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Abstract. Earth system models (ESMs) are becoming in-
creasingly complex, requiring extensive knowledge and ex-
perience to deploy and use in an efficient manner. They run
on high-performance architectures that are significantly dif-
ferent from the everyday environments that scientists use to
pre- and post-process results (i.e., MATLAB, Python). This
results in models that are hard to use for non-specialists and
are increasingly specific in their application. It also makes
them relatively inaccessible to the wider science commu-
nity, not to mention to the general public. Here, we present
a new software/model paradigm that attempts to bridge the
gap between the science community and the complexity of
ESMs by developing a new JavaScript application program
interface (API) for the Ice Sheet System Model (ISSM).
The aforementioned API allows cryosphere scientists to run
ISSM on the client side of a web page within the JavaScript
environment. When combined with a web server running
ISSM (using a Python API), it enables the serving of ISSM
computations in an easy and straightforward way. The deep
integration and similarities between all the APIs in ISSM
(MATLAB, Python, and now JavaScript) significantly short-
ens and simplifies the turnaround of state-of-the-art science
runs and their use by the larger community. We demonstrate

our approach via a new Virtual Earth System Laboratory
(VESL) website (http://vesl.jpl.nasa.gov, VESL, 2017).

1 Introduction

Earth system models (ESMs) across the Earth science com-
munity have become increasingly sophisticated, enabling
more accurate simulations and projections of the Earth’s cli-
mate as well as the state of the atmosphere, ocean, land, ice,
and biosphere. As demonstrated by the Coupled Model In-
tercomparison Project 5 (CMIP-5; Taylor et al., 2009, 2012)
and its new iteration (CMIP-6; Eyring et al., 2016) of the
World Climate Research Programme (WCRP), the multiplic-
ity of ESMs and the complexity of the physics they capture
are significant. The description of the outputs for CMIP-5
runs is 133 pages long by itself, showing the complexity and
comprehensive nature of the processes modeled in the ESMs
that participated in the project. Any one of these models is
massive in terms of the number of lines of code but also in
terms of structure and modularity (or lack thereof). GEOS-5
(e.g., Molod et al., 2015), one of the atmosphere and ocean
general circulation models (AOGCMs) that participated in
CMIP-5, is made of 600 000 lines of Fortran code, compris-
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ing 88 physical modules (as of January 2016). This is fairly
representative of the complexity of ESMs nowadays, and of
the multiplicity of physical processes necessary to realisti-
cally model the evolution of the whole Earth system.

The above-described complexity results in serious is-
sues regarding the way simulations are run. For exam-
ple, what we generally define as pre-processing and post-
processing phases are increasingly different from the compu-
tational phase itself. The computational core is usually writ-
ten in C or Fortran, which easily supports parallelism and
high-performance computing (HPC). However, in the pre-
processing phase, where datasets are processed into a binary
file used by the computational core, or in the post-processing
phase, where simulation results are visualized, scientific en-
vironments such as MATLAB or Python are increasingly re-
lied upon. This results in additional complexity to manage
different environments: scientists are well acquainted with
the difficulties of porting their software to HPC instances,
while struggling to process the data inputs and results on lo-
cal workstations where data upload/download can be a limit-
ing factor, hard drive memory requirements can be substan-
tial, and problems due to the use of different APIs can be
significant (MATLAB, Python, and IDL, among others).

Another complexity originating from the wide variety of
physical processes represented in ESMs is the difficulty in
initializing a computational run. For example, in the Ice
Sheet System Model (ISSM; Larour et al., 2012), one of
the land ice components of GEOS-5, developed at the Na-
tional Aeronautics and Space Administration (NASA) Jet
Propulsion Laboratory (JPL), in collaboration with Univer-
sity of California, Irvine (UCI), the initialization setup for
the Greenland Ice Sheet (GIS) transient simulations from
1850 to present day amounts to 3000 lines of MATLAB code.
This comprises model setup, data interpolation onto an ISSM
compatible mesh, solution parameterizations, and initializa-
tion strategies, among other things. This simulation, part of
the Ice Sheet Modeling Intercomparison Project 6 (ISMIP-6;
Nowicki et al., 2016) that accounts for ice sheets in CMIP-6,
is a fairly representative example of some of the most ad-
vanced simulations that can be run with an ice sheet model
(ISM). Such simulations cannot easily be systematized and
need to be tailored specifically for each ice sheet they are
applied to.

