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Abstract. Three different trajectory schemes for oceanic and
atmospheric general circulation models are compared in two
different experiments. The theories of the trajectory schemes
are presented showing the differential equations they solve
and why they are mass conserving. One scheme assumes
that the velocity fields are stationary for set intervals of time
between saved model outputs and solves the trajectory path
from a differential equation only as a function of space, i.e.
“stepwise stationary”. The second scheme is a special case
of the stepwise-stationary scheme, where velocities are as-
sumed constant between general circulation model (GCM)
outputs; it uses hence a “fixed GCM time step”. The third
scheme uses a continuous linear interpolation of the fields
in time and solves the trajectory path from a differential
equation as a function of both space and time, i.e. a “time-
dependent” scheme. The trajectory schemes are tested “of-
fline”, i.e. using the already integrated and stored velocity
fields from a GCM. The first comparison of the schemes
uses trajectories calculated using the velocity fields from a
high-resolution ocean general circulation model in the Ag-
ulhas region. The second comparison uses trajectories cal-
culated using the wind fields from an atmospheric reanaly-
sis. The study shows that using the time-dependent scheme
over the stepwise-stationary scheme greatly improves accu-
racy with only a small increase in computational time. It
is also found that with decreasing time steps the stepwise-
stationary scheme becomes increasingly more accurate but
at increased computational cost. The time-dependent scheme
is therefore preferred over the stepwise-stationary scheme.
However, when averaging over large ensembles of trajecto-
ries, the two schemes are comparable, as intrinsic variabil-

ity dominates over numerical errors. The fixed GCM time
step scheme is found to be less accurate than the stepwise-
stationary scheme, even when considering averages over
large ensembles.

1 Introduction

The Lagrangian view of the ocean and atmospheric circu-
lation describes fluid pathways and the connectivity of dif-
ferent regions, which are not readily obtained from a Eule-
rian perspective. Lagrangian studies often require trajectory
calculations using some algorithm that transforms the Eule-
rian velocity fields, e.g. winds or currents, into trajectories.
Although observed velocities can be used, it is much more
common to use velocities simulated by a general circula-
tion model (GCM). The purpose of this work is to test the
different schemes used in the TRACMASS trajectory model
(version 6.0), here named the fixed GCM time step (Blanke
and Raynaud, 1997; Do66s, 1995), stepwise stationary (D66s
et al., 2013) and time-dependent (de Vries and D66s, 2001)
schemes. These schemes have previously only been tested
using highly idealised velocity fields. Here, we will test the
velocity fields simulated by comprehensive GCMs for both
the ocean and atmosphere.

The TRACMASS trajectory model (Jonsson et al., 2015)
has been continuously updated through the years since it
was first introduced by Dd6s (1995). Version 6.0 represents
the latest version, which includes the ability to run TRAC-
MASS with the time-dependent scheme by de Vries and
Do66s (2001) on GCM fields. TRACMASS now also supports
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many different types of vertical coordinates used in atmo-
sphere and ocean GCMs. The code has also been made more
structured and user friendly.

The original feature of TRACMASS and the related Ari-
ane model (Blanke and Raynaud, 1997) is that they solve the
trajectory path through each model grid cell with an analyti-
cal solution of a differential equation, which depends on the
velocities on the faces of the model grid box. This is different
from iterative schemes such as the commonly used fourth-
order Runge—Kutta (RK4). The TRACMASS schemes have
many advantages, e.g. mass conservation within the grid cell
in the same way as the GCM itself, as well as fast trajectory
computation. Furthermore, as the solution to the differential
equation is unique, trajectories can be calculated forward in
time and subsequently backward in time to arrive at exactly
the original position. This makes it possible to trace the ori-
gins of water or air masses as long as stochastic parameteri-
sations (see Do6s and Engqvist, 2007) are not activated.

The first trajectory scheme tested here, the fixed GCM
time step, is strictly only valid for stationary velocity fields.
It can, however, be used with time-varying velocity fields by
dividing the time between GCM outputs into intermediate
steps and assuming velocities are stationary during the step.
The velocities in an intermediate step are found by linear
interpolation between two GCM outputs and hence named
stepwise stationary. However, using intermediate steps in-
creases the computational cost. The time-dependent scheme
does not assume that the fields are stationary and uses instead
continuous bilinear interpolation both in space and time.

