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Abstract. Three different trajectory schemes for oceanic and
atmospheric general circulation models are compared in two
different experiments. The theories of the trajectory schemes
are presented showing the differential equations they solve
and why they are mass conserving. One scheme assumes
that the velocity fields are stationary for set intervals of time
between saved model outputs and solves the trajectory path
from a differential equation only as a function of space, i.e.
“stepwise stationary”. The second scheme is a special case
of the stepwise-stationary scheme, where velocities are as-
sumed constant between general circulation model (GCM)
outputs; it uses hence a “fixed GCM time step”. The third
scheme uses a continuous linear interpolation of the fields
in time and solves the trajectory path from a differential
equation as a function of both space and time, i.e. a “time-
dependent” scheme. The trajectory schemes are tested “of-
fline”, i.e. using the already integrated and stored velocity
fields from a GCM. The first comparison of the schemes
uses trajectories calculated using the velocity fields from a
high-resolution ocean general circulation model in the Ag-
ulhas region. The second comparison uses trajectories cal-
culated using the wind fields from an atmospheric reanaly-
sis. The study shows that using the time-dependent scheme
over the stepwise-stationary scheme greatly improves accu-
racy with only a small increase in computational time. It
is also found that with decreasing time steps the stepwise-
stationary scheme becomes increasingly more accurate but
at increased computational cost. The time-dependent scheme
is therefore preferred over the stepwise-stationary scheme.
However, when averaging over large ensembles of trajecto-
ries, the two schemes are comparable, as intrinsic variabil-

ity dominates over numerical errors. The fixed GCM time
step scheme is found to be less accurate than the stepwise-
stationary scheme, even when considering averages over
large ensembles.

1 Introduction

The Lagrangian view of the ocean and atmospheric circu-
lation describes fluid pathways and the connectivity of dif-
ferent regions, which are not readily obtained from a Eule-
rian perspective. Lagrangian studies often require trajectory
calculations using some algorithm that transforms the Eule-
rian velocity fields, e.g. winds or currents, into trajectories.
Although observed velocities can be used, it is much more
common to use velocities simulated by a general circula-
tion model (GCM). The purpose of this work is to test the
different schemes used in the TRACMASS trajectory model
(version 6.0), here named the fixed GCM time step (Blanke
and Raynaud, 1997; Döös, 1995), stepwise stationary (Döös
et al., 2013) and time-dependent (de Vries and Döös, 2001)
schemes. These schemes have previously only been tested
using highly idealised velocity fields. Here, we will test the
velocity fields simulated by comprehensive GCMs for both
the ocean and atmosphere.

The TRACMASS trajectory model (Jönsson et al., 2015)
has been continuously updated through the years since it
was first introduced by Döös (1995). Version 6.0 represents
the latest version, which includes the ability to run TRAC-
MASS with the time-dependent scheme by de Vries and
Döös (2001) on GCM fields. TRACMASS now also supports
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many different types of vertical coordinates used in atmo-
sphere and ocean GCMs. The code has also been made more
structured and user friendly.

The original feature of TRACMASS and the related Ari-
ane model (Blanke and Raynaud, 1997) is that they solve the
trajectory path through each model grid cell with an analyti-
cal solution of a differential equation, which depends on the
velocities on the faces of the model grid box. This is different
from iterative schemes such as the commonly used fourth-
order Runge–Kutta (RK4). The TRACMASS schemes have
many advantages, e.g. mass conservation within the grid cell
in the same way as the GCM itself, as well as fast trajectory
computation. Furthermore, as the solution to the differential
equation is unique, trajectories can be calculated forward in
time and subsequently backward in time to arrive at exactly
the original position. This makes it possible to trace the ori-
gins of water or air masses as long as stochastic parameteri-
sations (see Döös and Engqvist, 2007) are not activated.

The first trajectory scheme tested here, the fixed GCM
time step, is strictly only valid for stationary velocity fields.
It can, however, be used with time-varying velocity fields by
dividing the time between GCM outputs into intermediate
steps and assuming velocities are stationary during the step.
The velocities in an intermediate step are found by linear
interpolation between two GCM outputs and hence named
stepwise stationary. However, using intermediate steps in-
creases the computational cost. The time-dependent scheme
does not assume that the fields are stationary and uses instead
continuous bilinear interpolation both in space and time.

The fact that the stepwise-stationary scheme uses
stepwise-stationary velocities is logical when the scheme is
used online, i.e. integrated into a GCM and thus having the
same time step as the GCM itself. When the scheme is used
offline, i.e. separately from the GCM and after the velocity
fields have been stored, the time step is the time between
two GCM outputs, which typically is a much longer period
than the GCM time step. As the stepwise-stationary scheme
assumes that velocities are constant during the time step of
the trajectory scheme, processes faster than the GCM output
frequency are lost.

An alternative to the stepwise-stationary scheme was in-
troduced by de Vries and Döös (2001), where the trajec-
tory solution was not only solved analytically in space, as
was done by Blanke and Raynaud (1997) as well as Döös
(1995), but also analytically in time between the GCM out-
puts. This leads to a more complex differential equation to
be solved and integrated as the trajectory progresses through
space and time (Döös et al., 2013). The advantage of this
time-dependent scheme by de Vries and Döös (2001) is that
it does not require any intermediate time steps between the
model output times and can instead be integrated analyti-
cally between the GCM outputs. This method contrasts the
fixed GCM time step scheme by Blanke and Raynaud (1997)
and the stepwise stationary by Döös et al. (2013) as well as
schemes such as the Euler forward or RK4 methods (Butcher,

2016; Fabbroni, 2009), where the trajectories are integrated
forward in time with as short time steps as possible. A com-
prehensive review of different trajectory codes as well as the
fundamental kinematic framework behind these can be found
in van Sebille (2016).

In Sect. 2, we describe the three different trajectory
schemes and how they are integrated in time in both ocean
general circulation models (OGCMs) and atmospheric gen-
eral circulation models (AGCMs). In Sect. 3, we test the
three trajectory schemes with two different velocity fields,
one from an OGCM and one from an AGCM, using various
statistics. This study is concluded in Sect. 4 with a summary
and discussion of the main results of the trajectory schemes
and their tests.

2 Trajectory scheme theory

The trajectory schemes used in TRACMASS are all mass
conserving but make different assumptions regarding the
time evolution of the Eulerian velocity and pressure fields.
The schemes rely on the assumption that, within a grid cell,
the three velocities’ components are only linear functions of
their corresponding directions, i.e. u= u(x), v = v(y) and
w = w(z). An alternative approach is to assume that u=
u(x,y,z), v = v(x,y,z) and w = w(x,y,z) inside a grid
cell, which might be more realistic in terms of representing
unresolved motions. However, no such information is gener-
ally provided by GCMs. Furthermore, it would also require
that the mass transports through the grid faces are unchanged
in order to satisfy the continuity equation of the GCM.

The trajectory schemes integrate the trajectories from the
volume or mass transports through the grid-box faces in con-
trast to many other trajectory schemes that only use the ve-
locity fields. We will first describe how these fluxes are com-
puted and then the three different trajectory schemes.

