Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3021-2015
https://doi.org/10.5194/gmd-8-3021-2015
Development and technical paper
 | 
02 Oct 2015
Development and technical paper |  | 02 Oct 2015

Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models

R. G. Anderson, M.-H. Lo, S. Swenson, J. S. Famiglietti, Q. Tang, T. H. Skaggs, Y.-H. Lin, and R.-J. Wu

Related authors

Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019,https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions
R. G. Anderson, D. Wang, R. Tirado-Corbalá, H. Zhang, and J. E. Ayars
Hydrol. Earth Syst. Sci., 19, 583–599, https://doi.org/10.5194/hess-19-583-2015,https://doi.org/10.5194/hess-19-583-2015, 2015
Short summary

Related subject area

Hydrology
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024,https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary

Cited articles

Allen, R. G., Tasumi, M., and Trezza, R.: Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC) – Model, J. Irrig. Drain. Eng., 133, 380–394, 2007.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W. P.: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506, 2007.
Anderson, R. G., Lo, M.-H., and Famiglietti, J. S.: Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation, Geophys. Res. Lett., 39, L16401, https://doi.org/10.1029/2012GL052400, 2012.
Ayars, J. E.: Adapting Irrigated Agriculture to Drought in the San Joaquin Valley of California, in Drought in Arid and Semi-Arid Regions, edited by: Schwabe, K., Albiac, J., Connor, J. D., Hassan, R. M., and Meza González, L., 25–39, Springer Netherlands, Dordrecht, 2013.
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M.: A remote sensing surface energy balance algorithm for land (SEBAL), 1. Formulation, J. Hydrol., 212/213, 198–212, 1998.
Download
Short summary
Current land surface models (LSMs) poorly represent irrigation impacts on regional hydrology. Approaches to include irrigation in LSMs are based on either potentially outdated irrigation inventory data or soil moisture curves that are not constrained by regional water balances. We use satellite remote sensing of actual ET and groundwater depletion to develop recent estimates of regional irrigation data. Remote sensing parameterizations of irrigation improve model performance.