The fact that the stepwise-stationary scheme uses
stepwise-stationary velocities is logical when the scheme is
used online, i.e. integrated into a GCM and thus having the
same time step as the GCM itself. When the scheme is used
offline, i.e. separately from the GCM and after the velocity
fields have been stored, the time step is the time between
two GCM outputs, which typically is a much longer period
than the GCM time step. As the stepwise-stationary scheme
assumes that velocities are constant during the time step of
the trajectory scheme, processes faster than the GCM output
frequency are lost.

An alternative to the stepwise-stationary scheme was in-
troduced by de Vries and D6ds (2001), where the trajec-
tory solution was not only solved analytically in space, as
was done by Blanke and Raynaud (1997) as well as Do6s
(1995), but also analytically in time between the GCM out-
puts. This leads to a more complex differential equation to
be solved and integrated as the trajectory progresses through
space and time (Doos et al., 2013). The advantage of this
time-dependent scheme by de Vries and D66s (2001) is that
it does not require any intermediate time steps between the
model output times and can instead be integrated analyti-
cally between the GCM outputs. This method contrasts the
fixed GCM time step scheme by Blanke and Raynaud (1997)
and the stepwise stationary by Do0s et al. (2013) as well as
schemes such as the Euler forward or RK4 methods (Butcher,
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2016; Fabbroni, 2009), where the trajectories are integrated
forward in time with as short time steps as possible. A com-
prehensive review of different trajectory codes as well as the
fundamental kinematic framework behind these can be found
in van Sebille (2016).

In Sect. 2, we describe the three different trajectory
schemes and how they are integrated in time in both ocean
general circulation models (OGCMs) and atmospheric gen-
eral circulation models (AGCMs). In Sect. 3, we test the
three trajectory schemes with two different velocity fields,
one from an OGCM and one from an AGCM, using various
statistics. This study is concluded in Sect. 4 with a summary
and discussion of the main results of the trajectory schemes
and their tests.

2 Trajectory scheme theory

The trajectory schemes used in TRACMASS are all mass
conserving but make different assumptions regarding the
time evolution of the Eulerian velocity and pressure fields.
The schemes rely on the assumption that, within a grid cell,
the three velocities’ components are only linear functions of
their corresponding directions, i.e. ¥ =u(x), v=v(y) and
w = w(z). An alternative approach is to assume that u =
u(x,y,z), v=v(x,y,z) and w=w(x,y,z) inside a grid
cell, which might be more realistic in terms of representing
unresolved motions. However, no such information is gener-
ally provided by GCMs. Furthermore, it would also require
that the mass transports through the grid faces are unchanged
in order to satisfy the continuity equation of the GCM.

The trajectory schemes integrate the trajectories from the
volume or mass transports through the grid-box faces in con-
trast to many other trajectory schemes that only use the ve-
locity fields. We will first describe how these fluxes are com-
puted and then the three different trajectory schemes.

2.1 Mass and volume flux

The TRACMASS trajectory schemes are mass conserving as
they, like the GCM, deal with the transport across the grid
faces and the transport is only interpolated linearly between
the two opposite faces in a grid box. The trajectories will
hence never cross a grid boundary.

A GCM mesh is generally spherical or curvilinear. The
longitudinal (Ax; ;) and the latitudinal (Ay; ;) grid lengths
will hence be functions of their horizontal positions i, j on
a curvilinear grid. The vertical coordinate in a GCM has a
depth level thickness Azﬁ ik where k is vertical level and
n is time step. Note that the vertical resolution can vary not
only vertically but also both horizontally and in time, which
makes it possible to use any vertical coordinate, e.g. sigma
(Marsh and Megann, 2002), z-star, pressure or hybrid coor-
dinates (Kjellsson and D&6s, 2012b). The horizontal mass
transports through the eastern and northern faces, respec-
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tively, of the i, j, k grid box at time step n are given by

n
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The zonal velocity u? ik and the meridional velocity v} ik
are in the above equatlons on a C grid. It is, however, pos51ble
to use the velocities from A- and B-grid models, where the
velocities are instead at the corners of the grid cell, leading
to

1
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This averaging of two horizontal grid points in order to have
the perpendicular velocity to the grid box in the middle on
the grid face is exactly how a B-grid model discretises the
equations when, e.g. solving the continuity equation.

