Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.240 IF 5.240
  • IF 5-year value: 5.768 IF 5-year
    5.768
  • CiteScore value: 8.9 CiteScore
    8.9
  • SNIP value: 1.713 SNIP 1.713
  • IPP value: 5.53 IPP 5.53
  • SJR value: 3.18 SJR 3.18
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 51 h5-index 51
Volume 10, issue 4
Geosci. Model Dev., 10, 1733–1749, 2017
https://doi.org/10.5194/gmd-10-1733-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 1733–1749, 2017
https://doi.org/10.5194/gmd-10-1733-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Model description paper 24 Apr 2017

Model description paper | 24 Apr 2017

Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0

Kristofer Döös et al.

Viewed

Total article views: 1,967 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,343 558 66 1,967 100 108
  • HTML: 1,343
  • PDF: 558
  • XML: 66
  • Total: 1,967
  • BibTeX: 100
  • EndNote: 108
Views and downloads (calculated since 13 Sep 2016)
Cumulative views and downloads (calculated since 13 Sep 2016)

Viewed (geographical distribution)

Total article views: 1,861 (including HTML, PDF, and XML) Thereof 1,844 with geography defined and 17 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 10 Jul 2020
Publications Copernicus
Download
Short summary
The TRACMASS trajectory code with corresponding schemes has been improved and become more accurate and user friendly over the years. An outcome of the present study is that we strongly recommend the use of the time-dependent TRACMASS scheme. We would also like to dissuade the use of the more primitive stepwise-stationary scheme, since the velocity fields remain stationary for longer periods, creating abrupt discontinuities in the velocity fields and yielding inaccurate solutions.
The TRACMASS trajectory code with corresponding schemes has been improved and become more...
Citation