Articles | Volume 10, issue 12
https://doi.org/10.5194/gmd-10-4393-2017
https://doi.org/10.5194/gmd-10-4393-2017
Development and technical paper
 | 
04 Dec 2017
Development and technical paper |  | 04 Dec 2017

A JavaScript API for the Ice Sheet System Model (ISSM) 4.11: towards an online interactive model for the cryosphere community

Eric Larour, Daniel Cheng, Gilberto Perez, Justin Quinn, Mathieu Morlighem, Bao Duong, Lan Nguyen, Kit Petrie, Silva Harounian, Daria Halkides, and Wayne Hayes

Related authors

Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023,https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Can rifts alter ocean dynamics beneath ice shelves?
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
EGUsphere, https://doi.org/10.5194/egusphere-2023-75,https://doi.org/10.5194/egusphere-2023-75, 2023
Short summary
Derivation of bedrock topography measurement requirements for the reduction of uncertainty in ice-sheet model projections of Thwaites Glacier
Blake A. Castleman, Nicole-Jeanne Schlegel, Lambert Caron, Eric Larour, and Ala Khazendar
The Cryosphere, 16, 761–778, https://doi.org/10.5194/tc-16-761-2022,https://doi.org/10.5194/tc-16-761-2022, 2022
Short summary
Implementation of a Gaussian Markov random field sampler for forward uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19
Kevin Bulthuis and Eric Larour
Geosci. Model Dev., 15, 1195–1217, https://doi.org/10.5194/gmd-15-1195-2022,https://doi.org/10.5194/gmd-15-1195-2022, 2022
Short summary
Calving Front Machine (CALFIN): glacial termini dataset and automated deep learning extraction method for Greenland, 1972–2019
Daniel Cheng, Wayne Hayes, Eric Larour, Yara Mohajerani, Michael Wood, Isabella Velicogna, and Eric Rignot
The Cryosphere, 15, 1663–1675, https://doi.org/10.5194/tc-15-1663-2021,https://doi.org/10.5194/tc-15-1663-2021, 2021
Short summary

Related subject area

Cryosphere
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023,https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023,https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary
Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023,https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
SUHMO: an adaptive mesh refinement SUbglacial Hydrology MOdel v1.0
Anne M. Felden, Daniel F. Martin, and Esmond G. Ng
Geosci. Model Dev., 16, 407–425, https://doi.org/10.5194/gmd-16-407-2023,https://doi.org/10.5194/gmd-16-407-2023, 2023
Short summary
Improving snow albedo modeling in the E3SM land model (version 2.0) and assessing its impacts on snow and surface fluxes over the Tibetan Plateau
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023,https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary

Cited articles

Adhikari, S. and Marshall, S. J.: Improvements to shear-deformational models of glacier dynamics through a longitudinal stress factor, J. Glaciol., 57, 1003–1016, 2011.
Adhikari, S., Ivins, E. R., and Larour, E.: ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change, Geosci. Model Dev., 9, 1087–1109, https://doi.org/10.5194/gmd-9-1087-2016, 2016.
Amazon Web Services, Inc.: Amazon Elastic Compute Cloud (Amazon EC2), Amazon Inc., available at: http://aws.amazon.com/ec2/#pricing, 2008.
ECMA International: ECMAScript 2016 Language Specification, available at: http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf, 2016.
Download
Short summary
This work presents a new way of carrying out simulations using the C++ based Ice Sheet System Model (ISSM) within a web page. This allows for a new generation of websites that can rely on the entire code of a climate model, without compromising or simplifying the physics implemented in such a model. We believe this approach will enable better education/outreach websites as well as improve access to complex climate models without compromising their integrity.