2.1 Mass and volume flux

The TRACMASS trajectory schemes are mass conserving as
they, like the GCM, deal with the transport across the grid
faces and the transport is only interpolated linearly between
the two opposite faces in a grid box. The trajectories will
hence never cross a grid boundary.

A GCM mesh is generally spherical or curvilinear. The
longitudinal (1xi,j ) and the latitudinal (1yi,j ) grid lengths
will hence be functions of their horizontal positions i,j on
a curvilinear grid. The vertical coordinate in a GCM has a
depth level thickness 1zni,j,k , where k is vertical level and
n is time step. Note that the vertical resolution can vary not
only vertically but also both horizontally and in time, which
makes it possible to use any vertical coordinate, e.g. sigma
(Marsh and Megann, 2002), z-star, pressure or hybrid coor-
dinates (Kjellsson and Döös, 2012b). The horizontal mass
transports through the eastern and northern faces, respec-
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tively, of the i,j,k grid box at time step n are given by

Uni,j,k =ρ
n
i,j,ku

n
i,j,k1yi,j1z

n
i,j,k, (1)

V ni,j,k =ρ
n
i,j,kv

n
i,j,k1xi,j1z

n
i,j,k. (2)

The zonal velocity uni,j,k and the meridional velocity vni,j,k
are in the above equations on a C grid. It is, however, possible
to use the velocities from A- and B-grid models, where the
velocities are instead at the corners of the grid cell, leading
to

Uni,j,k =ρ
n
i,j,k

1
2

(
uni,j,k + u

n
i,j−1,k

)
1yi,j1z

n
i,j,k, (3)

V ni,j,k =ρ
n
i,j,k

1
2

(
vni,j,k + v

n
i−1,j,k

)
1xi,j1z

n
i,j,k. (4)

This averaging of two horizontal grid points in order to have
the perpendicular velocity to the grid box in the middle on
the grid face is exactly how a B-grid model discretises the
equations when, e.g. solving the continuity equation.

Note that the mass transport can be replaced by the volume
transport in models that assume the fluid to be incompress-
ible, which is the case for most OGCMs. In other models
(most AGCMs), we may use the hydrostatic approximation
to write

1pni,j,k = ρ
n
i,j,k g1z

n
i,j,k , (5)

where g is gravity and p is air pressure. The mass transports
through the lateral grid faces in the AGCM expressed by Eqs.
(1) and (2) will use Eq. (5) to determine 1z and hence be-
come

Uni,j,k = u
n
i,j,k1yi,j1p

n
i,j,k/g (6)

V ni,j,k = v
n
i,j,k1xi,j1p

n
i,j,k/g. (7)

The vertical mass transport can similarly be computed
from the vertical velocity wi,j,k through the upper face of
the grid box so that

W n
i,j,k = ρi,j,kw

n
i,j,k1xi,j1yi,j . (8)

The vertical velocity would in the equation above be taken
directly from the stored velocity fields from the GCM. It
is, however, in order to guarantee mass conservation, ad-
vantageous to instead calculate the vertical transport W n

i,j,k

from the continuity equation as the TRACMASS trajectory
schemes rely on mass or volume continuity.

The continuity equation, which expresses conservation of
mass, states that

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 . (9)

Integrating Eq. (9) over a finite grid box of volume1x1y1z,
we obtain

∂Mi,j,k

∂t
+Ui,j,k −Ui−1,j,k +Vi,j,k −Vi,j−1,k +Wi,j,k

−Wi,j,k−1 = 0 , (10)

where Mi,j,k is the mass of the grid box. The rate of mass
change of the grid box ∂Mi,j,k/∂t can, on the other hand,
be due to (1) compression in an compressible GCM and/or
(2) grid-box volume change, which generally in a GCM is
due to the time dependence of the vertical resolution so that
the thickness of model layers varies in time.

The mass of the grid box is

Mn
i,j,k = ρ

n
i,j,k1xi,j1yi,j1z

n
i,j,k , (11)

where n is the time level of the stored GCM fields so that
time is t = n1tG and 1tG is the time interval between two
stored GCM fields.

The vertical mass transport through the top of the grid box
is obtained by discretising Eq. (10) between two stored time
levels:

W n
i,j,k =W

n
i,j,k−1−

[
Uni,j,k −U

n
i−1,j,k +V

n
i,j,k −V

n
i,j−1,k

+
(ρni,j,k1z

n
i,j,k − ρ

n−1
i,j,k1z

n−1
i,j,k)

1tG
1xi,j1yi,j

]
, (12)

which is computed by integration from the bottom and up-
wards with the bottom boundary conditionWi,j,0 = 0. This is
the same way the vertical velocity is computed in the GCM,
except that we use the stored horizontal velocities and the
grid-size thicknesses to ensure that they satisfy the time de-
pendency correctly.

In many OGCMs, the fluid is considered to be incompress-
ible, and thus the density is constant and ρ can be dropped
from all equations in order to have volume flux instead of
mass flux in the calculations. The vertical volume transport
through the top of the grid box becomes

W n
i,j,k =W

n
i,j,k−1−

[
Uni,j,k −U

n
i−1,j,k +V

n
i,j,k −V

n
i,j−1,k

+
(1zni,j,k −1z

n−1
i,j,k)

1tG
1xi,j1yi,j

]
. (13)

If, additionally, the vertical resolution is time independent,
the last term can be neglected and thus

W n
i,j,k =W

n
i,j,k−1

−

(
Uni,j,k −U

n
i−1,j,k +V

n
i,j,k −V

n
i,j−1,k

)
. (14)

On the other hand, in many AGCMs, there are both com-
pressibility of the air and a time dependence of the verti-
cal resolution, which is generally expressed in pressure and
hence

W n
i,j,k =W

n
i,j,k−1−

[
Uni,j,k −U

n
i−1,j,k +V

n
i,j,k −V

n
i,j−1,k

+
(1pni,j,k −1p

n−1
i,j,k)

g1tG
1xi,j1yi,j

]
, (15)

where Eq. (5) has been used. Note that in the case of offline
calculations, one may instead use centred or forward finite
time differences in Eqs. (12), (13) and (15).
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2.2 The stationary case

This scheme assumes that the velocity and pressure fields
are in a steady state. It was introduced by Blanke and Ray-
naud (1997) and used and developed for ocean mass trans-
port studies by Döös (1995). The velocity inside a grid cell is
found by assuming that it is only a function of its direction,
i.e. u= u(x),v = v(y),w = w(z). Linear interpolation gives
the zonal velocity

u(x)= ui−1,j,k +
x− xi−1,j

1xi,j
(ui,j,k − ui−1,j,k) , (16)

and similarly for v(y) and w(z). Note that the calculation of
the vertical mass transport W n

i,j,k through the top face of a
grid box, with Eqs. (12)–(15), only involves the velocities on
the considered grid box. A 3-D dependency of the velocities
(u= u(x,y,z), v = v(x,y,z) and w = w(x,y,z)) would re-
quire velocities from other grid boxes, which could poten-
tially break the mass conservation of Eqs. (12)–(15).

