Articles | Volume 10, issue 4
Geosci. Model Dev., 10, 1733–1749, 2017
https://doi.org/10.5194/gmd-10-1733-2017
Geosci. Model Dev., 10, 1733–1749, 2017
https://doi.org/10.5194/gmd-10-1733-2017

Model description paper 24 Apr 2017

Model description paper | 24 Apr 2017

Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0

Kristofer Döös et al.

Related authors

Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019,https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater
M. Ballarotta, S. Falahat, L. Brodeau, and K. Döös
Ocean Sci., 10, 907–921, https://doi.org/10.5194/os-10-907-2014,https://doi.org/10.5194/os-10-907-2014, 2014
Last Glacial Maximum world ocean simulations at eddy-permitting and coarse resolutions: do eddies contribute to a better consistency between models and palaeoproxies?
M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös
Clim. Past, 9, 2669–2686, https://doi.org/10.5194/cp-9-2669-2013,https://doi.org/10.5194/cp-9-2669-2013, 2013
A Last Glacial Maximum world-ocean simulation at eddy-permitting resolution – Part 1: Experimental design and basic evaluation
M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-297-2013,https://doi.org/10.5194/cpd-9-297-2013, 2013
Revised manuscript has not been submitted

Related subject area

Numerical methods
A micro-genetic algorithm (GA v1.7.1a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4.0.3) for quantitative precipitation forecast in Korea
Sojung Park and Seon K. Park
Geosci. Model Dev., 14, 6241–6255, https://doi.org/10.5194/gmd-14-6241-2021,https://doi.org/10.5194/gmd-14-6241-2021, 2021
Short summary
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021,https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
NDCmitiQ v1.0.0: a tool to quantify and analyse greenhouse gas mitigation targets
Annika Günther, Johannes Gütschow, and Mairi Louise Jeffery
Geosci. Model Dev., 14, 5695–5730, https://doi.org/10.5194/gmd-14-5695-2021,https://doi.org/10.5194/gmd-14-5695-2021, 2021
Short summary
Combining ensemble Kalman filter and reservoir computing to predict spatiotemporal chaotic systems from imperfect observations and models
Futo Tomizawa and Yohei Sawada
Geosci. Model Dev., 14, 5623–5635, https://doi.org/10.5194/gmd-14-5623-2021,https://doi.org/10.5194/gmd-14-5623-2021, 2021
Short summary
The Coastline Evolution Model 2D (CEM2D) V1.1
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021,https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary

Cited articles

Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models, Ocean Model., 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003, 2004.
Blanke, B. and Raynaud, S.: Kinematics of the Pacific Equatorial Undercurrent: a Eulerian and Lagrangian approach from GCM results, J. Phys. Oceanogr., 27, 1038–1053, 1997.
Blanke, B., Arhan, M., Madec, G., and Roche, S.: Warm water paths in the equatorial Atlantic as diagnosed with a general circulation model, J. Phys. Oceanogr., 29, 2753–2768, 1999.
Brodeau, L., Barnier, B., Treguier, A.-M., Penduff, T., and Gulev, S.: An ERA40-based atmospheric forcing for global ocean circulation models, Ocean Model., 31, 88–104, https://doi.org/10.1016/j.ocemod.2009.10.005, 2010.
Butcher, J. C.: Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Ltd, https://doi.org/10.1002/9781119121534, 2016.
Download
Short summary
The TRACMASS trajectory code with corresponding schemes has been improved and become more accurate and user friendly over the years. An outcome of the present study is that we strongly recommend the use of the time-dependent TRACMASS scheme. We would also like to dissuade the use of the more primitive stepwise-stationary scheme, since the velocity fields remain stationary for longer periods, creating abrupt discontinuities in the velocity fields and yielding inaccurate solutions.