Note that the mass transport can be replaced by the volume
transport in models that assume the fluid to be incompress-
ible, which is the case for most OGCMs. In other models
(most AGCMs), we may use the hydrostatic approximation
to write

Apt]k pl]kgAlek’ Q)]

where g is gravity and p is air pressure. The mass transports
through the lateral grid faces in the AGCM expressed by Egs.
(1) and (2) will use Eq. (5) to determine Az and hence be-
come

Ui =ui j 1 DYijAP; /8 (6)
Vi =V k Axi jADY /8- 0

The vertical mass transport can similarly be computed
from the vertical velocity w; j« through the upper face of
the grid box so that
Wi k= Pij kWi k AXi jAY; ®

129}

The vertical velocity would in the equation above be taken
directly from the stored velocity fields from the GCM. It
is, however, in order to guarantee mass conservation, ad-
vantageous to instead calculate the vertical transport W/ ik
from the continuity equation as the TRACMASS trajectory
schemes rely on mass or volume continuity.

The continuity equation, which expresses conservation of
mass, states that

dp | d(pu)  9(pv)  I(pw)
8t+ ox + ay + 9z

—0. )

Integrating Eq. (9) over a finite grid box of volume AxAyAz,

we obtain

OM; jk
ot

+Uijk—Ui-1,jk+Vijk—Vij—1.x + Wi jk

www.geosci-model-dev.net/10/1733/2017/

— Wi jk—1=0, (10)

where M; ;i is the mass of the grid box. The rate of mass
change of the grid box dM; j /0t can, on the other hand,
be due to (1) compression in an compressible GCM and/or
(2) grid-box volume change, which generally in a GCM is
due to the time dependence of the vertical resolution so that
the thickness of model layers varies in time.

The mass of the grid box is

Mirfj,ksz‘rfj,kAxisjAyiJAZ?,j,k’ (11

where n is the time level of the stored GCM fields so that
time is t = nAtg and Atg is the time interval between two
stored GCM fields.

The vertical mass transport through the top of the grid box
is obtained by discretising Eq. (10) between two stored time
levels:

no _ wn _ n g n __yn
Wiik=Wijr-1 [Ui sk~ Uim et Vi = Vi1

(pljk ljk pl]k Zl]k)
Atg

A-xi,jAyi,j:| . (12)

which is computed by integration from the bottom and up-
wards with the bottom boundary condition W; ;o = 0. This is
the same way the vertical velocity is computed in the GCM,
except that we use the stored horizontal velocities and the
grid-size thicknesses to ensure that they satisfy the time de-
pendency correctly.

In many OGCMs, the fluid is considered to be incompress-
ible, and thus the density is constant and p can be dropped
from all equations in order to have volume flux instead of
mass flux in the calculations. The vertical volume transport
through the top of the grid box becomes
Wi’?j,k = Wﬁj,k—l - I:Uinj k— Uin—l,j,k + Vi’?j,k - Vir,lj—l,k
i, j,k < Js k)

(Az}
+ Atg

Ax,-,jAyi,j:| . (13)

If, additionally, the vertical resolution is time independent,
the last term can be neglected and thus

n _ n
Wiiik=Wiji-i

1], L],
_( LUl ljk+Vi},1j,k_Vir,lj—l,k) . (14)

On the other hand, in many AGCMs, there are both com-
pressibility of the air and a time dependence of the verti-
cal resolution, which is generally expressed in pressure and
hence

n n n n
Wik =W — [Uijk Uy je Vi —Viicix

L,

(Api,j,k pi jk)
+
8AlG

Axi,.iAyt',j:| , (15)

where Eq. (5) has been used. Note that in the case of offline
calculations, one may instead use centred or forward finite
time differences in Eqgs. (12), (13) and (15).
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2.2 The stationary case

This scheme assumes that the velocity and pressure fields
are in a steady state. It was introduced by Blanke and Ray-
naud (1997) and used and developed for ocean mass trans-
port studies by Do6s (1995). The velocity inside a grid cell is
found by assuming that it is only a function of its direction,
ie.u =u(x),v=v(y), w= w(z). Linear interpolation gives
the zonal velocity

X —x,-_l,j

u(x) =u;_1,jk+
1 s J A)Cl,,

(Ui jk —ui-1,j,k) (16)
and similarly for v(y) and w(z). Note that the calculation of
the vertical mass transport Wi’f : . through the top face of a
grid box, with Egs. (12)—(15), only involves the velocities on
the considered grid box. A 3-D dependency of the velocities
u=ux,y,z),v=v(x,y,z) and w = w(x, y, z)) would re-
quire velocities from other grid boxes, which could poten-
tially break the mass conservation of Egs. (12)—(15).