To calculate the zonal position, x, of a trajectory, we use
u= dx/dt and write Eq. (16) as the differential equation

dx
dt
−
ui,j,k − ui−1,j,k

1xi,j
x+

xi−1,j

1xi,j
(ui,j,k − ui−1,j,k)

− ui−1,j,k = 0.

The drawback by solving the above differential equation is
that 1x is not constant, and a horizontal grid face is rarely
rectangular in a GCM. The solution will hence depend on
the position of the trajectory in each grid box. Döös (1995)
used therefore a 1x corresponding to the average latitudi-
nal position of the trajectory in each grid box, which was
obtained by computing the trajectories several times in each
grid box. Blanke and Raynaud (1997) made this unneces-
sary by non-dimensionalising the position and used volume
fluxes instead of velocities. By substituting x for a non-
dimensional position r ≡ x/1xi,j and t for a scaled time
s ≡ t/(1xi,j1yi,j1zi,j,k), we get

dr
ds
+β r + δ = 0 , (17)

where F = dr/ds is the zonal volume or mass flux, and β ≡
Fi−1,j,k−Fi,j,k and δ ≡−Fi−1,j,k−β ri−1 are constants. Its
solution describes the zonal displacement within the grid box
between the faces and is found using the initial condition
r(s0)= r0 of its zonal position so that

r(s)=

(
r0+

δ

β

)
e−β(s−s0)−

δ

β
. (18)

The scaled time s1 becomes

s1 = s0−
1
β

log
[
r1+ δ/β

r0+ δ/β

]
, (19)

where r1 = r(s1) is given by either ri−1 or ri , when a tra-
jectory enters the western or eastern grid face, respectively.

The logarithmic factor in Eq. (19) can be expressed as
log[F(r1)/F (r0)].

For a trajectory reaching the grid face r = ri or r = ri−1,
both F(r1) and F(r0) must be of the same sign in order for
Eq. (19) to have a solution. If F(r1) and F(r0) are of opposite
signs, there is a zero zonal transport at a position between r1
and r0, and this position is reached exponentially slow.

The above procedure is repeated for meridional and verti-
cal displacements, where now r = y/1yi,j or r = z/1zi,j,k .
This yields non-dimensional position, r1, and scaled time, s1,
for the zonal, meridional and vertical displacements of the
trajectory, respectively, inside the grid box under considera-
tion. The smallest transit time s1− s0 and the corresponding
r1 denote through which grid face of the grid box the tra-
jectory will exit and move into the adjacent one. The exact
displacements in the other two directions are then computed
using the smallest s1 in the corresponding Eq. (18).

Note that Eqs. (18)–(19) are not valid if the transport fields
across the grid box are constant, i.e. when (Fi−1,j,k = Fi,j,k),
since it would imply a division by zero with β = 0 in both
equations. The differential equation then simplifies to

dr
ds
+ δ = 0 , (20)

which has the solution

r(s)=−δ (s− s0)+ r0, (21)

and the scaled time s1 is

s1 = s0−
r1− r0

δ
. (22)

If Fi−1,j,k = Fi,j,k , TRACMASS instead uses Eqs. (21)
and (22).

2.3 Stepwise-stationary and fixed GCM time step
integrations

The trajectory scheme above is, strictly speaking, only valid
for stationary fields. The scheme is, however, possible to use
for time-dependent fields by assuming that the velocity and
surface-elevation fields are stationary during a limited time
interval. The stepwise-stationary method presented here con-
sists of assuming that the fields are stationary during interme-
diate time steps between two GCM outputs and then updated
successively as new fields become available. If this is under-
taken online, i.e. in the same time as the GCM is integrated,
this time interval will simply be the same as the time step
the GCM is integrated by, which is typically between sev-
eral minutes and a few hours in a global GCM. If instead
the trajectories are calculated offline, the time intervals be-
tween GCM fields will be at least as often as the fields have
been stored by the GCM, at intervals that can be days or even
months.

A linear time interpolation of the velocity fields between
two GCM velocity fields permits a simple way to have
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shorter time steps by which the fields are updated in time.
The time interval between two GCM velocity fields is 1tG
and the shorter time interval at which the fields are interpo-
lated is1ti as illustrated by Fig. 1. The number of intermedi-
ate time steps is hence the ratio IS =1tG/1ti . For any quan-
tity in the GCM output, F , the value at intermediate time step
m, located between GCM outputs n− 1 and n, is

F(tm)≡ Fm =
tm− tn−1

1tG
(F n−F n−1)+F n−1 . (23)

The coefficients β,δ in Eq. (17) are updated when a trajec-
tory moves from one grid box to another. Thus, the time step
for the trajectory, i.e. s1− s0, may be shorter than the inter-
mediate time step, 1t . 1ti is hence the maximum possible
time step for a given IS but is often shorter if the spatial grid
spacing (1x, 1y, 1z) is small and 1tG long. We will there-
fore test TRACMASS by imposing constant velocities for
the entire1tG in order to mimic other codes, such as the Ari-
ane code based on Blanke and Raynaud (1997), which do not
make any temporal interpolations of the velocity fields. This
particular case of the stepwise-stationary scheme with con-
stant velocity fields for the entire period between two GCM
outputs will be denoted the fixed GCM time step. These two
schemes together with a truly time-dependent scheme, de-
scribed in next section, will be tested.

2.4 Analytical time integration with the
time-dependent scheme

The stepwise-stationary integration method presented in the
previous section assumes that the velocity and the grid-box
thicknesses remain constant throughout the time step, and
only spatial variations of velocity are accounted for. Another
approach is to interpolate the velocity fields not only in space
within the grid box but also in time between the GCM out-
puts. This approach, introduced in TRACMASS by de Vries
and Döös (2001), is more accurate but involves a more ad-
vanced differential equation to be solved and integrated along
the trajectories. Accounting for both spatial and temporal
variations of velocities in the trajectory scheme renders inter-
mediate time steps unnecessary. We will later show that using
a large number of intermediate steps, the stepwise-stationary
scheme approaches this time-dependent scheme asymptoti-
cally.

The time-dependent scheme can be derived in the same
way as Eq. (17), but instead of a linear interpolation in space,
we use a bilinear interpolation in both space and time. As be-
fore, we use non-dimensional position r = x/1x and scaled
time s ≡ t/(1x1y1z), where the denominator is the volume
of the particular grid box. For a zonal volume or mass flux F ,
a bilinear interpolation in space and time yields

F(r,s)= F n−1
i−1 + (r − ri−1)(F

n−1
i −F n−1

i−1 )+

+
s− sn−1

1s

[
F ni−1−F

n−1
i−1 + (r − ri−1)

(F ni −F
n
i−1−F

n−1
i +F n−1

i−1 )
]
, (24)

1s is the scaled time step between two data sets:

1s = sn− sn−1
= (tn− tn−1)/(1x1y1z)

=1tG/(1x1y1z) , (25)

where 1tG is the time step between two data sets in true
time dimension (seconds). The vertical grid-box spacing
is for models with time-dependent grid cell thicknesses
replaced with an average between the two time steps:(
1zn+1zn−1)/2. Similar expressions for the meridional

and vertical directions can be derived.
Connecting the local transport to the time derivative of the

position with F = dr/ds, the following differential equation
is obtained:

dr
ds
+α r s+β r + γ s+ δ = 0 , (26)

where the coefficients are defined by

α ≡−
1
1s

(F ni −F
n
i−1−F

n−1
i +F n−1

i−1 ) , (27)

β ≡ F n−1
i−1 −F

n−1
i −α sn−1 , (28)

γ ≡−
1
1s

(F ni−1−F
n−1
i−1 )− α ri−1 , (29)

δ ≡−F n−1
i−1 + ri−1(F

n−1
i −F n−1

i−1 )− γ s
n−1 . (30)

Different analytical solutions exist for the three cases: α > 0,
α < 0 and α = 0, which together cover all possible values of
α. The acceleration, inside the r − s grid box, is d2r/ds2

=

−αr − γ , which is constrained by a linear r-dependent term
proportional to α and the constant γ .

