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Abstract. Despite the increasing use of physical snow cover
simulations in regional avalanche forecasting, avalanche
forecasting is still an expert-based decision-making process.
However, recently, it has become possible to obtain fully au-
tomated avalanche danger level predictions with satisfying
accuracy by combining physically based snow cover mod-
els with machine learning approaches. These predictions are
made at the location of automated weather stations close to
avalanche starting zones. To bridge the gap between these
local predictions and fully data- and model-driven regional
avalanche danger maps, we developed and evaluated a three-
stage model pipeline (RAvaFcast v1.0.0), involving the steps
classification, interpolation, and aggregation. More specifi-
cally, we evaluated the impact of various terrain features on
the performance of a Gaussian-process-based model for in-
terpolation of local predictions to unobserved locations on a
dense grid. Aggregating these predictions using an elevation-
based strategy, we estimated the regional danger level and
the corresponding elevation range for predefined warning re-
gions, resulting in a forecast similar to the human-made pub-
lic avalanche forecast in Switzerland. The best-performing
model matched the human-made forecasts with a mean day
accuracy of approximately 66 % for the entire forecast do-
main and 70 % specifically for the Alps. However, the perfor-
mance depended strongly on the classifier’s accuracy (i.e., a
mean day accuracy of 68 %) and the density of local pre-
dictions available for the interpolation task. Despite these
limitations, we believe that the proposed three-stage model
pipeline has the potential to improve the interpretability of
machine-made danger level predictions and has, thus, the po-

tential to assist avalanche forecasters during forecast prepara-
tion, for instance, by being integrated in the forecast process
in the form of an independent virtual forecaster.

1 Introduction

Snow avalanches rank among the deadliest natural hazards
in snow-covered, mountainous regions (Nadim et al., 2008;
Badoux et al., 2016). Consequently, public avalanche fore-
casts are issued in many countries, informing and warning
public and professional decision-makers about the snow and
avalanche conditions in a region. Over the last decades, win-
ter sport activities in terrain not secured from avalanches
have become very popular (e.g., in Switzerland as in Win-
kler et al., 2016, and in the United States as in Birkeland
et al., 2017). Nowadays, in Europe and North America, the
majority of avalanche accidents are related to recreational
winter sport activities (e.g., Techel and Zweifel, 2013; Birke-
land et al., 2017), emphasizing the importance of timely and
accurate avalanche forecasts to support the decision-making
process, particularly during the planning phase. Despite re-
cent advances in physical snowpack modeling, coupled with
machine learning approaches (e.g., Mayer et al., 2022; Herla
et al., 2024), avalanche forecasting is still an expert-based
process, involving the evaluation and interpretation of a va-
riety of data describing weather and snowpack conditions,
from which expected avalanche conditions are inferred (e.g.,
SLF, 2023). One of the key pieces of information commu-
nicated in avalanche forecasts is an avalanche danger level
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summarizing avalanche conditions in a given region accord-
ing to a five-level avalanche danger scale (e.g., in Europe ac-
cording to EAWS, 2022). The five levels describe avalanche
situations ranging from “generally favorable” avalanche con-
ditions (danger level: 1 – low) to “extraordinary avalanche
conditions” (5 – very high; EAWS, 2022).

It is our objective to design a fully automated, data- and
model-driven pipeline producing a forecast similar to the
current human-made regional avalanche forecast in Switzer-
land by building upon a recently developed classifier predict-
ing the avalanche danger level (Pérez-Guillén et al., 2022a).
This random forest (RF) model relies on data from phys-
ical simulations of snowpack stratigraphy and snowpack
stability, driven with inputs from automated weather sta-
tions (described in detail in Pérez-Guillén et al., 2022a).
Inspired by the ideas of Brabec and Meister (2001) for
regional avalanche forecasting, we develop and validate a
three-stage model pipeline for regional avalanche danger
forecasting (RAvaFcast v1.0.0), comprising the stages classi-
fication, interpolation, and aggregation. Concretely, we pro-
pose an interpolation algorithm allowing the prediction of
high-resolution danger level maps for the Swiss Alps based
on point predictions at the locations of the automated weather
stations, where the RF classifier from Pérez-Guillén et al.
(2022a) infers danger levels. Then, a novel elevation-based
aggregation strategy infers an avalanche danger level for pre-
defined warning regions to ultimately produce a regional
avalanche forecast that mimics human forecasts. Lastly, we
compare the model’s predictive performance to the point-
based approach used by Pérez-Guillén et al. (2022a) and im-
portantly to the published avalanche forecast bulletins.

