Articles | Volume 17, issue 21
https://doi.org/10.5194/gmd-17-7569-2024
https://doi.org/10.5194/gmd-17-7569-2024
Model description paper
 | Highlight paper
 | 
30 Oct 2024
Model description paper | Highlight paper |  | 30 Oct 2024

A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting

Alessandro Maissen, Frank Techel, and Michele Volpi

Related authors

Can model-based avalanche forecasts match the discriminatory skill of human danger-level forecasts? A comparison from Switzerland
Frank Techel, Ross S. Purves, Stephanie Mayer, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 25, 3333–3353, https://doi.org/10.5194/nhess-25-3333-2025,https://doi.org/10.5194/nhess-25-3333-2025, 2025
Short summary
Exploring seismic mass-movement data with anomaly detection and dynamic time warping
Francois Kamper, Fabian Walter, Patrick Paitz, Matthias Meyer, Michele Volpi, and Mathieu Salzmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3864,https://doi.org/10.5194/egusphere-2025-3864, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
The EAWS matrix, a look-up table to determine the regional avalanche danger level (Part B): Operational testing and use
Frank Techel, Karsten Müller, Christopher Marquardt, and Christoph Mitterer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3349,https://doi.org/10.5194/egusphere-2025-3349, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Data-driven modeling of environmental factors influencing Arctic methanesulfonic acid aerosol concentrations
Jakob Boyd Pernov, William H. Aeberhard, Michele Volpi, Eliza Harris, Benjamin Hohermuth, Sakiko Ishino, Ragnhild B. Skeie, Stephan Henne, Ulas Im, Patricia K. Quinn, Lucia M. Upchurch, and Julia Schmale
Atmos. Chem. Phys., 25, 6497–6537, https://doi.org/10.5194/acp-25-6497-2025,https://doi.org/10.5194/acp-25-6497-2025, 2025
Short summary
Tracking the slopes: A spatio-temporal prediction model for backcountry skiing activity in the Swiss Alps using UGC
Leonie Schäfer, Frank Techel, Günter Schmudlach, and Ross S. Purves
EGUsphere, https://doi.org/10.5194/egusphere-2025-2344,https://doi.org/10.5194/egusphere-2025-2344, 2025
Short summary

Cited articles

Adelson, E., Anderson, C., Bergen, J., Burt, P., and Ogden, J.: Pyramid Methods in Image Processing, RCA Engineer, 29, 33–41, 1984. a
Agou, V. D., Pavlides, A., and Hristopulos, D. T.: Spatial Modeling of Precipitation Based on Data-Driven Warping of Gaussian Processes, Entropy, 24, 321, https://doi.org/10.3390/e24030321, 2022. a
Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural hazard fatalities in Switzerland from 1946 to 2015, Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, 2016. a
Baggi, S. and Schweizer, J.: Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland), Nat. Hazards, 50, 97–108, https://doi.org/10.1007/s11069-008-9322-7, 2009. a
Bellaire, S., Jamieson, J. B., and Fierz, C.: Forcing the snow-cover model SNOWPACK with forecasted weather data, The Cryosphere, 5, 1115–1125, https://doi.org/10.5194/tc-5-1115-2011, 2011. a
Download
Executive editor
Operational avalanche forecasting has so far been done almost exclusively by human forecasters. For the first time, an automated machine learning approach allows to reach forecasting skills close to human forecasters.
Short summary
By harnessing AI models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland's avalanche-prone regions.
Share