2.4.1 The case α > 0

For this case, we define the time-like variable ξ = (β +

α s)/
√

2α and get

r(s)=
(
r0+

γ

α

)
eξ

2
0−ξ

2
−
γ

α
+
βγ −αδ

α√
2
α

[
D(ξ)− eξ

2
0−ξ

2
D(ξ0)

]
, (31)

where Dawson’s integral

D(ξ)≡ e−ξ
2

ξ∫
0

ex
2
dx (32)

has been used, as well as the initial condition r(s0)= r0. An
example of trajectories in this case is illustrated in Fig. 2a,
with given values of F n−1

i−1 , F n−1
i , F ni and F ni−1. We see here

that α > 0 occurs when the flow changes from divergence in
the i direction at time step n− 1 to convergence at time step
n.
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Interpolated 
 velocities

F(t)

∆ ti

GCM velocities

∆ tG
t

n n+1n-1
m

Figure 1. Schematic illustration of how the transport fields F(t) are updated and interpolated in time between the stored GCM data, which
are read in at the time tn and are separated in time by the time interval 1tG (in red). The fields are then linearly interpolated at the points in
blue with intermediate time steps. The number of intermediate time steps between two GCM velocities is in this example IS =1tG/1ti = 4.

2.4.2 The case α < 0

When α < 0, ξ becomes imaginary. By defining ζ ≡ iξ =
(β +αs)/

√
−2α, Eq. (31) can be re-expressed as

r(s)=
(
r0+

γ

α

)
eζ

2
−ζ 2

0 −
γ

α
−
βγ −αδ

α√
π

−2α
eζ

2
[erf(ζ )− erf(ζ0)] , (33)

where the error function erf(ζ )= (2/
√
(π)

∫ ζ
0 e
−x2

dx. An ex-
ample of trajectories for this case is illustrated in Fig. 2b. We
see here that α < 0 occurs when the flow changes from con-
vergence in the i direction at time step n−1 to divergence at
time step n.

2.4.3 The case α = 0

The solution of Eq. (26) when α = 0 is

r(s)=

(
r0+

δ

β

)
e−β(s−s0)−

δ

β
+
γ

β2[
1−βs+ (βs0− 1)e−β(s−s0)

]
. (34)

This case would normally not occur in a realistic GCM
integration since it would correspond to a field constant in
time or space, where F ni −F

n
i−1 = F

n−1
i +F n−1

i−1 . Note that if
the fields are in steady state, Eq. (34) is reduced to become
identical to the stationary solution of Eq. (18). An example
of trajectories in this stationary case is illustrated in Fig. 2c.

If instead α = 0 since the fields are constant in space, i.e.
the transport across the grid cell is constant (Fi = Fi−1),
then we also have β = 0, which leads to a simplification of
Eq. (26):

dr
ds
+ γ s+ δ = 0 , (35)

with the solution

r(s)= r0−
γ

2

(
s2
− s2

0

)
− δ (s− s0) . (36)

An example of trajectories in this case with constant fields in
space is illustrated in Fig. 2d.

2.5 The transit time

A major difference between the time-dependent and the
stepwise-stationary schemes is that in the time-dependent
scheme, the transit times s1−s0 cannot in general be obtained
explicitly with the time-dependent scheme in contrast to the
stepwise-stationary analytical solution of Eq. (18). Using the
solutions given by Eqs. (31)–(34), the relevant root s1 of

r(s1)− r1 = 0 (37)

has to be computed numerically for each direction. We will
now describe how the roots s1 and the corresponding exiting
grid face r1 can be determined. The displacement of the tra-
jectory inside the grid box under consideration then proceeds
as previously discussed for stationary velocity fields.

We now determine the roots s1 of Eq. (37) and the cor-
responding r1 needed to calculate trajectories inside a grid
box. In what follows, sn−16s0 < sn and the relevant roots s1
are to be in the interval of s0 < s16sn . We also focus on the
cases α > 0 and α < 0, since the forthcoming considerations
can easily be adapted for the case of α = 0. For numerical
purposes, we use

βγ −αδ

α
=

F ni F
n−1
i−1 −F

n−1
i F ni−1

F ni −F
n
i−1−F

n−1
i +F n−1

i−1

, (38)

γ

α
=

F ni−1−F
n−1
i−1

F ni −F
n
i−1−F

n−1
i +F n−1

i−1

− ri−1 , (39)

ξ =
F n−1
i−1 −F

n−1
i +α(s− sn−1)
√

2α
, (40)

ζ =
F n−1
i−1 −F

n−1
i +α(s− sn−1)
√
−2α

. (41)

As above, s is the scaled time. The coefficient in Eq. (38)
appearing in Eqs. (31) and (33) is exactly zero when either
the ri−1 or ri grid face represents a solid boundary, so that
transport Fi or Fi−1 is zero for all n, respectively. In these
instances, the opposite grid face fixes r1 , and the root s1 > s0
can be computed analytically. If there is no solution, we take
s1 = s

n. When all three transit times equal sn, the trajectory
will not move into an adjacent grid box but will remain inside
the original one. Its new position is subsequently determined,
and the next time interval is considered.
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(a)

(d)(c)

(b)

Figure 2. Examples of how trajectories calculated with the time-dependent scheme evolve as a function of the transport F in the space
interval ri−1 < r < ri and in the time interval sn−1 < s < sn, which hence corresponds to an interval between two GCM outputs (1tG) and
of a grid box (1x,1y or1z). The colour shows the transport values F obtained by the bilinear interpolation between the four corners (F n−1

i−1 ,

F n−1
i

, F n
i

and F n
i−1). (a) α > 0 with two corners of transport in the negative direction (F < 0), which correspond to westward, southward

or downward directions, and one corner flowing in the opposite direction. (b) α < 0. (c) α = 0 and γ = 0 correspond to the stationary fields,
which results in an F field that only changes in the (r) direction. (d) α = 0 and β = 0 correspond to the constant fields in space but which
vary in time. Note that the F = 0 line between the red and blue colours corresponds to static flow, which results in “vertical” trajectories in
the figures.

