Articles | Volume 17, issue 21
https://doi.org/10.5194/gmd-17-7569-2024
https://doi.org/10.5194/gmd-17-7569-2024
Model description paper
 | Highlight paper
 | 
30 Oct 2024
Model description paper | Highlight paper |  | 30 Oct 2024

A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting

Alessandro Maissen, Frank Techel, and Michele Volpi

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-2948', Simon Horton, 02 Mar 2024
    • AC1: 'Reply on RC1', Alessandro Maissen, 13 Jun 2024
  • RC2: 'Comment on egusphere-2023-2948', Anonymous Referee #2, 17 May 2024
    • AC2: 'Reply on RC2', Alessandro Maissen, 13 Jun 2024
  • EC1: 'Further review comments', Fabien Maussion, 21 May 2024
    • AC3: 'Reply on EC1', Alessandro Maissen, 13 Jun 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Alessandro Maissen on behalf of the Authors (09 Aug 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (30 Aug 2024) by Fabien Maussion
AR by Alessandro Maissen on behalf of the Authors (13 Sep 2024)
Download
Executive editor
Operational avalanche forecasting has so far been done almost exclusively by human forecasters. For the first time, an automated machine learning approach allows to reach forecasting skills close to human forecasters.
Short summary
By harnessing AI models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland's avalanche-prone regions.