One of the approaches that could mitigate some of the is-
sues discussed above involves the development of computa-
tional frameworks capable of serving ESM simulations. This
type of solution involves running simulations that already in-
clude pre- and post-processing phases (i.e., where the model
setup has already been carried out or is carried out by the
server itself by uploading key datasets) and in which the user
is allowed to control only a few key parameters. Similarly,
once the computation is carried out on the server side, the
results are post-processed automatically, and only significant
results are provided to the user. This type of approach has
already been explored, for example, in areas related to serv-

ing of large datasets, such as the NASA Earth Observing
System Data and Information System (EOSDIS) EarthData
server, which provides a portal with integrated processing
capabilities for large-scale datasets collected by NASA mis-
sions. However, fewer examples of this kind of approach are
available that serve simulation results, and to our knowledge,
no comprehensive ESM, nor module thereof, has ever been
integrated into a server solution capable of delivering ESM
computations on the fly. The reason for this is simple: the
complexity of the physics involved is significant, reconcil-
ing pre/post-processing phases and simulation cores is inher-
ently difficult, and basing a simulation framework on server
technologies represents a significant software development
challenge.

Specifically, the bottlenecks that preclude deeper integra-
tion of ESMs within server infrastructures include the fol-
lowing:

1. Bridging the gap between ESM formulations of the
physical cores and web technologies such as Hyper-
text Markup Language (HTML; World Wide Web Con-
sortium, 1997) and JavaScript (ECMA International,
2016), which are not scientifically oriented languages
and are thus not inherently used by Earth scientists. Be-
cause ESMs are not natively integrated into web tech-
nologies, it renders the link between server infrastruc-
tures and simulation engines difficult.

2. The significant turnaround between generation and
serving of simulations. This lag is due to the fact that
these two processes are inherently different in the way
they are designed and, moreover, are usually considered
to be completely separate phases of what should, essen-
tially, be the same process.

3. The distributed nature of web simulations. Every step of
an ESM run can be considered a separate, logical com-
ponent. For example, post-processing of a simulation
may be done on a different machine than the one that
initially generated it.

4. The lack of existing integrated frameworks wherein
simulations, pre- and post-processing, and the serving
of the data and/or simulation results all occur within the
same architecture.

Here, we present a new approach applied to the ISSM
framework, a land ice model of significant size and complex-
ity, to serve simulations relating to the evolution of polar ice
sheets. By serving, we imply providing a way to run simula-
tions interactively within a web environment, without any of
the results ever being cached. Our solution is based on a new
JavaScript API for the ISSM framework itself, allowing it
to be fully integrated within an HTML web page (described
in Sect. 2) and to run locally to the web page. For models
of larger size, we also show how we leverage the existing
ISSM Python API to run a web server (based on Apache and
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the FastCGI module) that can run faster parallel computa-
tions, and to which the web page client can upload model
inputs and download computations along with pre- and post-
processing results directly (Sect. 3). This new approach al-
lows for a quick turnaround between running simulations and
porting such simulations to a web page interface for access
to the wider science community (Sect. 4). We execute this
approach (Sect. 5) within the newly designed Virtual Earth
System Laboratory (VESL), demonstrating how we can pro-
vide access to cryosphere-related simulations to the science
community and to the wider public in general, thereby eas-
ily providing access to the wide array of modular physics
embedded in ISSM. We conclude with a discussion of the
potential of this new approach to both facilitate a wider use
of ESMs by scientists of varied disciplines and to shorten the
gap between science simulations and public outreach.