To calculate the zonal position, x, of a trajectory, we use
u = dx/dt and write Eq. (16) as the differential equation

dx  uijk—ui-1,jk
dr Ax; j

—uj-1,jk =0.

Xi—1,j

X+
Ax; j

(Wi, j ke —Ui—1,j.k)

The drawback by solving the above differential equation is
that Ax is not constant, and a horizontal grid face is rarely
rectangular in a GCM. The solution will hence depend on
the position of the trajectory in each grid box. Dd6s (1995)
used therefore a Ax corresponding to the average latitudi-
nal position of the trajectory in each grid box, which was
obtained by computing the trajectories several times in each
grid box. Blanke and Raynaud (1997) made this unneces-
sary by non-dimensionalising the position and used volume
fluxes instead of velocities. By substituting x for a non-
dimensional position r = x/Ax; ; and ¢ for a scaled time
s = t/(Ax,-,j Ay,-,jAz,',j,k), we get

dr

—+Br+6=0, an
ds

where F = dr/ds is the zonal volume or mass flux, and 8 =
Fi_1,jk—Fijrand 8 = —F;_1 jx— Bri_1 are constants. Its
solution describes the zonal displacement within the grid box
between the faces and is found using the initial condition
r(so) = ro of its zonal position so that

8 8
r(s) = (ro + —) e P~ (18)
B B
The scaled time s; becomes
1 )
51 = 50— — log [M] (19)
B ro+48/p

where r; =r(s1) is given by either r,_; or r;, when a tra-
jectory enters the western or eastern grid face, respectively.
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The logarithmic factor in Eq. (19) can be expressed as
log[F (r1)/ F (ro)].

For a trajectory reaching the grid face r =r; orr =r;_1,
both F(r1) and F(ro) must be of the same sign in order for
Eq. (19) to have a solution. If F(r;) and F (rg) are of opposite
signs, there is a zero zonal transport at a position between r{
and rg, and this position is reached exponentially slow.

The above procedure is repeated for meridional and verti-
cal displacements, where now r = y/Ay; j orr =z/Az; j k.
This yields non-dimensional position, r1, and scaled time, s7,
for the zonal, meridional and vertical displacements of the
trajectory, respectively, inside the grid box under considera-
tion. The smallest transit time s; — s and the corresponding
r1 denote through which grid face of the grid box the tra-
jectory will exit and move into the adjacent one. The exact
displacements in the other two directions are then computed
using the smallest s in the corresponding Eq. (18).

Note that Egs. (18)—(19) are not valid if the transport fields
across the grid box are constant, i.e. when (F;_1,j x = Fi j «),
since it would imply a division by zero with 8 =0 in both
equations. The differential equation then simplifies to
dr

—+6=0, 20
ds+ (20)

which has the solution
r(s) = —4&(s — o) +ro, 21

and the scaled time s is

s1=50— 20 (22)
3
If Fi_1,jx=Fi jx. TRACMASS instead uses Egs. (21)
and (22).

2.3 Stepwise-stationary and fixed GCM time step
integrations

The trajectory scheme above is, strictly speaking, only valid
for stationary fields. The scheme is, however, possible to use
for time-dependent fields by assuming that the velocity and
surface-elevation fields are stationary during a limited time
interval. The stepwise-stationary method presented here con-
sists of assuming that the fields are stationary during interme-
diate time steps between two GCM outputs and then updated
successively as new fields become available. If this is under-
taken online, i.e. in the same time as the GCM is integrated,
this time interval will simply be the same as the time step
the GCM is integrated by, which is typically between sev-
eral minutes and a few hours in a global GCM. If instead
the trajectories are calculated offline, the time intervals be-
tween GCM fields will be at least as often as the fields have
been stored by the GCM, at intervals that can be days or even
months.

