang Kurtz, Carsten Montzka, Wendy Sharples, Klaus Goergen, Jessica Keune, Huilin Gao, Anne Springer, Harrie-Jan Hendricks Franssen, and Stefan Kollet
Hydrol. Earth Syst. Sci., 23, 277–301,,, 2019
Short summary

Related subject area

Earth and space science informatics
Focal-TSMP: deep learning for vegetation health prediction and agricultural drought assessment from a regional climate simulation
Mohamad Hakam Shams Eddin and Juergen Gall
Geosci. Model Dev., 17, 2987–3023,,, 2024
Short summary
Tomofast-x 2.0: an open-source parallel code for inversion of potential field data with topography using wavelet compression
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
Geosci. Model Dev., 17, 2325–2345,,, 2024
Short summary
Functional analysis of variance (ANOVA) for carbon flux estimates from remote sensing data
Jonathan Hobbs, Matthias Katzfuss, Hai Nguyen, Vineet Yadav, and Junjie Liu
Geosci. Model Dev., 17, 1133–1151,,, 2024
Short summary
The 4D reconstruction of dynamic geological evolution processes for renowned geological features
Jiateng Guo, Zhibin Liu, Xulei Wang, Lixin Wu, Shanjun Liu, and Yunqiang Li
Geosci. Model Dev., 17, 847–864,,, 2024
Short summary
Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of MPTRAC v2.6
Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
EGUsphere,,, 2024
Short summary

Cited articles

Alonso, P., Badia, R. M., Labarta, J., Barreda, M., Dolz, M. F., Mayo, R., Quintana-Orti, E. S., and Reyes, R.: Tools for Power-Energy Modelling and Analysis of Parallel Scientific Applications, in: 2012 41st International Conference on Parallel Processing, 420–429,, 2012.
Ashby, S. F. and Falgout, R. D.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng., 124, 145–159, 1996.
Attig, N., Gibbon, P., and Lippert, T.: Trends in supercomputing: The European path to exascale, Comput. Phys. Commun., 182, 2041–2046,, 2011.
Bahra, A.: Managing work flows with ecFlow, ECMWF Newsletter,. Tech. Rep., 129, 30–32, 2011.
Short summary
Next-generation geoscientific models are based on complex model implementations and workflows. Next-generation HPC systems require new programming paradigms and code optimization. In order to meet the challenge of running complex simulations on new massively parallel HPC systems, we developed a run control framework that facilitates code portability, code profiling, and provenance tracking to reduce both the duration and the cost of code migration and development, while ensuring reproducibility.