2 ISSM JavaScript API

Most ISMs are written in Fortran, C, or C++ for reasons re-
lated to computational efficiency and to the ease of integra-
tion within HPC environments using parallel libraries, such
as message passing interface (MPI) via OpenMP (Gropp
et al., 1996; Gropp and Lusk, 1996; OpenMP Architecture
Review Board, 2015). However, many simpler models ex-
ist that rely on different APIs, such as the MATLAB code
described in MacAyeal (1993) or the Excel-based Greenland
and Antarctica Ice Sheet Model designed for educational pur-
poses (GRANTISM; Pattyn, 2005). These models have in
common the desire to rely on a simple code base and to re-
duce/optimize the set of physics captured in the code in order
to make it more accessible. Our approach here, however, is
to facilitate accessibility without sacrificing the complexity
and full set of features of ISSM by implementing a brand
new API using the JavaScript language. The goal is to be
able to integrate ISSM within web-based solutions, relying
on JavaScript as a language that enables control of the be-
havior of an HTML web page. In addition, by making the
JavaScript API similar in all possible aspects to the existing
MATLAB and Python ISSM APIs, model runs and simula-
tions can be transferred easily to the web, furthering our ob-
jective of disseminating ISSM to the larger scientific commu-
nity and, possibly, the general public through web interfaces.
It is to be noted that due to the new API being of equiva-
lent complexity (to capture the full range of physics) to the
MATLAB or Python APIs, users that want to use this API
should be fully knowledgeable with using ISSM in MAT-
LAB or Python already. This means that the new API does
not make use of ISSM easier in terms of learning curve but
makes it more flexible in terms of being deployed to the web.

The basis for representing a model in ISSM is a series
of classes (mesh, mask, geometry, settings, toolkits, etc.)
that are carried into a global model class. The first task
was therefore to translate all ISSM classes from MATLAB

and Python into JavaScript. Figure 1 shows an example of
such a translation for the mesh2d class (used to represent
a 2-D mesh triangulation comprising a list of vertex coordi-
nates x, y of size numberofvertices with correspond-
ing lat,long coordinates, a list of triangle indices called
elements (of size numberofelements), and a projec-
tion code using an EPSG geodetic parameter dataset). The
constructors are very similar, and there is a one-to-one corre-
spondence between the mesh2d methods in both APIs. The
example of the marshall routine (which collects all the
mesh info onto a binary buffer that will be sent to the ISSM
C++ core) shows the similarity between both codes, with
differences in the syntax reduced to a bare minimum. This
equivalence is essential in preserving all of the physics cap-
tured in each class of ISSM and could only be achieved be-
cause MATLAB, Python, and JavaScript are similar in their
syntax and grammar.

In a standard modeling analysis, scientists will develop
their models and run within the MATLAB (or Python) envi-
ronment. Usually, outreach of the results will be done sepa-
rately, in a different web-based environment, leading to inef-
ficiencies and potential loss of information/accuracy between
the science analysis and the outreach itself. To remedy this
issue, it is very convenient to provide an efficient way to
transfer a model directly from MATLAB to the JavaScript
environment, where it will be loaded easily using a stan-
dard “include” statement. This is implemented through the
savemodel routine for each subclass of the model class.
As shown in Fig. 1 for the mesh2d class implementation,
the savemodel routine allows users to write the MATLAB
model to a JavaScript file. This allows users to run simula-
tions in MATLAB using ISSM, and, once the simulations are
over, to save the MATLAB-defined model into a JavaScript
equivalent file. This routine, which closely matches the con-
structor, is the key to shortening the transition time between
the setup of an ISSM simulation and its transition into a
web page environment. The fact that all of the information
of a given class is identical in both APIs demonstrates the
comprehensiveness of the new JavaScript implementation of
ISSM and shows that it achieves its goal of replicating ISSM
within a web page environment.

In a standard model run, MATLAB classes (or Python) are
used to setup the model, but the computations themselves are
carried out in C++. This C++ code is present at several lev-
els: (1) for each pre- and post-processing module (or, wrap-
per) that requires significant computational power, such as
interpolation routines that transfer information between grid-
ded dataset and unstructured finite element modeling (FEM)
meshes typical of ISSM; and (2) for each of the compu-
tations pertaining to ice flow itself (the physical engine in
ISSM), which we refer to as the ISSM core. For pre- and
post-processing modules, the computations are assumed lo-
cal to the workstation. For the ISSM core itself, paralleliza-
tion is inherent (using the MPI libraries), and this core usu-
ally runs on a parallel cluster.
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classdef mesh2d
 

properties (SetAccess=public) 
x = NaN; 
y = NaN; 
elements = NaN; 
numberofelements = 0; 
numberofvertices = 0; 

