Articles | Volume 8, issue 10
Development and technical paper
02 Oct 2015
Development and technical paper |  | 02 Oct 2015

Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models

R. G. Anderson, M.-H. Lo, S. Swenson, J. S. Famiglietti, Q. Tang, T. H. Skaggs, Y.-H. Lin, and R.-J. Wu


Total article views: 4,663 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,663 1,815 185 4,663 370 170 221
  • HTML: 2,663
  • PDF: 1,815
  • XML: 185
  • Total: 4,663
  • Supplement: 370
  • BibTeX: 170
  • EndNote: 221
Views and downloads (calculated since 29 Apr 2015)
Cumulative views and downloads (calculated since 29 Apr 2015)


Saved (final revised paper)

Saved (final revised paper)

Saved (preprint)

Latest update: 26 May 2024
Short summary
Current land surface models (LSMs) poorly represent irrigation impacts on regional hydrology. Approaches to include irrigation in LSMs are based on either potentially outdated irrigation inventory data or soil moisture curves that are not constrained by regional water balances. We use satellite remote sensing of actual ET and groundwater depletion to develop recent estimates of regional irrigation data. Remote sensing parameterizations of irrigation improve model performance.