A linear time interpolation of the velocity fields between
two GCM velocity fields permits a simple way to have
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shorter time steps by which the fields are updated in time.
The time interval between two GCM velocity fields is Atg
and the shorter time interval at which the fields are interpo-
lated is At; as illustrated by Fig. 1. The number of intermedi-
ate time steps is hence the ratio Is = Atg/At;. For any quan-
tity in the GCM output, F, the value at intermediate time step
m, located between GCM outputs n — 1 and n, is

m _tn—l

F(i™)y=F" = " (F"— F"~h4 pr1, (23)
G

The coefficients 8, § in Eq. (17) are updated when a trajec-
tory moves from one grid box to another. Thus, the time step
for the trajectory, i.e. s — s, may be shorter than the inter-
mediate time step, Af. At; is hence the maximum possible
time step for a given Ig but is often shorter if the spatial grid
spacing (Ax, Ay, Az) is small and Atg long. We will there-
fore test TRACMASS by imposing constant velocities for
the entire Atg in order to mimic other codes, such as the Ari-
ane code based on Blanke and Raynaud (1997), which do not
make any temporal interpolations of the velocity fields. This
particular case of the stepwise-stationary scheme with con-
stant velocity fields for the entire period between two GCM
outputs will be denoted the fixed GCM time step. These two
schemes together with a truly time-dependent scheme, de-
scribed in next section, will be tested.

2.4 Analytical time integration with the
time-dependent scheme

The stepwise-stationary integration method presented in the
previous section assumes that the velocity and the grid-box
thicknesses remain constant throughout the time step, and
only spatial variations of velocity are accounted for. Another
approach is to interpolate the velocity fields not only in space
within the grid box but also in time between the GCM out-
puts. This approach, introduced in TRACMASS by de Vries
and D66s (2001), is more accurate but involves a more ad-
vanced differential equation to be solved and integrated along
the trajectories. Accounting for both spatial and temporal
variations of velocities in the trajectory scheme renders inter-
mediate time steps unnecessary. We will later show that using
a large number of intermediate steps, the stepwise-stationary
scheme approaches this time-dependent scheme asymptoti-
cally.

The time-dependent scheme can be derived in the same
way as Eq. (17), but instead of a linear interpolation in space,
we use a bilinear interpolation in both space and time. As be-
fore, we use non-dimensional position r = x/Ax and scaled
time s =t /(Ax AyAz), where the denominator is the volume
of the particular grid box. For a zonal volume or mass flux F,
a bilinear interpolation in space and time yields

F(r,)=F' '+ —ri_)(F = Fh+
s — g1

+T I:anfl —Fin:ll + (r—ri-1)
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(Fr = F - F 4+ Fh], 24)
As is the scaled time step between two data sets:

As=s"—s"1 =" =" 1/ (AxAyAz)
= Atg/(AxAyAz), (25)

where Afg is the time step between two data sets in true
time dimension (seconds). The vertical grid-box spacing
is for models with time-dependent grid cell thicknesses
replaced with an average between the two time steps:
(Az" + Az"‘l) /2. Similar expressions for the meridional
and vertical directions can be derived.

Connecting the local transport to the time derivative of the
position with F = dr/ds, the following differential equation
is obtained:

d
d—r—i—ars—i—ﬂr—i—ys—}—(S:O, (26)
s

where the coefficients are defined by

1 _ _
o= (F = FL —F Yy Fh, 27)
B= Fin—_ll _ Fin_l _asn—l , (28)
1 _
= FL = Foh—ani, (29)
S=—F'"'+ri(F = Fh -y (30)

Different analytical solutions exist for the three cases: « > 0,
o < 0 and o = 0, which together cover all possible values of
«. The acceleration, inside the r — s grid box, is d?r /ds2 =
—ar — y, which is constrained by a linear r-dependent term
proportional to « and the constant y .

