Articles | Volume 8, issue 8
https://doi.org/10.5194/gmd-8-2379-2015
https://doi.org/10.5194/gmd-8-2379-2015
Development and technical paper
 | 
04 Aug 2015
Development and technical paper |  | 04 Aug 2015

A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741)

I. Gouttevin, M. Lehning, T. Jonas, D. Gustafsson, and M. Mölder

Related authors

The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.0) Model Enables Fast Dynamic Downscaling to the Hectometer Scale
Dylan Stewart Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-16,https://doi.org/10.5194/gmd-2023-16, 2023
Preprint under review for GMD
Short summary
An empirical model to calculate snow depth from daily snow water equivalent: SWE2HS 1.0
Johannes Aschauer, Adrien Michel, Tobias Jonas, and Christoph Marty
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-258,https://doi.org/10.5194/gmd-2022-258, 2023
Preprint under review for GMD
Short summary
Vertical distribution of sources and sinks of VOCs within a boreal forest canopy
Ross Charles Petersen, Thomas Holst, Meelis Mölder, Natascha Kljun, and Janne Rinne
EGUsphere, https://doi.org/10.5194/egusphere-2022-952,https://doi.org/10.5194/egusphere-2022-952, 2022
Short summary
Natural climate variability is an important aspect of future projections of snow water resources and rain-on-snow events
Michael Schirmer, Adam Winstral, Tobias Jonas, Paolo Burlando, and Nadav Peleg
The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022,https://doi.org/10.5194/tc-16-3469-2022, 2022
Short summary
Canopy structure, topography and weather are equally important drivers of small-scale snow cover dynamics in sub-alpine forests
Giulia Mazzotti, Clare Webster, Louis Quéno, Bertrand Cluzet, and Tobias Jonas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-273,https://doi.org/10.5194/hess-2022-273, 2022
Preprint under review for HESS
Short summary

Related subject area

Cryosphere
Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023,https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary
Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023,https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
SUHMO: an adaptive mesh refinement SUbglacial Hydrology MOdel v1.0
Anne M. Felden, Daniel F. Martin, and Esmond G. Ng
Geosci. Model Dev., 16, 407–425, https://doi.org/10.5194/gmd-16-407-2023,https://doi.org/10.5194/gmd-16-407-2023, 2023
Short summary
Improving snow albedo modeling in the E3SM land model (version 2.0) and assessing its impacts on snow and surface fluxes over the Tibetan Plateau
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023,https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
The Multiple Snow Data Assimilation System (MuSA v1.0)
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022,https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary

Cited articles

ACIA: Arctic Climate Impact Assessment, Cambridge University Press, available at: http://www.acia.uaf.edu (last access: 27 July 2015), 2005.
Adams, R., Spittlehouse, D., and Winkler, R.: The effect of a canopy on the snowmelt energy balance, in: Proceedings of the 64th Annual Meeting Western Snow Conference, 171–174, 1996.
Axelsson, B. and Ågren, G.: Tree growth model (PT 1) a development paper, Swedish Coniferous Forest Project Internal Report, Swedish University of Agricultural Sciences, Uppsala, 1976.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, 2002.
Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, 2014.
Download
Short summary
We improve the canopy module of a very detailed snow model, SNOWPACK, with a view of a more consistent representation of the sub-canopy energy balance with regard to the snowpack. We show that adding a formulation of (i) the canopy heat capacity and (ii) a lowermost canopy layer (alike trunk + solar shaded leaves) yields significant improvement in the representation of sub-canopy incoming long-wave radiations, especially at nighttime. This energy is an important contributor to snowmelt.