end
 

methods
function marshall(self,prefix,md,fid) % {{{

WriteData(fid,'fieldname','x','format','DoubleMat','mattype',1);
WriteData(fid,'fieldname','y','format','DoubleMat','mattype',1);
WriteData(fid,'fieldname','elements','format','DoubleMat','mattype',2);
WriteData(fid,'fieldname','numberofelements','format','Integer');
WriteData(fid,'fieldname','numberofvertices','format','Integer');

end

function savemodeljs(self,fid,modelname)
writejs1Darray(fid,[modelname '.mesh.x'],self.x);
writejs1Darray(fid,[modelname '.mesh.y'],self.y);
writejs2Darray(fid,[modelname '.mesh.elements'],self.elements);
writejsdouble(fid,[modelname '.mesh.numberofelements'],self.numberofelements);
writejsdouble(fid,[modelname '.mesh.numberofvertices'],self.numberofvertices);

end
end

end

function mesh2d () {

//methods
this.marshall=function(md,prefix,fid) {

WriteData(fid,'fieldname','x','format','DoubleMat','mattype',1);
WriteData(fid,'fieldname','y','format','DoubleMat','mattype',1);
WriteData(fid,'fieldname','elements','format','DoubleMat','mattype',2);
WriteData(fid,'fieldname','numberofelements','format','Integer');
WriteData(fid,'fieldname','numberofvertices','format','Integer');

}

//properties
this.x = NaN; 
this.y = NaN; 
this.elements = NaN; 
this.numberofelements = 0; 
this.numberofvertices = 0; 

}

(a)

(b)

Figure 1. Line-by-line comparison of the code behind the mesh2d class, within the MATLAB ISSM API (upper frame) and the JavaScript
ISSM API (lower frame). Class methods that are not relevant to the discussion have been erased for ease of reading.

When we look at this configuration and try and transfer
this paradigm to a web page environment, we are however
faced with two issues: (1) C++ code cannot be run native to a
web page easily; and (2) parallelism is not yet implemented
in browsers and would anyway result in heavy taxation of
CPU resources (on local workstations/laptops/tablets), which
is not practical. We therefore approached this issue in two
ways: (1) we translated the entire C++ code (both mod-
ules/wrappers and the ISSM core itself) into JavaScript for
model runs that are small enough to be run locally, and (2) for
models that are too large to run locally, we implemented
a way of uploading (using the JavaScript classes) a model
to a web server on the Amazon EC2 cloud, where compu-
tations are carried out and returned to the JavaScript client
once completed. The latter approach is described in the next
section. Here, we further describe the translation of the C++
modules and ISSM core into JavaScript code. This transla-
tion was carried out using the Emscripten compiler (Zakai,
2011). This compiler enables translation of C++ code di-
rectly into JavaScript, with computational efficiencies that
are within an order of magnitude of the translated C++ code.

Listing 1 shows how Emscripten was integrated within the
existing Makefile structure of ISSM. All the pre- and post-
processing wrappers (TriMesh, NodeConnectivity, Contour-
ToMesh, ElementConnectivity, InterpFromMeshToMesh2d,
IssmConfig, EnumToString, and StringToEnum) as well as
the ISSM core itself (issm) are compiled into JavaScript ex-
ecutables using the C++ files and a set of Emscripten-related
flags (described in the IssmModule_CXXFLAGS variable).
This Makefile is similar to its MATLAB and Python coun-
terparts, with the exception of the issm core, which is com-
piled as a JavaScript module instead of a C++ executable.
This Makefile is integrated within Autotools (Vaughan et al.,
2000), enabling for quick activation of the compilation using
a simple “-with-javascript” option during the config-
uration phase of the ISSM software.