The roots of Eq. (37) have to be computed numerically if
(βγ−αδ)/α 6= 0. This is also true for locating the extrema of
the solutions given by Eqs. (31) and (33). Alternatively, one
can consider the case F(r,s)= 0 using Eq. (24) to analyse
where possible extrema are located. It follows that in the s−r
plane, the extrema lie on a hyperbola of the form r = (as+

b)/(c+ds). Obviously, only the parts defined by sn−1
≤ s ≤

sn and ri−1 ≤ r ≤ ri are relevant. Depending on which parts
of the hyperbola, if any, lie in this “box” and satisfy the initial
condition r(s0)= r0, the trajectory r(s) exhibits no, one or,
at most, two extrema. In the latter case, the trajectory will not
cross either the grid face at ri−1 or the one at ri (see Fig. 2
for an example). Hence, the trajectories r(s) determining the
transit time s1−s0 will have at most one extremum; i.e. there
is at most one change of sign in the local transport F .

An efficient way of proceeding is as follows: first, consider
the grid face at ri . For a trajectory to reach this grid face, the
local transport must be nonnegative, which depends on the

signs of the transport F ni−1 and F ni . Four distinct configura-
tions may arise between the model outputs (sn−1 < s < sn),
where the calculation of the trajectory takes place:

1. F(ri, s) > 0 for sn−1 < s < sn.

2. The sign of F(ri, s) changes from positive to negative
at s = s∗, where sn−1 < s∗ < sn.

3. The sign of F(ri, s) changes from negative to positive
at s = s#, where sn−1 < s# < sn.

4. F(ri, s) < 0 for sn−1 < s < sn.

These four cases are illustrated by the four panels of Fig. 3.
For case 1, we evaluate r(sn) using the appropriate ana-

lytical solution. If, in addition, r(sn)≥ ri , then the trajectory
has crossed the grid-box face r = ri at s1 ≤ sn as shown by
the trajectories A, B and C in Fig. 3. If the initial transport
F(r0, s0) < 0, the trajectory may have crossed the opposite
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Case 1 Case 2

Case 3 Case 4

Figure 3. The four different cases of how trajectories might reach the grid face at r = ri . Note that the trajectories for case 4 can not reach
r = ri . The background colours are the same as in Fig. 2 with F > 0 in red and F < 0 in blue. The dashed trajectories outside the grid box
denote the necessary computed fictive paths for estimating when s = s1 and if the trajectories reach r1(s1)= ri .

grid face at an earlier time, as illustrated by trajectory C in
Fig. 3. This is only possible if case 3 applies for the grid face
at ri−1 and s# > s0, in which case it is determined whether
r(s#)≤ ri−1. If this is not the case, there is a solution to
r(s1)−r1 = 0 for r1 = ri and s0 < s1 ≤ sn. Subsequently, this
root can be calculated numerically using a root-solving algo-
rithm (Press et al., 2007). But if r(sn) < ri or, if applicable,
r(s#)≤ ri−1, we proceed by considering the other grid faces.
The arguments for the grid face at ri−1 are similar to those
relating to ri .

If case 2 applies and s0 < s∗, we add here to the consid-
erations given in case 1 using s∗ instead of sn. If there is a
root for r1 = ri , then s0 < s1 ≤ s∗ . This root is illustrated by
trajectory D in Fig. 3 with (r1, s1)= (ri, s1D).

For case 3, we follow the procedure given by case 1. If
there is a root for r1 = ri , then s# < s1 ≤ s

n. This root is il-
lustrated by trajectory E in Fig. 3 with (r1, s1)= (ri, s1E).

For case 4, no solution of Eq. (37) is possible for r1 = ri ,
since all trajectories exit through the grid face located at ri−1,
as illustrated by trajectory G in Fig. 3, or will not reach any
grid face during the time interval sn−1 < s < sn. We must
then instead search for an exit through another of the six grid
faces.

All these considerations are applied to each of the three
spatial directions in order to determine through which of the

six grid faces the trajectory will exit and at which position on
the corresponding grid face.

Since the trajectories are unique solutions to Eq. (26) and
the continuity equation is respected, the TRACMASS trajec-
tories will therefore never hit any solid boundary, such as the
coast or the sea floor, unless the sedimentation option is acti-
vated, where an extra velocity is imposed, a feature that was
introduced in TRACMASS by Corell and Döös (2013).

An example of the evolution of trajectories calculated
with the three different schemes within a time–space cell
for α > 0 is shown in Fig. 4. The trajectories computed with
the stepwise-stationary scheme approach the trajectory com-
puted with the time-dependent scheme with increasing num-
ber of intermediate time steps (IS). The fixed GCM time step
trajectory can, however, not follow the time-dependent one
since it does not update the velocities between the GCM out-
puts and consequently deviates immediately as it leaves the
initial point (r0, sn−1).

3 Tests with different velocity fields

The results obtained from the stepwise-stationary scheme are
now compared with those from the time-dependent trajectory
schemes using two different sets of velocity fields. The first
uses a high-resolution OGCM with z-star coordinates. The
second uses a global atmospheric general circulation model
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T
S
S
S

F

Figure 4. Example of how the trajectories differ when computed
with the fixed GCM time step method in orange, the stepwise-
stationary method in blue, purple and green as well as the time-
dependent method in red. They all start at the same time sn−1 and
in the same position r0 but exit the grid at different locations and
times. Note that the stepwise-stationary method needs at least four
intermediate time steps (IS) to be close to time-dependent trajec-
tory. The background colours are the same as in Fig. 2 with F > 0
in red and F < 0 in blue.

with hybrid pressure coordinates. For the stepwise-stationary
scheme, five different settings of IS, i.e. the number of inter-
mediate steps, are tested. The fixed GCM time step is also
tested for comparison, although it is not a standard feature of
TRACMASS.

3.1 Ocean trajectories with a high-resolution OGCM

Oceanic velocity fields for this case were obtained from
a simulation with version 3.6 of the NEMO ocean model
(Madec, 2016) in a global ORCA12 configuration. The hor-
izontal resolution of the ORCA12 grid is approximately
1/12◦, corresponding to 1x ≈ 6 km at 50◦ latitude. Model
fields were available as 5-day averages every 5 days. The
configuration uses 75 z∗ vertical levels with partial bottom
cells, where 1z ranges from ∼1 m at the surface to 250 m
in the deepest parts of the ocean. The z∗ coordinate approach
permits large-amplitude free-surface variations relative to the
vertical resolution (Adcroft and Campin, 2004). In the z∗ for-
mulation, the variation of the column thickness due to sea-
surface undulations is not concentrated to the surface level,
as in the z-coordinate formulation, but is equally distributed
over the full water column. Thus, the vertical levels naturally
follow the sea-surface variations, which also implies that
they are time dependent, and we therefore have used Eq. (12)
to calculate the vertical transport in TRACMASS with a

time-dependent 1zn in the equation. The model was forced
with 6-hourly atmospheric fields from what is known as the
Drakkar forcing set version 4 (DFS4) (Brodeau et al., 2010).
Subgrid processes were represented using 125 m2 s−1 Lapla-
cian isoneutral tracer diffusion and −1.25× 1010 m4 s−1 bi-
Laplacian viscosity.