2 Background

2.1 Models in support of avalanche forecasting

To support avalanche forecasting, various statistical ap-
proaches have been explored during the past 5 decades. One
of the early works on tool-assisted avalanche forecasting
was done by Buser (1983, 1989) in Switzerland. By lever-
aging historical information on recorded avalanches and me-
teorological conditions, Buser (1983) developed a nearest-
neighbor (NN) classifier identifying past days with similar
avalanche conditions. Kristensen and Larsson (1994), also
using an NN classifier, estimated the probability of avalanche
occurrence through a weighted sum of the frequency and
magnitude of avalanche activity among the nearest neigh-
bors. Due to its success, NN classifiers were used as part
of several operational assisting tools for avalanche forecast-
ing in Switzerland (Bolognesi, 1998; Brabec and Meister,
2001), Scotland (Purves et al., 2003), and Austria (Kleemayr
and Moser, 1998). Since then, other various statistical meth-
ods have been applied, for instance support vector machines
(Pozdnoukhov et al., 2008, 2011), classification trees (e.g.,

Baggi and Schweizer, 2009; Hendrikx et al., 2014), and ran-
dom forests (e.g., Mitterer and Schweizer, 2013; Mayer et al.,
2023), providing predictions of avalanche activity at a lo-
cal or regional scale. More recently developed models use
a combination of meteorological data and simulated snow
stratigraphy (e.g., Schirmer et al., 2010; Mayer et al., 2022;
Hendrick et al., 2023).

In addition to predictions of avalanche activity and snow-
pack instability, attempts have been made to predict the
avalanche danger level directly. Early approaches relied
on (hybrid) expert-based systems (Schweizer et al., 1994;
Schweizer and Föhn, 1996) simulating the forecasters’
decision-making process to estimate the danger level in the
region of Davos (Switzerland). Later on, Brabec and Meis-
ter (2001) adopted the NN classifier originally developed by
Buser (1983) to predict the avalanche danger level based on
meteorological variables measured at a local measuring site.
Furthermore, Brabec and Meister (2001) proposed a strat-
egy for predictions of the danger level at a regional scale
by applying this model to 60 manual measurement sites in
Switzerland, followed by interpolating the resulting danger
level predictions using inverse distance weighting on a 1 km
resolution grid, to obtain predictions for all regions in the
Swiss Alps. The model reached a cross-validated overall ac-
curacy of about 52 %, which was attributed to insufficient
information on snow stability. In Switzerland, over time, a
comparably dense network of automated weather stations
(AWSs) was built (SLF, 2022), known as the Intercantonal
Measurement and Information System (IMIS). At each of
these AWSs the physics-based, one-dimensional snow cover
model SNOWPACK (Lehning et al., 1999, 2002a, b) is run-
ning, providing simulations of the snow stratigraphy and sta-
bility (Morin et al., 2019). Schirmer et al. (2009) showed that
incorporating features describing the snowpack structure im-
proved the accuracy of danger level predictions. An NN clas-
sifier with the danger level of the previous day as an input
feature performed best, achieving a cross-validated accuracy
of 73 %. More recently, Pérez-Guillén et al. (2022a) pro-
posed a random forest (RF) classifier for avalanche danger
level prediction. In contrast to Brabec and Meister (2001) and
Schirmer et al. (2009), Pérez-Guillén et al. (2022a) trained a
model not only using data from a single station describing
meteorological variables but also including snow stratigra-
phy information simulated with SNOWPACK on more than
120 AWSs located at the elevation of avalanche-prone ar-
eas in all regions of the Swiss Alps. Their standard version
of the classifier exhibited an accuracy of 74 %, which is re-
markably good considering that the accuracy of human-made
avalanche forecasts in Switzerland is estimated to be in the
range between 75 % and 81 % (Techel and Schweizer, 2017;
Techel et al., 2020). Since the winter season 2021/2022, sev-
eral machine learning models have been operationally tested
by avalanche forecasters in Switzerland, including the model
by Pérez-Guillén et al. (2022a), with generally positive feed-
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back from the forecasters regarding model performance and
usefulness (van Herwijnen et al., 2023).

2.2 Public avalanche forecasting in Switzerland

In Switzerland, the country-wide public avalanche forecast
or avalanche bulletin (SLF, 2023) is published by the WSL
Institute for Snow and Avalanche Research SLF in Davos.
An example of a forecast is shown in Fig. 1a. Typically, the
avalanche bulletin is issued twice a day during the winter sea-
son: in the evening at 17:00 LT (local time), with an update
in the morning at 8:00 LT. The morning and evening editions
are valid until 17:00 LT of the same day or the next day, re-
spectively. The start and end of the forecasting season depend
on the snowfall in autumn and the snow melting in spring, but
it typically starts in late November and ends in May. In early
winter (November to early December) and late spring (late
April to May), the avalanche bulletin is only published in the
evening.

