Articles | Volume 9, issue 2
https://doi.org/10.5194/gmd-9-523-2016
https://doi.org/10.5194/gmd-9-523-2016
Model description paper
 | 
08 Feb 2016
Model description paper |  | 08 Feb 2016

Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3

S. Westermann, M. Langer, J. Boike, M. Heikenfeld, M. Peter, B. Etzelmüller, and G. Krinner

Related authors

Impact of livestock activity on near-surface ground temperatures in Mongolia
Robin B. Zweigel, Avirmed Dashtseren, Khurelbaatar Temuujin, Anarmaa Sharkhuu, Clare Webster, Hanna Lee, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1790,https://doi.org/10.5194/egusphere-2024-1790, 2024
Short summary
Spatio-temporal snow data assimilation with the ICESat-2 laser altimeter
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1404,https://doi.org/10.5194/egusphere-2024-1404, 2024
Short summary
Carbon degradation and mobilisation potentials of thawing permafrost peatlands in Northern Norway
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
EGUsphere, https://doi.org/10.5194/egusphere-2024-562,https://doi.org/10.5194/egusphere-2024-562, 2024
Short summary
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024,https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Rapid warming and degradation of mountain permafrost in Norway and Iceland
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023,https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary

Related subject area

Cryosphere
A novel numerical implementation for the surface energy budget of melting snowpacks and glaciers
Kévin Fourteau, Julien Brondex, Fanny Brun, and Marie Dumont
Geosci. Model Dev., 17, 1903–1929, https://doi.org/10.5194/gmd-17-1903-2024,https://doi.org/10.5194/gmd-17-1903-2024, 2024
Short summary
SnowPappus v1.0, a blowing-snow model for large-scale applications of the Crocus snow scheme
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024,https://doi.org/10.5194/gmd-17-1297-2024, 2024
Short summary
OpenFOAM-avalanche 2312: Depth-integrated Models Beyond Dense Flow Avalanches
Matthias Rauter and Julia Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2024-210,https://doi.org/10.5194/egusphere-2024-210, 2024
Short summary
A stochastic parameterization of ice sheet surface mass balance for the Stochastic Ice-Sheet and Sea-Level System Model (StISSM v1.0)
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024,https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024,https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary

Cited articles

Abnizova, A., Siemens, J., Langer, M., and Boike, J.: Small ponds with major impact: The relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions, Global Biogeochem. Cy., 26, GB2041, https://doi.org/10.1029/2011GB004237, 2012.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning. Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, 2002.
Boike, J., Wille, C., and Abnizova, A.: Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia, J. Geophys. Res.-Biogeosci., 113, https://doi.org/10.1029/2007JG000540, 2008.
Boike, J., Langer, M., Lantuit, H., Muster, S., Roth, K., Sachs, T., Overduin, P., Westermann, S., and McGuire, A. D.: Permafrost–Physical Aspects, Carbon Cycling, Databases and Uncertainties, in: Recarbonization of the Biosphere, 159–185, Springer, 2012.
Boike, J., Kattenstroth, B., Abramova, K., Bornemann, N., Chetverova, A., Fedorova, I., Fröb, K., Grigoriev, M., Grüber, M., Kutzbach, L., Langer, M., Minke, M., Muster, S., Piel, K., Pfeiffer, E.-M., Stoof, G., Westermann, S., Wischnewski, K., Wille, C., and Hubberten, H.-W.: Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011), Biogeosciences, 10, 2105–2128, https://doi.org/10.5194/bg-10-2105-2013, 2013.
Download
Short summary
Thawing of permafrost is governed by a complex interplay of different processes, of which only conductive heat transfer is taken into account in most model studies. We present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes.