the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
Camilla Mathison
Eleanor J. Burke
Gregory Munday
Chris D. Jones
Chris J. Smith
Norman J. Steinert
Andy J. Wiltshire
Chris Huntingford
Eszter Kovacs
Laila K. Gohar
Rebecca M. Varney
Douglas McNeall
Related authors
What is an EC?, we suggest they are often the discovery of parameters that characterise hidden large-scale equations that climate models solve implicitly. We present this conceptually via two examples. Our analysis implies possible new paths to link ECs and physical processes.
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
sluggish. In some circumstances, this causes stomata to be more open – a concern during drought conditions – by increasing transpiration. To guide interpretation and modelling of field measurements, we present an equation for sluggish effects, via a single tau parameter.
IMOGEN uses "pattern scaling" to emulate GCMs, and with such linearity enables projections to be made for alternative future scenarios of atmospheric greenhouse gas concentrations. It is also coupled to the JULES land surface model, to allow impact assessments.
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
Related subject area
Inaccuracies in air–sea heat fluxes severely degrade the accuracy of ocean numerical simulations. Here, we use artificial neural networks to correct air–sea heat fluxes as a function of oceanic and atmospheric state predictors. The correction successfully improves surface and subsurface ocean temperatures beyond the training period and in prediction experiments.
FINAM is not a model), a new coupling framework written in Python to dynamically connect independently developed models. Python, as the ultimate glue language, enables the use of codes from nearly any programming language like Fortran, C++, Rust, and others. FINAM is designed to simplify the integration of various models with minimal effort, as demonstrated through various examples ranging from simple to complex systems.
This study introduces a new 3D lake–ice–atmosphere coupled model that significantly improves winter climate simulations for the Great Lakes compared to traditional 1D lake model coupling. The key contribution is the identification of critical hydrodynamic processes – ice transport, heat advection, and shear-driven turbulence production – that influence lake thermal structure and ice cover and explain the superior performance of 3D lake models to their 1D counterparts.