2.4.1 Thecasea >0

For this case, we define the time-like variable & = (8 +

o s)/+/2a and get

—ad
v Br-ad
o o

2
V= [p© - Do | 31
o

where Dawson’s integral

r(s) = (ro + Z) esg_g2 —
o

¢
D) Eeféz/exzdx (32)

0

has been used, as well as the initial condition r(sg) = rg. An
example of trajectories in this case is illustrated in Fig. 2a,
with given values of Fi"__l1 , Fl.”_l, F!"and F|' |. We see here
that > 0 occurs when the flow changes from divergence in
the i direction at time step n — 1 to convergence at time step
n.
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n-1

n+1

Figure 1. Schematic illustration of how the transport fields F'(¢) are updated and interpolated in time between the stored GCM data, which
are read in at the time 7" and are separated in time by the time interval Atg (in red). The fields are then linearly interpolated at the points in
blue with intermediate time steps. The number of intermediate time steps between two GCM velocities is in this example I = Atg/At; = 4.

24.2 Thecasea <0

When o < 0, £ becomes imaginary. By defining { =i§ =
(B +as)//—2a, Eq. (31) can be re-expressed as

—ad
r(s) = (ro + Z) P Py —ad
o a o

/L2 ¢ [erf(2) — erf(£0)] . (33)
— 20

where the error function erf(¢) = (2/4/() foc e~ dx. Anex-
ample of trajectories for this case is illustrated in Fig. 2b. We
see here that @ < 0 occurs when the flow changes from con-
vergence in the i direction at time step n — 1 to divergence at
time step 7.

2.4.3 Thecasea=0

The solution of Eq. (26) when o = 0 is

r(s) = (ro + %) e Pl % + %

[1 — Bs+ (Bso — 1)e—f‘<s—30>] . (34)

This case would normally not occur in a realistic GCM
integration since it would correspond to a field constant in
time or space, where F/' — F' | = Fl-"_l + E"__ll . Note that if
the fields are in steady state, Eq. (34) is reduced to become
identical to the stationary solution of Eq. (18). An example
of trajectories in this stationary case is illustrated in Fig. 2c.

If instead o = O since the fields are constant in space, i.e.
the transport across the grid cell is constant (F; = Fj_1),
then we also have § =0, which leads to a simplification of
Eq. (26):

d

Y ysts=0, (35)
ds

with the solution

r(s):ro—%(sz—sg) —5(s—s0). (36)

An example of trajectories in this case with constant fields in
space is illustrated in Fig. 2d.
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2.5 The transit time

A major difference between the time-dependent and the
stepwise-stationary schemes is that in the time-dependent
scheme, the transit times 51 —sg cannot in general be obtained
explicitly with the time-dependent scheme in contrast to the
stepwise-stationary analytical solution of Eq. (18). Using the
solutions given by Egs. (31)—(34), the relevant root s; of

r(s)) —r1 =0 37

has to be computed numerically for each direction. We will
now describe how the roots s; and the corresponding exiting
grid face r; can be determined. The displacement of the tra-
jectory inside the grid box under consideration then proceeds
as previously discussed for stationary velocity fields.

We now determine the roots s1 of Eq. (37) and the cor-
responding r; needed to calculate trajectories inside a grid
box. In what follows, 5"~ ! <sp < s" and the relevant roots s
are to be in the interval of s < 51<s" . We also focus on the
cases o > 0 and o < 0, since the forthcoming considerations
can easily be adapted for the case of o = 0. For numerical
purposes, we use

By —ad FinFin:ll - Finilﬂn—l
o« P _pn _pi gl 38
R S e
Fro— ol
Y= il nl__ll — —Ti-1, (39)
o«  F'-F,-F" +F
F?’_I—F."_l—i—a(s—s"_l)
f=—L : (40)
V20
Frl el g (s — 5!
§= i—1 i ( ) (41)
Vv =20

As above, s is the scaled time. The coefficient in Eq. (38)
appearing in Eqs. (31) and (33) is exactly zero when either
the r;_; or r; grid face represents a solid boundary, so that
transport F; or F;_p is zero for all n, respectively. In these
instances, the opposite grid face fixes r1 , and the root s1 > s¢
can be computed analytically. If there is no solution, we take
s1 = s". When all three transit times equal s”, the trajectory
will not move into an adjacent grid box but will remain inside
the original one. Its new position is subsequently determined,
and the next time interval is considered.
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Figure 2. Examples of how trajectories calculated with the time-dependent scheme evolve as a function of the transport F in the space
interval r; _| <r < r; and in the time interval s"~1 <5 < s", which hence corresponds to an interval between two GCM outputs (Atg) and

of a grid box (Ax, Ay or Az). The colour shows the transport values F' obtained by the bilinear interpolation between the four corners (Fl."__l,