The JavaScript modules and ISSM core are continuously
tested against regression tests, similar to the MATLAB and
Python APIs (Larour et al., 2012). The integration framework
for the tests relies on Jenkins, an open-source automation
server (Jenkins, 2016), which provides continuous integra-
tion and delivery of validated ISSM code. The ISSM Jenkins
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EXEEXT= j s

j s _ s c r i p t s = ${ISSM_DIR } / s r c / wra p pe r s / TriMesh / TriMesh . j s \

${ISSM_DIR } / s r c / wr a p pe r s / N o d e C o n n e c t i v i t y / N o d e C o n n e c t i v i t y . j s \

${ISSM_DIR } / s r c / wr a p pe r s / ContourToMesh / ContourToMesh . j s \

${ISSM_DIR } / s r c / wr a p pe r s / E l e m e n t C o n n e c t i v i t y / E l e m e n t C o n n e c t i v i t y . j s \

${ISSM_DIR } / s r c / wr a p pe r s / InterpFromMeshToMesh2d / InterpFromMeshToMesh2d . j s \

${ISSM_DIR } / s r c / wr a p pe r s / I s smConf ig / I s smConf ig . j s \

${ISSM_DIR } / s r c / w ra p p e r s / EnumToString / EnumToString . j s \

${ISSM_DIR } / s r c / w ra p p e r s / Str ingToEnum / StringToEnum . j s \

${ISSM_DIR } / s r c / w ra p p e r s / Issm / i ssm . j s

bin_SCRIPTS = issm− p r e b i n . j s

bin_PROGRAMS = IssmModule

issm− p r e b i n . j s : ${ j s _ s c r i p t s }

c a t ${ j s _ s c r i p t s } > issm− p r e b i n . j s

IssmModule_SOURCES = . . / TriMesh / TriMesh . cpp \

. . / N o d e C o n n e c t i v i t y / N o d e C o n n e c t i v i t y . cpp \

. . / ContourToMesh / ContourToMesh . cpp \

. . / E l e m e n t C o n n e c t i v i t y / E l e m e n t C o n n e c t i v i t y . cpp \

. . / InterpFromMeshToMesh2d / InterpFromMeshToMesh2d . cpp \

. . / I s smConf ig / I s smConf ig . cpp \

. . / EnumToString / EnumToString . cpp \

. . / Str ingToEnum / StringToEnum . cpp \

. . / Issm / i ssm . cpp

IssmModule_CXXFLAGS= − fPIC −D_DO_NOT_LOAD_GLOBALS_ −− memory− i n i t − f i l e 0 \

$ (AM_CXXFLAGS) $ (CXXFLAGS) $ (CXXOPTFLAGS) $ (COPTFLAGS) \

− s EXPORTED_FUNCTIONS= " [ ’ _TriMeshModule ’ , ’ _NodeConnec t iv i tyModule ’ , \

’ _ContourToMeshModule ’ , ’ _E l emen tConn ec t i v i t y Mod u l e ’ , \

’ _InterpFromMeshToMesh2dModule ’ , ’ _IssmConfigModule ’ , ’ _EnumToStringModule ’ \

, ’ _StringToEnumModule ’ , ’ _IssmModule ’ ] " − s DISABLE_EXCEPTION_CATCHING=0 \

− s ALLOW_MEMORY_GROWTH=1 − s INVOKE_RUN=0

IssmModule_LDADD = ${ deps } $ ( TRIANGLELIB ) $ ( GSLLIB )

Listing 1. Makefile for the JavaScript Emscripten compilation of ISSM.

web page is available at https://ross.ics.uci.edu:8080/, where
the entire validation suite is in the process of being trans-
ferred to JavaScript. This ensures that continuous develop-
ment impacts all of the APIs in ISSM in a similar fashion
without imparting delays to the JavaScript API (due to the
fact that it would be used by a smaller base of ISSM users).

3 HTTP/Python server

Using the JavaScript API, it is possible to run a full-fledged
simulation using any of the physical modules described in
Larour et al. (2012). However, to our knowledge, Emscripten
does not yet allow computations in parallel within a browser.