In Switzerland, a team of forecasters produces the
avalanche bulletin. The primary data used for forecasting
are observations provided by about 200 specifically trained
observers, measurements from a network of more than 120
automated weather stations (AWSs) located at the eleva-
tion of potential avalanche starting zones (SLF, 2022; Lehn-
ing et al., 1999) (Fig. 1b), physics-based simulations of
snowpack stratigraphy and stability driven with measure-
ments from AWSs, and numerical weather prediction mod-
els. When preparing the bulletin, forecasters assess expected
avalanche conditions for the following 24 h. In the forecast
product, expected conditions are summarized with a danger
level according to the five-level European avalanche dan-
ger scale (1 – low, 2 – moderate, 3 – considerable, 4 –
high, 5 – very high) (EAWS, 2022). Moreover, slope aspects
and elevation are indicated, highlighting where the danger
level applies. In addition, a sub-level qualifier assigned to
these danger levels provides an indication of whether dan-
ger is low, in the middle, or high within the level (Techel
et al., 2022; Lucas et al., 2023), and one or several avalanche
problems describe the typical situations of snow instabil-
ity (SLF, 2023). To communicate spatial variations in ex-
pected avalanche conditions, the territory of Switzerland is
divided into 149 warning regions (as of 2023) of approxi-
mately equal size, except for some larger warning regions in
non-mountainous zones (SLF, 2023). These warning regions,
represented by the small polygons in Fig. 1a, are the smallest
spatial units used in the forecast. During bulletin production,
warning regions having the same expected avalanche condi-
tions are grouped into larger regions (bold polygon bound-
aries in Fig. 1a).

3 Data

For this work, we rely extensively on the previous work
by Pérez-Guillén et al. (2022a), also in terms of data. The
data we use are very similar to the publicly available dataset
(Pérez-Guillén et al., 2022b). In the following, we describe
the data briefly. For a more thorough description, the reader
is referred to the detailed description in Pérez-Guillén et al.
(2022a).

– As in Pérez-Guillén et al. (2022a), we used the pre-
processed meteorological data and snowpack simula-
tions at the locations of the AWSs. In addition to the
data used by Pérez-Guillén et al. (2022a), we also
used stations operated by MeteoSwiss (FOMC, 2023),
at which SNOWPACK simulations (flat field) are run
for the purpose of avalanche forecasting (marked with
SWISSMET in Fig. 1b). Moreover, we used more re-
cent snowpack simulations, which stem from opera-
tional SNOWPACK v3.6.0. Following Pérez-Guillén
et al. (2022a), we extracted avalanche-related features
from the meteorological time series, resampled to 24 h
resolution, and centered at 18:00 LT, which is closest to
the valid time of the forecast. In addition, snow cover
data were extracted from the simulated stratigraphy at
12:00 LT. This results in 67 available meteorological
and snowpack features, described in detail in Pérez-
Guillén et al. (2022a).

– The forecast danger level is extracted from the
avalanche forecast valid at 12:00 LT on the day in ques-
tion. When available, we use the forecast update pub-
lished at 08:00 LT or the forecast published at 17:00 LT
the day before. Similar to Pérez-Guillén et al. (2022a),
we focus on dry-snow avalanches, and thus we disregard
forecasts relating to wet-snow avalanche conditions.

The forecast danger level is assigned to each station-
specific set of meteorological and snowpack features by date
and location. If there is no forecast or if the elevation of the
station is lower than the elevation threshold mentioned in
the forecast (see also the example of the forecast in Fig. 1b
and Sect. 2), we still keep the extracted features as an un-
labeled sample. Although unlabeled samples are excluded
from the training process, they are preserved for prediction
purposes. As in Pérez-Guillén et al. (2022a), the few cases
of danger level 5 (very high) are merged with level 4 (high).
The dataset encompasses the winter periods from 1997/1998
to 2020/2021. To conduct model optimization (Sect. 5) and
evaluation (Sect. 6), we adhere to the standard method of
dividing the data into three sets: training, validation, and
test. Specifically, the training set covers winter seasons from
1997/1998 to 2017/2018, consisting of 242 751 labeled sta-
tion/danger level samples out of a total of 304 019 samples
spread across 3482 d. The validation set includes the win-
ter seasons of 2018/2019 and 2019/2020 with 35 354 labeled
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Figure 1. Maps of Switzerland showing (a) an example of the avalanche bulletin (published on 24 December 2019 at 08:00 LT) and (b) the
distribution of the automated weather stations used in this study. In (a), the forecast danger level (colors) and the critical slope aspects and
elevations (insert) are shown. The polygons (black in a and white in b) show the warning regions, which are the spatial units used for forecast
production in Switzerland. In (a), polygon lines marked in bold summarize warning regions aggregated in the forecast product.

station/danger level samples out of a total of 44 781 samples
over 359 d. Lastly, the test set encompasses the winter sea-
son 2020/2021, including 17 396 labeled station/danger level
samples out of a total of 22 262 samples spread across 165 d.