F l."_l, F l” and F in—l)' (a) o > 0 with two corners of transport in the negative direction (F < 0), which correspond to westward, southward
or downward directions, and one corner flowing in the opposite direction. (b) @ < 0. (¢) & = 0 and y = 0 correspond to the stationary fields,
which results in an F field that only changes in the (r) direction. (d) &« = 0 and B = 0 correspond to the constant fields in space but which
vary in time. Note that the F = 0 line between the red and blue colours corresponds to static flow, which results in “vertical” trajectories in

the figures.

The roots of Eq. (37) have to be computed numerically if
(By —ad)/a # 0. This is also true for locating the extrema of
the solutions given by Egs. (31) and (33). Alternatively, one
can consider the case F(r,s) =0 using Eq. (24) to analyse
where possible extrema are located. It follows that in the s —r
plane, the extrema lie on a hyperbola of the form r = (as +
b)/(c +ds). Obviously, only the parts defined by s" ! < s <
s" and r;j_1 <r <r; are relevant. Depending on which parts
of the hyperbola, if any, lie in this “box” and satisfy the initial
condition r(sg) = ro, the trajectory r(s) exhibits no, one or,
at most, two extrema. In the latter case, the trajectory will not
cross either the grid face at r;_; or the one at r; (see Fig. 2
for an example). Hence, the trajectories r (s) determining the
transit time 51 — sg will have at most one extremum,; i.e. there
is at most one change of sign in the local transport F.

An efficient way of proceeding is as follows: first, consider
the grid face at r;. For a trajectory to reach this grid face, the
local transport must be nonnegative, which depends on the

www.geosci-model-dev.net/10/1733/2017/

signs of the transport F/' | and F;". Four distinct configura-

tions may arise between the model outputs (s"~! < 5 < s™),
where the calculation of the trajectory takes place:

1. F(ri,s)>0fors" ! <5 < s

2. The sign of F(r;,s) changes from positive to negative
at s = s*, where 5"~ ! < s* < 5",

3. The sign of F(r;,s) changes from negative to positive

ats = s*, where s"~! < s* < 5",

4. F(ri,s) <0fors" ! <s <s".

These four cases are illustrated by the four panels of Fig. 3.
For case 1, we evaluate r(s") using the appropriate ana-
Iytical solution. If, in addition, r(s") > r;, then the trajectory
has crossed the grid-box face r =r; at s; < s" as shown by
the trajectories A, B and C in Fig. 3. If the initial transport
F(rg, so) < 0, the trajectory may have crossed the opposite

Geosci. Model Dev., 10, 1733-1749, 2017
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Figure 3. The four different cases of how trajectories might reach the grid face at r = r;. Note that the trajectories for case 4 can not reach
r = r;. The background colours are the same as in Fig. 2 with F > 0 in red and F < 0 in blue. The dashed trajectories outside the grid box
denote the necessary computed fictive paths for estimating when s = 51 and if the trajectories reach rq(s1) =r;.

grid face at an earlier time, as illustrated by trajectory C in
Fig. 3. This is only possible if case 3 applies for the grid face
at r;_; and s* > s¢, in which case it is determined whether
r(s#) <ri_1. If this is not the case, there is a solution to
r(s;)—ry =0forr; =r; and sg < 51 < s". Subsequently, this
root can be calculated numerically using a root-solving algo-
rithm (Press et al., 2007). But if r(s) < r; or, if applicable,
r(s%) < r;_1, we proceed by considering the other grid faces.
The arguments for the grid face at r;_; are similar to those
relating to ;.

If case 2 applies and 59 < s*, we add here to the consid-
erations given in case 1 using s* instead of s”. If there is a
root for r; = r; , then so < 51 < s* . This root is illustrated by
trajectory D in Fig. 3 with (r1, s1) = (7, 51D)-

For case 3, we follow the procedure given by case 1. If
there is a root for r; = r;, then s* < s; < s”. This root is il-
lustrated by trajectory E in Fig. 3 with (rq