This limits the range of model sizes and mesh resolution to
a level that compromises large-scale simulations. In these
cases, our approach was to rely on the cloud computing
capabilities of ISSM, as described in Larour and Schlegel
(2017), and to host a web server that would deliver ISSM
computations to any client running the ISSM JavaScript API.
This server relies on the Python API of ISSM to carry out
computations ranging from tens to hundreds of thousands
of degrees of freedom, allowing continental-scale simula-
tions. The server is fully elastic and scalable, and relies on
the Amazon EC2 infrastructure (Amazon Web Services, Inc.,
2008), and can spin up compute-optimized CC4.8x large in-
stances (up to 64 threads of computational power) on de-
mand, making it a robust solution for serving computations.

www.geosci-model-dev.net/10/4393/2017/ Geosci. Model Dev., 10, 4393–4403, 2017
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Figure 2. Similarities between a standard ISSM run from a terminal
running MATLAB and connected to a HPC cluster and a web-based
ISSM run from a web page running JavaScript, connected to a web
server running on an Amazon EC2 cloud instance. In the first case
(lower frames), a MATLAB instance running on a local workstation
marshalls a binary file, which is then uploaded (using an SSH call)
to a master node on a cluster. The binary file is then queued into
the system (using a qsub command from a scheduler, for example).
The parallel runs are then carried out using the ISSM executable
and an MPI-compatible environment. In the second case, a browser
client makes an XMLHttpRequest and uploads a Binary Large Ob-
ject (the exact same binary file MATLAB would upload), which is
received by an HTTP server (e.g., Apache) running on an Ama-
zon EC2 compute-optimized instance. The HTTP server then uses
a FastCGI module to interface to a Python wrapper, which auto-
matically triggers a system call to the MPI environment running the
ISSM executable. In both cases, an output binary file is created by
the ISSM executable, which is then shipped back to the MATLAB
instance or the client’s web browser.

We refer to Larour and Schlegel (2017) for more details on
this part of the architecture.

In terms of server configuration itself, our approach was to
rely on the Python API of ISSM to leverage the FastCGI web
interface, described in Open Market (1996), on an Apache
server. This allows requests coming into the Apache server
from the client-side to be routed directly to a Python script.
The web client, running ISSM embedded inside JavaScript,
can therefore upload a marshalled binary input file (created
by the call to the marshall routine of each model class, as
described in Fig. 1) to the EC2 instance Apache server, which
then routes it to the Python script that launches the parallel
job.

Figure 2 describes this process schematically and com-
pares it to what happens in more classic simulations relying
on MATLAB and an HPC infrastructure, such as a cluster.
The fundamental differences between the traditional simu-
lation paradigm and our new solution are (1) the client ar-
chitecture, which runs either MATLAB or an HTML web
page with JavaScript; (2) the upload/download of binary in-

put files, which is done either through an SSH copy call or
an XMLHttpRequest, respective to the aforementioned client
architectures; and (3) the launching of a given computation,
which is handled via a queuing system on the head node or
a FastCGI-relayed Python call on an EC2 instance. In terms
of parallel computations, ISSM executables are run using an
MPI call in both cases. The strong similarity between both
architectures was purposefully designed so as to limit the
amount of repeats in the code, and to ensure the robustness
of the computations themselves, which are transparent to the
API they rely upon.

4 All-in-one design/simulations

Listing 2 shows a typical model setup for a simulation in
ISSM relying on the MATLAB API. The steps include load-
ing a model (or generating one using a mesher), modifying
a certain input parameter, setting up a cluster class (pointing
to the parallel cluster), and calling the solve routine. Once
the results are carried out/downloaded, plotmodel is run to
visualize them.

An additional step can be carried out once a given MAT-
LAB ISSM model has been built, wherein the model is saved
into a JavaScript file (md.js) in some web page directory. This
model can then be used (as shown in Listing 3) to run the
exact same setup and simulation as is done with MATLAB,
but on the client’s machine. The HTML code for this sim-
ulation is typical of a web page, and includes (1) standard
HTML markup (i.e., W3C-compliant HTML, head, and body
objects); (2) statements for the ISSM binaries created by Em-
scripten, the model itself (md.js), and a sort of front-end con-
troller (engine.js, which controls the display of and interac-
tion with the simulation on the web page); and (3) HTML
elements such as a canvas where the results will be plot-
ted (similar to the figure statement in MATLAB), a second
canvas for the color bar, and a button element to launch the
simulation. The listing for engine.js shows how similar the
MATLAB and JavaScript setup are (Listing 3). Upon load-
ing, if the RUN button is clicked, the value of a slider (the
model input of interest) is retrieved and then SolveGlacier
called. The SolveGlacier() routine modifies the input param-
eter, sets up the cluster class (pointing to the EC2 server),
and calls the solve routine. After computations are carried
out and downloaded, a callback function PlotGlacier is trig-
gered, which plots the model results onto the aforementioned
HTML canvas elements. If users do not want to rely on this
particular routine for plotting, they can instead provide their
own callback routine to plot using their own rendering en-
gine.