TRACMASS has been applied to this specific model inte-
gration already by Nilsson et al. (2013), where it was com-
pared with surface drifters in the Agulhas region. This is also
the region where we are going to test TRACMASS because
of its complex time-dependent dynamics with travelling ed-
dies, known as “Agulhas rings”, which “leak” Indian Ocean
water into the Atlantic Ocean as part of the conveyor belt.
A total of 2193 trajectories were started, evenly spread over
four horizontal grid boxes at all depths in the Indian Ocean
and followed for 50 days as shown in Figs. 5 and 6.

3.2 Atmospheric trajectories with an AGCM

In order to test the trajectory schemes in the atmosphere,
we have used the ERA-Interim reanalysis (Dee et al., 2011)
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) simulated with the IFS (Integrated Forecast-
ing System) model. In this ERA-Interim data set, the verti-
cal coordinate is a terrain-following hybrid coordinate (Sim-
mons and Burridge, 1981), where the pressure at the lower
interface of level k is given by pk = Ak +Bkps, where ps
is the surface pressure and Ak and Bk are parameters at
the level k ∈ [0,60], with p60 = ps and p0 = 0. As in the
NEMO ocean model, the grid cell thickness varies in time,
and we calculate vertical mass flux from the continuity equa-
tion (Eq. 15). The ERA-Interim data used here had a hori-
zontal resolution of 1.25◦ and is available 6-hourly (1tG).
Trajectories are shown in Fig. 7. They were initiated every
6 h from a grid cell air column over the Eyjafjallajökull vol-
cano eruption during 14–18 March 2010. The trajectories
were evenly distributed horizontally and started in exactly
same positions for the tests with different time steps using
the stepwise-stationary scheme and time-dependent case.

3.3 Lagrangian statistics

The average distance between the trajectories obtained with
the time-dependent scheme and the five different stepwise-
stationary cases as well as the fixed GCM time step case are
shown in Fig. 8. The distances from the time-dependent tra-
jectories after 50 days for the OGCM case and after 10 days
for the AGCM case are presented in Table 1. These average
distances have been possible to compute since of all the in-
dividual trajectories were started in the exact same positions
for the different cases. Results clearly show that the distance
between trajectories calculated with the stepwise-stationary
scheme and those calculated with the time-dependent scheme
decreased as the number of intermediate time steps was in-
creased. The fixed GCM time step case, i.e. when no inter-
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Figure 5. Agulhas trajectories started evenly distributed in a square of four grid cells and followed for 50 days. Colouring is used to separate
the trajectories from each other.

Table 1. The table shows the average distance between the time-dependent integrated trajectories and the stepwise-stationary integrated ones
at the end of simulations, which is 50 days for the OGCM and 10 days for the AGCM. IS is the number of intermediate time steps between
two GCM outputs. The “maximum time step” stands for the intermediate time step lengths (1ti), which are used in the different trajectory
integrations. The last column is the computational time normalised with regard to the time-dependent case, where theoretical velocity fields
are used to compute trajectories, i.e. with no data reading or writing.

Distance to time dependent TL Maximum time step Normalised
OGCM AGCM AGCM OGCM OGCM computational

IS (km) (km) (days) 1ti 1ti Time

Fixed 769 4992 3.44 ≡ 5 d ≡ 6 h 0.830
1 276 3835 3.88 5 d 6 h 0.830
12 242 2971 3.86 10 h 30 min 2.110
120 103 1752 3.86 1 h 3 min 14.03
1200 28 1079 3.87 6 min 18 s 132.0
12 000 6 1002 3.87 36 s 2 s 1191
Time dependent 0 0 3.87 5 d 6 h 1.000

mediate time steps are used, shows the greatest distance to
the time-dependent case.

Standard Lagrangian statistics have also been computed
for the ocean trajectories (Fig. 9), with the definitions given
in the Appendix. The “relative” and “absolute dispersion”
as well as the “mean displacement” of the trajectory cluster
show how the cluster will disperse and move in time. They
reveal a similar pattern, where only the fixed GCM time step
case differs from the others. The fixed GCM time step differs

already after 3 to 4 days, which should be related to the fact
that the GCM velocities are updated every 5 days (=1tG) in
this OGCM case.

The Lagrangian velocity autocorrelation, which describes
the correlation of the velocity of the trajectories at one
time with that of previous times, shows in Fig. 9 how all
cases except the fixed GCM time step give nearly the ex-
act same correlation. The Lagrangian timescale, which is
computed from the autocorrelation and is a measure of the
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Figure 6. Example of ocean trajectory paths due to different tra-
jectory schemes and number of intermediate time steps. The time-
dependent method results are in red as well as those obtained
with the stepwise-stationary method with IS = 1,12,120,1200 and
12 000 as well as fixed GCM time steps. Note that these homolo-
gous trajectories were selected to illustrate that stepwise-stationary
trajectories are closer to time-dependent trajectories when the num-
ber of intermediate time steps (IS) is increased.

memory of the trajectories, reflects the same feature with
a Lagrangian timescale of approximately 3.9 days for the
time step and the time-dependent cases but a slightly shorter
timescale of 3.4 days for the fixed GCM time step case.
The Lagrangian timescale based on observations with surface
drifters is clearly shorter than this both for the global ocean
(Döös et al., 2011) and in the Agulhas region (Nilsson et al.,
2013). This relatively shorter Lagrangian timescale (hence
closer to observations for the fixed GCM time step) is simply
due to the abrupt changes in the velocity fields every time
these are updated. A realistic shortening of the Lagrangian
timescale can only be obtained by incorporating finer scales
by increasing the GCM resolution or adding subgrid param-
eterisations to the trajectories.

The power spectra computed from the Lagrangian veloci-
ties show that the fixed GCM time step was more energetic
than the other schemes, which all yielded nearly identical re-
sults. This is the case for all frequencies. There is also a weak
maximum at four cycles per day (6 h), which remains unex-
plained, although it may be related to the fact that the OGCM
uses 6-hourly atmospheric forcing.

3.4 Lagrangian stream function and residence time

The mass conservation properties of the used trajectory
schemes make it possible to calculate mass transports be-
tween different sections in the model domain (Döös, 1995).
The approach is that one can associate each trajectory par-

ticle with a mass or volume transport. This requires that
enough trajectories are computed to fill the model grid in
space and time with a sufficient number of trajectories. La-
grangian stream functions can be calculated by summing
over trajectories representing a desired path (Blanke et al.,
1999; Döös et al., 2008; Kjellsson and Döös, 2012b). The
difference between the Lagrangian and the more common
Eulerian stream functions is that with the Lagrangian one can
isolate a particular path between a starting and an ending sec-
tion in the ocean or the atmosphere.

