Articles | Volume 10, issue 10
https://doi.org/10.5194/gmd-10-3913-2017
https://doi.org/10.5194/gmd-10-3913-2017
Model description paper
 | 
27 Oct 2017
Model description paper |  | 27 Oct 2017

GLOFRIM v1.0 – A globally applicable computational framework for integrated hydrological–hydrodynamic modelling

Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens

Related authors

On the importance of observation uncertainty when evaluating and comparing models: a hydrological example
Jerom P.M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
EGUsphere, https://doi.org/10.5194/egusphere-2023-1156,https://doi.org/10.5194/egusphere-2023-1156, 2023
Short summary
Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023,https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Evaluating the impact of model complexity on flood wave propagation and inundation extent with a hydrologic–hydrodynamic model coupling framework
Jannis M. Hoch, Dirk Eilander, Hiroaki Ikeuchi, Fedor Baart, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 19, 1723–1735, https://doi.org/10.5194/nhess-19-1723-2019,https://doi.org/10.5194/nhess-19-1723-2019, 2019
Short summary
Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin
Jamie Towner, Hannah L. Cloke, Ervin Zsoter, Zachary Flamig, Jannis M. Hoch, Juan Bazo, Erin Coughlan de Perez, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci., 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019,https://doi.org/10.5194/hess-23-3057-2019, 2019
Short summary
PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model
Edwin H. Sutanudjaja, Rens van Beek, Niko Wanders, Yoshihide Wada, Joyce H. C. Bosmans, Niels Drost, Ruud J. van der Ent, Inge E. M. de Graaf, Jannis M. Hoch, Kor de Jong, Derek Karssenberg, Patricia López López, Stefanie Peßenteiner, Oliver Schmitz, Menno W. Straatsma, Ekkamol Vannametee, Dominik Wisser, and Marc F. P. Bierkens
Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018,https://doi.org/10.5194/gmd-11-2429-2018, 2018
Short summary

Related subject area

Hydrology
Enhancing the representation of water management in global hydrological models
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023,https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023,https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023,https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023,https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
DynQual v1.0: a high-resolution global surface water quality model
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023,https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary

Cited articles

Alcamo, J., Döll, P., Kasper, F., and Siebert, S.: Global change and global scenarios of water use and availability: An Application of WaterGAP1.0., 1997.
Bates, P. D. and de Roo, A.: A simple raster-based model for flood inundation simulation, J. Hydrol., 236, 54–77, https://doi.org/10.1016/S0022-1694(00)00278-X, 2000.
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.
Baugh, C. A., Bates, P. D., Schumann, G. J.-P., and Trigg, M. A.: SRTM vegetation removal and hydrodynamic modeling accuracy, Water Resour. Res., 49, 5276–5289, https://doi.org/10.1002/wrcr.20412, 2013.
Beven, K. J., Cloke, H. L., Pappenberger, F., Lamb, R., and Hunter, N. M.: Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface, Sci. China Earth Sci., 58, 25–35, https://doi.org/10.1007/s11430-014-5003-4, 2015.
Download
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.