Articles | Volume 11, issue 4
Geosci. Model Dev., 11, 1627–1639, 2018
https://doi.org/10.5194/gmd-11-1627-2018
Geosci. Model Dev., 11, 1627–1639, 2018
https://doi.org/10.5194/gmd-11-1627-2018

Model description paper 25 Apr 2018

Model description paper | 25 Apr 2018

tran-SAS v1.0: a numerical model to compute catchment-scale hydrologic transport using StorAge Selection functions

Paolo Benettin and Enrico Bertuzzo

Related authors

How plant water status drives tree source water partitioning
Magali F. Nehemy, Paolo Benettin, Mitra Asadollahi, Dyan Pratt, Andrea Rinaldo, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-528,https://doi.org/10.5194/hess-2019-528, 2019
Preprint withdrawn
Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes – challenges and opportunities from an interdisciplinary perspective
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018,https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Effects of climatic seasonality on the isotopic composition of evaporating soil waters
Paolo Benettin, Till H. M. Volkmann, Jana von Freyberg, Jay Frentress, Daniele Penna, Todd E. Dawson, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 2881–2890, https://doi.org/10.5194/hess-22-2881-2018,https://doi.org/10.5194/hess-22-2881-2018, 2018
Short summary

Related subject area

Hydrology
A distributed simple dynamical systems approach (dS2 v1.0) for computationally efficient hydrological modelling at high spatio-temporal resolution
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020,https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020,https://doi.org/10.5194/gmd-13-6077-2020, 2020
Short summary
KLT-IV v1.0: image velocimetry software for use with fixed and mobile platforms
Matthew T. Perks
Geosci. Model Dev., 13, 6111–6130, https://doi.org/10.5194/gmd-13-6111-2020,https://doi.org/10.5194/gmd-13-6111-2020, 2020
Short summary
Simulating human impacts on global water resources using VIC-5
Bram Droppers, Wietse H. P. Franssen, Michelle T. H. van Vliet, Bart Nijssen, and Fulco Ludwig
Geosci. Model Dev., 13, 5029–5052, https://doi.org/10.5194/gmd-13-5029-2020,https://doi.org/10.5194/gmd-13-5029-2020, 2020
Short summary
The Ensemble Framework For Flash Flood Forecasting (EF5) v1.2: description and case study
Zachary L. Flamig, Humberto Vergara, and Jonathan J. Gourley
Geosci. Model Dev., 13, 4943–4958, https://doi.org/10.5194/gmd-13-4943-2020,https://doi.org/10.5194/gmd-13-4943-2020, 2020
Short summary

Cited articles

Benettin, P., Rinaldo, A., and Botter, G.: Kinematics of age mixing in advection-dispersion models, Water Resour. Res., 49, 8539–8551, https://doi.org/10.1002/2013WR014708, 2013. a
Benettin, P., Bailey, S. W., Campbell, J. L., Green, M. B., Rinaldo, A., Likens, G. E., McGuire, K. J., and Botter, G.: Linking water age and solute dynamics in streamflow at the Hubbard Brook Experimental Forest, NH, USA, Water Resour. Res., 51, 9256–9272, https://doi.org/10.1002/2015WR017552, 2015a. a, b
Benettin, P., Rinaldo, A., and Botter, G.: Tracking residence times in hydrological systems: forward and backward formulations, Hydrol. Proc., 29, 5203–5213, https://doi.org/10.1002/hyp.10513, 2015b. a, b
Benettin, P., Bailey, S. W., Rinaldo, A., Likens, G. E., McGuire, K. J., and Botter, G.: Young runoff fractions control streamwater age and solute concentration dynamics, Hydrol. Proc., 31, 2982–2986, https://doi.org/10.1002/hyp.11243, 2017a. a
Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G., and Rinaldo, A.: Using SAS functions and high resolution isotope data to unravel travel time distributions in headwater catchments, Water Resour. Res., 53, 1864–1878, https://doi.org/10.1002/2016WR020117, 2017b. a, b, c, d
Download
Short summary
Solutes introduced in the environment are transported by water to streams and lakes. The tran-SAS package includes a set of codes to model this process for entire watersheds by using the concept of water residence times, i.e. the time that water takes to move through the landscape. Results show that the model is implemented efficiently and it can be used to simulate solute transport in a number of different conditions.