Articles | Volume 18, issue 1
https://doi.org/10.5194/gmd-18-193-2025
https://doi.org/10.5194/gmd-18-193-2025
Methods for assessment of models
 | 
17 Jan 2025
Methods for assessment of models |  | 17 Jan 2025

Clustering simulated snow profiles to form avalanche forecast regions

Simon Horton, Florian Herla, and Pascal Haegeli

Related authors

A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
A quantitative module of avalanche hazard—comparing forecaster assessments of storm and persistent slab avalanche problems with information derived from distributed snowpack simulations
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
EGUsphere, https://doi.org/10.5194/egusphere-2024-871,https://doi.org/10.5194/egusphere-2024-871, 2024
Short summary
Using snow depth observations to provide insight into the quality of snowpack simulations for regional-scale avalanche forecasting
Simon Horton and Pascal Haegeli
The Cryosphere, 16, 3393–3411, https://doi.org/10.5194/tc-16-3393-2022,https://doi.org/10.5194/tc-16-3393-2022, 2022
Short summary
Snow profile alignment and similarity assessment for aggregating, clustering, and evaluating snowpack model output for avalanche forecasting
Florian Herla, Simon Horton, Patrick Mair, and Pascal Haegeli
Geosci. Model Dev., 14, 239–258, https://doi.org/10.5194/gmd-14-239-2021,https://doi.org/10.5194/gmd-14-239-2021, 2021
Short summary
Examining the operational use of avalanche problems with decision trees and model-generated weather and snowpack variables
Simon Horton, Moses Towell, and Pascal Haegeli
Nat. Hazards Earth Syst. Sci., 20, 3551–3576, https://doi.org/10.5194/nhess-20-3551-2020,https://doi.org/10.5194/nhess-20-3551-2020, 2020
Short summary

Related subject area

Cryosphere
SnowQM 1.0: a fast R package for bias-correcting spatial fields of snow water equivalent using quantile mapping
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev., 17, 8969–8988, https://doi.org/10.5194/gmd-17-8969-2024,https://doi.org/10.5194/gmd-17-8969-2024, 2024
Short summary
Simulation of snow albedo and solar irradiance profile with the Two-streAm Radiative TransfEr in Snow (TARTES) v2.0 model
Ghislain Picard and Quentin Libois
Geosci. Model Dev., 17, 8927–8953, https://doi.org/10.5194/gmd-17-8927-2024,https://doi.org/10.5194/gmd-17-8927-2024, 2024
Short summary
Evaluation of MITgcm-based ocean reanalyses for the Southern Ocean
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Yafei Nie, Ian Fenty, Matthew Mazloff, Armin Köhl, and Dimitris Menemenlis
Geosci. Model Dev., 17, 8613–8638, https://doi.org/10.5194/gmd-17-8613-2024,https://doi.org/10.5194/gmd-17-8613-2024, 2024
Short summary
Improvements in the land surface configuration to better simulate seasonal snow cover in the European Alps with the CNRM-AROME (cycle 46) convection-permitting regional climate model
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
Geosci. Model Dev., 17, 7645–7677, https://doi.org/10.5194/gmd-17-7645-2024,https://doi.org/10.5194/gmd-17-7645-2024, 2024
Short summary
A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024,https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary

Cited articles

Bouchayer, C.: Synthesis of distributed snowpack simulations relevant for avalanche hazard forecasting, Master's thesis, University Grenoble Alpes, 2017. a, b
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, 1992. a
Canadian Avalanche Association: Technical aspects of snow avalanche risk management – Resources and guidelines for avalanche practioners in Canada, Canadian Avalanche Association, Revelstoke, BC, ISBN 978-1-926497-00-6, https://www.avalancheassociation.ca/page/GuidelinesStandards (last access: 10 October 2024), 2016. a
Chavent, M., Kuentz-Simonet, V., Labenne, A., and Saracco, J.: ClustGeo: an R package for hierarchical clustering with spatial constraints, Comput. Stat., 33, 1799–1822, https://doi.org/10.1007/s00180-018-0791-1, 2018. a
Feurer, M. and Hutter, F.: Hyperparameter Optimization, pp. 3–33, Cham, Switzerland, ISBN 978-3-030-05318-5, https://doi.org/10.1007/978-3-030-05318-5_1, 2019. a
Download
Short summary
We present a method for avalanche forecasters to analyze patterns in snowpack model simulations. It uses fuzzy clustering to group small regions into larger forecast areas based on snow characteristics, locations, and temporal history. Tested in the Columbia Mountains in two winter seasons, it closely matched real forecast regions regions and identified major avalanche hazard patterns. This approach simplifies complex model outputs, helping forecasters make informed decisions.