Articles | Volume 9, issue 3
https://doi.org/10.5194/gmd-9-1125-2016
https://doi.org/10.5194/gmd-9-1125-2016
Development and technical paper
 | 
24 Mar 2016
Development and technical paper |  | 24 Mar 2016

The location of the thermodynamic atmosphere–ice interface in fully coupled models – a case study using JULES and CICE

Alex E. West, Alison J. McLaren, Helene T. Hewitt, and Martin J. Best

Related authors

The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2023-1731,https://doi.org/10.5194/egusphere-2023-1731, 2023
Short summary
Understanding model spread in sea ice volume by attribution of model differences in seasonal ice growth and melt
Alex West, Edward Blockley, and Matthew Collins
The Cryosphere, 16, 4013–4032, https://doi.org/10.5194/tc-16-4013-2022,https://doi.org/10.5194/tc-16-4013-2022, 2022
Short summary
Using Arctic ice mass balance buoys for evaluation of modelled ice energy fluxes
Alex West, Mat Collins, and Ed Blockley
Geosci. Model Dev., 13, 4845–4868, https://doi.org/10.5194/gmd-13-4845-2020,https://doi.org/10.5194/gmd-13-4845-2020, 2020
Short summary
Induced surface fluxes: a new framework for attributing Arctic sea ice volume balance biases to specific model errors
Alex West, Mat Collins, Ed Blockley, Jeff Ridley, and Alejandro Bodas-Salcedo
The Cryosphere, 13, 2001–2022, https://doi.org/10.5194/tc-13-2001-2019,https://doi.org/10.5194/tc-13-2001-2019, 2019
Short summary
The sea ice model component of HadGEM3-GC3.1
Jeff K. Ridley, Edward W. Blockley, Ann B. Keen, Jamie G. L. Rae, Alex E. West, and David Schroeder
Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018,https://doi.org/10.5194/gmd-11-713-2018, 2018
Short summary

Related subject area

Cryosphere
A novel numerical implementation for the surface energy budget of melting snowpacks and glaciers
Kévin Fourteau, Julien Brondex, Fanny Brun, and Marie Dumont
Geosci. Model Dev., 17, 1903–1929, https://doi.org/10.5194/gmd-17-1903-2024,https://doi.org/10.5194/gmd-17-1903-2024, 2024
Short summary
SnowPappus v1.0, a blowing-snow model for large-scale applications of the Crocus snow scheme
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024,https://doi.org/10.5194/gmd-17-1297-2024, 2024
Short summary
A stochastic parameterization of ice sheet surface mass balance for the Stochastic Ice-Sheet and Sea-Level System Model (StISSM v1.0)
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024,https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024,https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary
A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0)
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023,https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary

Cited articles

Best, M. J., Beljaars, A., Polcher, J., and Viterbo, P.: A Proposed Structure for Coupling Tiled Surfaces with the Planetary Boundary Layer, J. Hydrometerorol., 5, 1271–1278, https://doi.org/10.1175/JHM-382.1, 2004.
Best, M. J., Cox, P. M., and Warrilow, D. M.: Determining the optimal soil temperature scheme for atmospheric modelling applications, Bound. Lay. Meteorol., 114, 111–142, 2005.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R .L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res., 104, 15669–15677, 1999.
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147–168, https://doi.org/10.1007/s003820050010, 2000.
Download
Short summary
This study compares two methods of coupling a sea ice model to an atmospheric model in a series of idealized one-dimensional experiments. The JULES method calculates surface variables in the atmosphere; the CICE method calculates surface variables in the sea ice. It is found that simulations of all variables are more accurate in the JULES method, likely because of the shorter time step of the atmosphere.