Figure 3 shows an example of such a web page hosting a
simulation for the Columbia Glacier in Alaska. In this partic-
ular example, the model input that is modified is the surface
mass balance (SMB). This parameter measures the amount
of precipitation (in snow or water) at the surface of the ice,
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Listing 2. MATLAB code for a typical simulation of the VESL.

minus runoff of water from melting and evaporation. This
parameter is essential in controlling the input of mass to the
glacier. Once this input is modified, we can measure its im-
pact on the response of the glacier (the ice flow) through
time. This response is a complex interplay between mass
transport processes and the stress equilibrium of the ice. The
result is a new flow regime (speed), which ISSM can com-
pute and which can be visualized through a time evolution of
the speed at the surface of the ice.

Here, the web page is part of VESL, where the JavaScript
API of ISSM was leveraged along with the HTTP/Python
server architecture described previously to showcase the ca-
pabilities of ISSM to serve computations on the fly and to vi-
sualize them instantly (VESL, 2017). The simulations within
VESL are all simulations that were carried out using ISSM
for scientific publications. By adding a savemodel.js step at
the end of the MATLAB simulation workflow, we were able
to transfer the model used for the simulations from the MAT-
LAB environment onto the web page. Once that was done,
we replicated a workflow similar to the MATLAB work-
flow in the engine.js code. With this approach, it is possi-
ble to deploy a simulation like the one described above on
a web platform with significantly shortened turnaround and
using the exact same capabilities as the initial MATLAB so-
lution itself. This breakthrough is only possible because of
the duplication of the entire architecture, again, by making
JavaScript code that is logically equivalent to our MATLAB
or Python constructs and by mapping the whole workflow
described in Fig. 2 from MATLAB/HPC infrastructures to
HTML/JavaScript/EC2. Our methodology paves the way to
leveraging web technologies and cloud computing to host

large-scale simulations of modeling engines such as ISSM,
all without loss of the physical representation of processes
nor scalability.

5 Examples

Figures 3 and 4 show examples of simulations that rely on
the ISSM JavaScript API and that are hosted on the VESL
website (VESL, 2017). VESL’s purpose is two-fold: to show-
case simulations that demonstrate ISSM capabilities, and to
demonstrate the capabilities of our new web-based modeling
solution to the wider scientific community and general pub-
lic. Several simulations are hosted, leveraging the large set of
capabilities in ISSM.

The first simulations pertain to the simulation of glacier
flow, mainly from work on the Haig Glacier (Adhikari
and Marshall, 2011) and Columbia Glacier (A. Gardner,
M. Fahnestock, and E. Larour, personal communication,
2016). Figure 3 shows the Columbia Glacier web page,
where SMB variations can be specified, with ISSM then
computing the resulting impact on the glacier evolution over
a period of 10 years. This simulation includes all the phys-
ical processes that control the evolution of a glacier and is
fully representative of the complex physics required in the
analysis.

The second set of simulations pertain to ice sheet mod-
eling in Antarctica and Greenland. Figure 4 shows the web
page corresponding to the friction SeaRISE (Bindschadler
et al., 2013) experiment over the entire Greenland ice sheet.
In this simulation, the user can decrease the friction at the
ice/bedrock interface under the ice sheet and compute the re-
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Listing 3. Equivalent (see Listing 2) HTML/JavaScript code for a typical simulation within the VESL prototype web page.

sulting changes in steady-state velocity at the surface. The
model is fairly high resolution (12 000 elements), which al-
lows for computations that are physically representative.

