Articles | Volume 10, issue 10
Geosci. Model Dev., 10, 3913–3929, 2017
https://doi.org/10.5194/gmd-10-3913-2017
Geosci. Model Dev., 10, 3913–3929, 2017
https://doi.org/10.5194/gmd-10-3913-2017

Model description paper 27 Oct 2017

Model description paper | 27 Oct 2017

GLOFRIM v1.0 – A globally applicable computational framework for integrated hydrological–hydrodynamic modelling

Jannis M. Hoch et al.

Related authors

Evaluating the impact of model complexity on flood wave propagation and inundation extent with a hydrologic–hydrodynamic model coupling framework
Jannis M. Hoch, Dirk Eilander, Hiroaki Ikeuchi, Fedor Baart, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 19, 1723–1735, https://doi.org/10.5194/nhess-19-1723-2019,https://doi.org/10.5194/nhess-19-1723-2019, 2019
Short summary
Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin
Jamie Towner, Hannah L. Cloke, Ervin Zsoter, Zachary Flamig, Jannis M. Hoch, Juan Bazo, Erin Coughlan de Perez, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci., 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019,https://doi.org/10.5194/hess-23-3057-2019, 2019
Short summary
PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model
Edwin H. Sutanudjaja, Rens van Beek, Niko Wanders, Yoshihide Wada, Joyce H. C. Bosmans, Niels Drost, Ruud J. van der Ent, Inge E. M. de Graaf, Jannis M. Hoch, Kor de Jong, Derek Karssenberg, Patricia López López, Stefanie Peßenteiner, Oliver Schmitz, Menno W. Straatsma, Ekkamol Vannametee, Dominik Wisser, and Marc F. P. Bierkens
Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018,https://doi.org/10.5194/gmd-11-2429-2018, 2018
Short summary
Assessing the impact of hydrodynamics on large-scale flood wave propagation – a case study for the Amazon Basin
Jannis M. Hoch, Arjen V. Haag, Arthur van Dam, Hessel C. Winsemius, Ludovicus P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 117–132, https://doi.org/10.5194/hess-21-117-2017,https://doi.org/10.5194/hess-21-117-2017, 2017
Short summary

Related subject area

Hydrology
A distributed simple dynamical systems approach (dS2 v1.0) for computationally efficient hydrological modelling at high spatio-temporal resolution
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020,https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020,https://doi.org/10.5194/gmd-13-6077-2020, 2020
Short summary
KLT-IV v1.0: image velocimetry software for use with fixed and mobile platforms
Matthew T. Perks
Geosci. Model Dev., 13, 6111–6130, https://doi.org/10.5194/gmd-13-6111-2020,https://doi.org/10.5194/gmd-13-6111-2020, 2020
Short summary
Simulating human impacts on global water resources using VIC-5
Bram Droppers, Wietse H. P. Franssen, Michelle T. H. van Vliet, Bart Nijssen, and Fulco Ludwig
Geosci. Model Dev., 13, 5029–5052, https://doi.org/10.5194/gmd-13-5029-2020,https://doi.org/10.5194/gmd-13-5029-2020, 2020
Short summary
The Ensemble Framework For Flash Flood Forecasting (EF5) v1.2: description and case study
Zachary L. Flamig, Humberto Vergara, and Jonathan J. Gourley
Geosci. Model Dev., 13, 4943–4958, https://doi.org/10.5194/gmd-13-4943-2020,https://doi.org/10.5194/gmd-13-4943-2020, 2020
Short summary

Cited articles

Alcamo, J., Döll, P., Kasper, F., and Siebert, S.: Global change and global scenarios of water use and availability: An Application of WaterGAP1.0., 1997.
Bates, P. D. and de Roo, A.: A simple raster-based model for flood inundation simulation, J. Hydrol., 236, 54–77, https://doi.org/10.1016/S0022-1694(00)00278-X, 2000.
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.
Baugh, C. A., Bates, P. D., Schumann, G. J.-P., and Trigg, M. A.: SRTM vegetation removal and hydrodynamic modeling accuracy, Water Resour. Res., 49, 5276–5289, https://doi.org/10.1002/wrcr.20412, 2013.
Beven, K. J., Cloke, H. L., Pappenberger, F., Lamb, R., and Hunter, N. M.: Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface, Sci. China Earth Sci., 58, 25–35, https://doi.org/10.1007/s11430-014-5003-4, 2015.
Download
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.