The influence of the different trajectory schemes on the
inter-ocean exchange of water masses, which takes place in
the Agulhas region, has been evaluated by calculating La-
grangian stream functions. Figure 10 shows the Lagrangian
barotropic stream function computed from trajectories using
the time-dependent scheme and the fixed GCM time step
scheme. Lagrangian decomposition has been used to com-
pute two separate stream functions for each scheme, one
from trajectories entering the Atlantic and one from those re-
turning back into the Indian Ocean via the Agulhas retroflec-
tion region. The time-dependent scheme favours slightly (one
additional stream line) the entering into the Atlantic com-
pared to the fixed GCM time step scheme. This is also clearly
visible when computing the residence time; i.e. the time tra-
jectories stay within the Agulhas region as shown in the
lower righthand panel of Fig. 9. The first particles start to
exit the Agulhas region, as defined by the map in Fig. 10,
after 50 days. The number of trajectory particles then decays
exponentially with an e-folding time of about 210 days. This
is rather similar for all trajectory-scheme integrations. There
is, however a clear difference in the results where the trajec-
tories exit. The fixed GCM time step scheme results in 38 %
flowing into the Atlantic and 59 % into the Indian Ocean after
800 days. All the other trajectory integrations yield very sim-
ilar results but with 46 % flowing into the Atlantic and 52 %
into the Indian Ocean. This suggests that the fixed GCM time
step scheme does not capture the same behaviour as the other
schemes.

We have repeated the above ocean-trajectory experiment
by releasing the particles in other time periods and increasing
the ensemble size. The results only changed marginally.

3.5 Computational speed

In addition to the higher accuracy of the time-dependent
scheme, it was also shown to be computationally faster than
the stepwise-stationary scheme with intermediate time steps.
In order to quantify this difference, we compared the compu-
tational time for the different schemes using analytical veloc-
ity fields describing inertia oscillations (Döös et al., 2013),
where no data needed to be read nor written since the ve-
locity fields have a known analytical solution and disk stor-
age was switched off. These computational times, shown in
the last column of Table 1, have been normalised by divid-
ing with the time obtained with the time-dependent scheme.
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Figure 7. Example of atmospheric trajectory paths starting form the Eyjafjallajökull volcano during its eruption calculated with different
trajectory schemes and number of intermediate time steps. The same colour coding of the trajectories as in Fig. 6 is used. Note that the red
time-dependent and the blue stepwise schemes with IS = 12 000 trajectories are nearly identical.
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Figure 8. Average distance between the time-dependent trajectories and the stepwise-stationary ones for the different time steps with IS =
1,12,120,1200 and 12 000 as well as fixed GCM time steps. The left panel represents the ocean Agulhas trajectories and the right panel
the atmospheric ERA-Interim ones. Note that the more intermediate steps used by the stepwise-stationary scheme the closer results to the
time-dependent scheme.

The stepwise-stationary scheme was only as computationally
fast as the time-dependent scheme when no extra intermedi-
ate time steps were taken between two readings of the ve-
locity fields (IS = 1) or when using fixed GCM time steps.
When the number of intermediate time steps was increased
to 12 000, the stepwise-stationary scheme was more than
1000 times slower. The total of 12 000 intermediate steps was
also approximately the number of intermediate time steps re-
quired in order to obtain as accurate results as those obtained
from the time-dependent scheme.

4 Discussion and Conclusions

The two trajectory schemes available in TRACMASS have
here been intercompared by calculating Lagrangian statis-
tics, transports and the distances between the trajectories.
This has been done for both oceanic and atmospheric ap-
plications. The stepwise-stationary scheme assumed that the
velocity fields were stationary for the duration of a user-
defined intermediate time step between model output fields.
These velocities are, however, updated with a linear interpo-
lation in time when crossing a model grid face. The time-

dependent scheme does not assume that the velocity is in
steady state during any time interval since it solves the differ-
ential equations of the trajectory path not only in space but
also in time. This continuous evolution of the time-dependent
scheme makes it more accurate than the stepwise-stationary
scheme without any significant increase in computational ex-
pense.

In addition to these two TRACMASS schemes, we have
tested a fixed GCM time step scheme, which is in fact a spe-
cial case of the stepwise-stationary scheme but with velocity
fields always remaining in steady state until a new GCM data
set is reloaded in order to mimic the Ariane trajectory model
(Blanke and Raynaud, 1997). A consequence of only updat-
ing the fields at the GCM output times is that the velocities
are assumed to be in steady state for long periods and then
changed abruptly with a discontinuity.

The accuracy of the schemes has been evaluated by com-
paring the distance between particles that have been started
from the same positions but with different trajectory schemes
and how this distance evolves in time. This distance was
shown to depend on the scheme and the number of interme-
diate time steps for the stepwise-stationary case. The aver-
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Figure 9. Lagrangian statistics of the ocean Agulhas trajectories. The relative dispersion (top left), the absolute dispersion (top right),

the mean displacement travelled by the trajectory cluster (middle left), the average Lagrangian velocity autocorrelation of the trajectories

(middle right). The average power spectra of the Lagrangian velocities (lower left). The residence time evolution of the trajectory particles in
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Figure 9. Lagrangian statistics of the ocean Agulhas trajectories. The relative dispersion (a), the absolute dispersion (b), the mean displace-
ment travelled by the trajectory cluster (c), the average Lagrangian velocity autocorrelation of the trajectories (d) and the average power
spectra of the Lagrangian velocities (e) and the residence time evolution of the trajectory particles in the Agulhas region (f) are shown. Note
that all statistics show very similar results, where only those based on the fixed GCM time step (orange curves) differ from the rest.

age distance as a function of time between the trajectories
obtained from the different schemes is shown in Fig. 8, and
their end position distances are shown in Table 1.

The study has shown that the TRACMASS time-
dependent scheme is likely to be more accurate as well
as faster than the stepwise-stationary scheme with inter-
mediate steps. It remains to be shown how the trajectory
schemes used in the present study compare to other trajec-
tory schemes, e.g. Runge–Kutta, which could be used where
mass conservation is not important.

The stepwise-stationary scheme needed up to 12 000 in-
termediate time steps to give as accurate trajectory paths as
the time-dependent scheme, which is more than a thousand
times as computationally expensive when reading and writ-

ing are excluded. The distance between trajectories calcu-
lated with the time-dependent scheme and those obtained
with the stepwise-stationary scheme decreased as the num-
ber of intermediate time steps is increased. The greatest dis-
tance was obtained when no temporal variations between
GCM outputs at all were considered, i.e. with the fixed
GCM time step scheme. We thus conclude that the time-
dependent scheme is the most accurate of those tested here
for two reasons. Firstly, for theoretical reasons since the
time-dependent scheme does not assume stationary veloci-
ties during any period of time. Secondly, the trajectories com-
puted with the stepwise-stationary scheme converge towards
those computed with the time-dependent scheme for an in-
creasing number of intermediate time steps. A future study
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Figure 10. The Lagrangian decomposed barotropic stream function based on the particles released as previously but followed until they left
the Agulhas region into the Atlantic (a, c) or the Indian Ocean (b, d). The top panels show the time-dependent scheme and the lower panels
show the fixed GCM time step scheme. Note that there is more water (one stream line extra) flowing into the Atlantic with the time-dependent
scheme than with the fixed GCM time step scheme, which instead favours relatively the flow into the Indian Ocean. Stream line intervals of
8 Sv (106 m3 s−1) are shown.

could be to calculate trajectories first using fields stored at
each GCM time step and then using fields stored at longer
time intervals. In the first case, trajectories would be very
accurate and could represent a “truth”, and the second case
could be used to evaluate which scheme is the closest to the
truth.

