Articles | Volume 8, issue 8
https://doi.org/10.5194/gmd-8-2379-2015
https://doi.org/10.5194/gmd-8-2379-2015
Development and technical paper
 | 
04 Aug 2015
Development and technical paper |  | 04 Aug 2015

A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741)

I. Gouttevin, M. Lehning, T. Jonas, D. Gustafsson, and M. Mölder

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Isabelle Gouttevin on behalf of the Authors (30 Jun 2015)  Author's response   Manuscript 
ED: Publish as is (07 Jul 2015) by Jeremy Fyke
AR by Isabelle Gouttevin on behalf of the Authors (08 Jul 2015)
Download
Short summary
We improve the canopy module of a very detailed snow model, SNOWPACK, with a view of a more consistent representation of the sub-canopy energy balance with regard to the snowpack. We show that adding a formulation of (i) the canopy heat capacity and (ii) a lowermost canopy layer (alike trunk + solar shaded leaves) yields significant improvement in the representation of sub-canopy incoming long-wave radiations, especially at nighttime. This energy is an important contributor to snowmelt.