The third set of simulations pertains to sea-level rise
(SLR) modeling, relying on the ISSM-SESAW module (Ad-
hikari et al., 2016) to compute gravitationally consistent
sea-level and geodetic signatures caused by cryosphere and

climate-driven mass change. Presently, two sets of simula-
tions demonstrate (1) eustatic SLR and its impact on coast-
line migration in the USA; and (2) SLR from eustatic, grav-
ity, and elastic deformation on a global scale, wherein users
can turn off specific sets of SLR physics to understand the
impact of gravitation on redistribution of SLR around the
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Figure 3. Columbia Glacier ISSM simulation on the Virtual Earth
System Laboratory (https://vesl.jpl.nasa.gov). This particular sim-
ulation allows for the introduction of user-driven SMB anomalies
(using a slider ranging from − 5 to +5 m a−1) on the transient
ice flow of Columbia Glacier. The computations (upon clicking
of the RUN button) are carried out on the ISSM computational
server (where the model inputs are uploaded and from which the
results are downloaded locally to the client’s web browser). The
transient results are displayed as a movie, which can be controlled
via user interface (UI) controls. The interactive rendering of the
velocity and thickness fields is done in 3-D (or 2-D, upon click-
ing of a toggle button) using the ISSM WebGL rendering engine.
The results are overlaid on a semitransparent topographical ren-
dering of the Shuttle Radar Topography Mission (SRTM) digi-
tal elevation model (DEM), and a background geotiff image from
A. Gardner, M. Fahnestock, and E. Larour (personal communica-
tion, 2016). Model information can be displayed by clicking the
info button, allowing for extensive information on the model setup
and the datasets used to constrain the simulation.

world and the impact of local elastic deformation of the Earth
lithosphere.

Finally, a fourth set of simulations pertains to solid
Earth deformation, using the ISSM-GIA (Adhikari and Mar-
shall, 2011) module that captures glacial isostatic adjustment
(GIA) from ice sheet loading. It should be noted that this sec-
tion is a work in progress.

One potential future section may feature recent work by
the ISSM team involving the application of ISSM to other
planets (namely, Mars’ ice caps). Given the relatively quick
turnaround between ISSM simulations and their porting to

Figure 4. Greenland ISSM simulation on the VESL (https://vesl.
jpl.nasa.gov). This particular simulation allows for the introduction
of user-driven friction anomalies (using a slider ranging from 5 to
100 %) on the steady-state stress-balance velocities for the entire
Greenland Ice Sheet. The computations (upon clicking of the RUN
button) are carried out on the ISSM computational server (where
the model inputs are uploaded and from which the results are down-
loaded locally to the client’s web browser). The steady-state veloc-
ities are displayed for each value of the friction coefficient that the
user chooses. The interactive rendering of the velocity field is done
in 3-D using the ISSM WebGL rendering engine. The results are
overlaid on a semitransparent topographical rendering of ETOPO5
data (see National Geophysical Data Center (1988) for credits) and
a background geotiff image from the Blue Marble: Land Surface,
Shallow Water and Shaded Topography project (see Goddard Space
Flight Center, Reto Stöckli (2002) for credits).

the web using the ISSM JavaScript API, our hope is that
VESL will become a forum for cryosphere scientists to dis-
cuss ice-sheet-related science. In addition, by enabling sim-
plified interfaces on existing simulations that resulted in sci-
entific publications, we believe the general public might gain
increased interest in this type of approach to better under-
stand the complexity of science for the Earth system as a
whole.
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6 Conclusions

We developed a fully functional JavaScript API for the ISSM,
which allows cryosphere scientists to carry out ice flow sim-
ulations within a web environment. This API gives access
to the entire spectrum of physical processes captured by
ISSM without compromising its complexity and richness.
For simulations requiring parallel computing, the JavaScript
API can be leveraged against a computational server hosted
on a cloud instance (such as Amazon EC2) to deliver high-
performance, large-scale, and high-fidelity simulations back
to the web client. This new set of capabilities enables hosting
of high-end simulations on the NASA/JPL VESL, effectively
solving a fundamental challenge of ESMs: delivering acces-
sible, high-performance simulations in a timely manner. We
believe that our approach paves the way for the efficient de-
ployment of feature-rich ESMs, a quick turnaround between
scientific work and corresponding publications, and outreach
not only to the science community but also to the general
public.

Code availability. The ISSM code and its JavaScript components
are available at http://issm.jpl.nasa.gov. The instructions for the
compilation of ISSM in JS mode are presented in the Supplement
attached to this paper.

The Supplement related to this article is available
online at https://doi.org/10.5194/gmd-10-4393-2017-
supplement.
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