The Lagrangian statistics, such as relative and absolute
dispersion as well as Lagrangian velocity autocorrelation
functions and power spectra, showed almost identical results
for the time-dependent and the stepwise-stationary schemes.
The fixed GCM time step showed, however, some differ-
ences from the other two schemes. For example, the disper-
sion after 3–4 days was slightly larger for using a fixed GCM
time step, which might be explained by an abrupt change ev-
ery time the GCM velocities are updated compared to the
smoother transition of the two other schemes. The results
show that the fixed GCM time step method does not cap-
ture the same behaviour of trajectories as the other schemes.
The Lagrangian statistics are also clearly affected by the
model resolution and the time sampling of the GCM fields
(Döös et al., 2011; Kjellsson and Döös, 2012a; Kjellsson
et al., 2013; Nilsson et al., 2013). Future improvements to

the TRACMASS model will involve improvements of the
subgrid turbulence parameterisations, which could give more
realistic dispersion properties.

The mass conservation of the trajectory schemes in the
present study arises from that (1) mass transports across the
grid faces are used in the same way as in the GCM itself in-
stead of velocities as in most other trajectory schemes; (2) the
mass transport is linearly interpolated within the grid box,
where there is otherwise no information of the velocity from
the GCM and this enables us to set up a differential equa-
tion which has an analytical solution of the trajectory within
the grid box. The different trajectory schemes, although mass
conserving, will not yield the same results in terms of trans-
ports between different sections. The mass transport was
tested in the Agulhas experiment, where the fixed GCM time
step scheme relatively favoured the Agulhas retroflection
with more trajectories returning into the Indian compared
to the time-dependent and stepwise-stationary schemes. This
difference in mass transport can be explained by the deli-
cate path of the Agulhas leakage, which requires an accurate
temporal evolution so that particles can be retained in Ag-
ulhas rings. This was better achieved by the time-dependent
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and stepwise-stationary schemes than by the fixed GCM time
step scheme.

The TRACMASS trajectory code with corresponding
schemes has been improved and has become more accurate
and user friendly over the years. An outcome of the present
study is that we strongly recommend the use of the time-
dependent scheme based on de Vries and Döös (2001) in
favour of the stepwise-stationary scheme. We would also like
to dissuade the use of the more primitive fixed GCM time
step scheme, which is used in other trajectory codes, since the
velocity fields remain stationary for longer periods, creating
abrupt discontinuities in the velocity fields and yielding in-
accurate solutions. We have only tested one OGCM and one
AGCM simulation here, but we speculate that at coarser res-
olution in both space and time, the differences obtained with
the two schemes would increase. However, in non-eddying
simulations (e.g. 1◦ ocean models) this may not be true due
to the low variability of the flow.

The TRACMASS strict requirement of mass conservation
makes it, however, necessary to have complete velocity fields
on the original GCM grid in order to use mass or volume
transports in and out of each model grid box. This require-
ment of mass conservation will always be somewhat more
demanding than for other trajectory codes, since it requires
a total understanding of the various GCM coordinate sys-
tems as well as the incorporation of them in the TRACMASS
framework. This state of affairs is in marked contrast to what
holds true for various trajectory codes that only require ve-
locity fields with no mass conservation.

Code availability. TRACMASS version 6.0 is freely available for
research purposes at https://github.com/TRACMASS. In addition,
the code is archived at http://dx.doi.org/10.5281/zenodo.34157.
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Appendix A: Lagrangian statistics definitions

The Lagrangian statistics used in the present work (shown in
Figs. 8 and 9) are here defined. See, e.g. LaCasce (2008) for
a detailed derivation.

The average distance between the different trajectory cal-
culations, as presented in Fig. 8, is defined as

D2
B(t)≡

1
M − 1

N∑
m=1

2∑
i=1

(
xi,m(t)− x̂i,m(t)

)2
. (A1)

It is hence the distance between the two trajectories, xi,m(t)
and x̂i,m(t), where t is the time, M the total number of tra-
jectories of the cluster and i the spatial coordinate index (i.e.
the zonal, meridional or vertical position of the mth trajec-
tory xi,m(t)). The two trajectories, xi,m(t) and x̂i,m(t), will
have the same initial position

(
xi,m(t0)= x̂i,m(t0)

)
but will

then evolve differently since different trajectory schemes are
used to compute their paths. In the present study, we only
consider the horizontal dispersion. The vertical dispersion is,
however, an important measure of the vertical mixing in the
ocean but beyond the scope of the present study.

The mean position of the trajectory cluster is defined as

xi(t)≡
1
M

M∑
m=1

xi,m(t). (A2)

The relative dispersion is defined as the mean square dis-
placement of the trajectories relative to the time-evolving
mean position:

D2
R(t)≡

1
M − 1

M∑
m=1

2∑
i=1

(
xi,m(t)− xi(t)

)2
. (A3)

The absolute dispersion is defined in the same way, but rela-
tive to the initial position of the cluster:

D2
A(t)≡

1
M − 1

M∑
m=1

2∑
i=1

(
xi,m(t)− xi(t0)

)2
, (A4)

where t0 is the initial time of the trajectory.
The mean displacement is defined as the displacement

from the origin as a function of time:

DD(t)≡
1
M

M∑
m=1

√√√√ 2∑
i=1

[
xi,m(t)− xi,m(t0)

]2
. (A5)

The Lagrangian velocity is obtained by using a non-centred
finite difference:

ui,m(t
n)≡

dxi,m(t
n)

dt
≈
xi,m(t

n)− xi,m(t
n−1)

tn− tn−1 , (A6)

where n is the time level. Similarly, the acceleration was cal-
culated by finite differencing of the velocity:

ai,m(t
n)≡

dui,m(tn)
dt

≈
ui,m(t

n)− ui,m(t
n−1)

tn− tn−1 . (A7)

Note how velocity is not defined at the first position, and ac-
celeration is not defined at the first velocity.

The Lagrangian velocity autocorrelation describes the cor-
relation of the velocity at one time with that of previous
times. The definition is

R(τ)=
σ 2(τ )

σ 2(τ = 0)
≈ R(tq)

(σ (tq))2

(σ (t0))2
, (A8)

where σ 2(τ ) and σ 2(τ = 0) are the Lagrangian velocity au-
tocovariances for time lag τ and no lag, respectively. q is the
discrete time step and Rq is the autocorrelation at time step
q. σ 2(τ ) is defined as

σ 2(τ )= lim
T→∞

1
T

T∫
0

u′(t + τ) ·u′(t) dt ≈ (σ (tq))2

≡

2∑
i=1

1
N − q − 1

N−q−1∑
n=1

u′i(t
n)u′i(t

n+q), (A9)

where u′i(t
n)= ui(t

n)− ui and ui is a time average of the
segment. Note that the total velocity autocovariance is the
sum of the zonal and meridional components, σ 2

= σ 2
i=1+

σ 2
i=2.
The Lagrangian timescale is defined as

TL =

∞∫
0

R(τ) dτ. (A10)

This is a measure of the “memory” of a trajectory, i.e. the
time lag during which the Lagrangian velocity is correlated.
When computing this integral, the point where R(τ)= 0 for
the first time is used here as upper bound. This truncation
is perhaps the most commonly used, due to the often noisy
character of the autocorrelation function, R(τ) for large τ .
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