For spatial interpolation, we rely on the digital surface
model (DSM) EU-DEM v1.1 (EEA, 2016), which has com-
plete coverage of the whole of Europe. The advantage of
EU-DEM v1.1 over Swiss national DSM products (e.g.,
swissALTI3D) is that it extends beyond the political bound-
aries of our study area. Hence, no special care has to be taken
when extracting terrain features from spatial windows at the
border of Switzerland. This DSM raster uses the ETRS89-
LAEA coordinate reference system (epsg:3035) with a spa-
tial resolution of 25 m. However, since the avalanche dan-
ger level in the training data was typically assessed on a
scale of warning regions, adopting finer-resolution interpola-
tion grids would unnecessarily increase computational com-
plexity. Therefore, the DSM is downsampled to 1 km× 1 km
raster cells by simple averaging.

On a smaller scale, within distances of tens or hundreds
of meters, topographical properties like the steepness of
the slope, the shape of the terrain, and the slope’s orienta-
tion relate to locations where humans can potentially trig-
ger avalanches (e.g., Schweizer and Lütschg, 2001; Vonto-
bel et al., 2013) but also to where natural avalanches may
release (e.g., Veitinger et al., 2016), and, hence, automated
approaches to classify avalanche terrain make use of a va-
riety of topographical parameters (Schmudlach and Köhler,
2016; Harvey et al., 2018; Sykes et al., 2024). It is less clear
whether such properties, derived for larger scales, correlate
with regional avalanche conditions. We therefore extracted
different terrain features from the resampled 1 km resolution
DSM for a range of spatial scales (i.e., 1, 2, . . . , 32 km2). At

1 km resolution, topographical properties coarsely describe
valleys and mountain ridges, while at 32 km resolution pri-
marily high-level patterns are characterized.

Specifically, we extract elevation, slope angle, profile cur-
vature, and aspect from the resampled 1 km resolution DSM.
Then, the technique of Gaussian pyramids (Adelson et al.,
1984) is applied for the feature elevation, slope angle, and
profile curvature to capture patterns at lower resolution (2–
32 km2) at the scale of long mountain ridges, mountain
groups, plateaus, and valleys. Gaussian pyramids are built by
constructing a sequence of images in which the resolution of
the image at the next pyramid stage is half of the resolution
of the previous one, while a Gaussian filter is applied before
the downsampling operation.

Finally, these features are complemented by extracting di-
rectional derivatives and differences of Gaussians (DoGs)
(Gonzalez and Woods, 2006). Both techniques are com-
monly used for detecting and enhancing edges and corners
in given orientations, aiding capturing valleys and ridges, as
well as their concavity and convexity, exhaustively. Direc-
tional derivatives are extracted by applying a Sobel operator
(Sobel and Feldman, 1973) to a blurred DSM (i.e., Gaussian
filter), focusing on the north–south and east–west directions.
On the other hand, DoGs are computed by subtracting two
blurred versions of the DSM. Different degrees of blurring
are taken into account for both of these features.

4 Method

Inspired by the ideas of Brabec and Meister (2001), we pro-
pose a three-stage model pipeline for regional avalanche
forecasting (RAvaFcast v1.0.0) consisting of classification,
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interpolation, and aggregation. A graphical overview of the
pipeline is given in Fig. 2.

In the classification stage (Sect. 4.1), we predict the
avalanche danger level at the location of automated weather
stations (AWSs) for a given day with the random forest (RF)
classifier designed by Pérez-Guillén et al. (2022a). Secondly,
in the interpolation step (Sect. 4.2), we spatially interpolate
danger level predictions to unobserved locations of the study
area. In particular, we model the interpolation problem as
Gaussian process regression, in which different terrain at-
tributes are explored. The interpolation model is then used to
predict the avalanche danger level at every location of a grid
with 1 km resolution covering the study area. Finally, in the
third step (Sect. 4.3), we consider several strategies to aggre-
gate the gridded predictions to danger level assessments for
the predefined warning regions used in the avalanche forecast
in Switzerland.

In the following subsections, we describe the theoretical
concepts and methods; the actual model optimization related
to these three stages is described in Sect. 5.

4.1 Stage 1: classification

In the classification stage, we follow the strategy presented
by Pérez-Guillén et al. (2022a) to predict the danger level at
locations of AWSs for the current day using as input meteo-
rological data recorded on the current and on previous days,
as well as snow cover simulations using SNOWPACK (Lehn-
ing et al., 1999, 2002a, b).

Let D = {(xi,ci)}ni=1 be a dataset with extracted d-
dimensional avalanche-related features xi ∈ Rd and the dan-
ger level ci ∈ {1, 2, 3, 4} as targets (i.e., classes). We can re-
duce this ordinal regression problem into a standard super-
vised multi-class classification problem. Pérez-Guillén et al.
(2022a) considered several state-of-the-art machine learning
models for classification and found that a random forest (RF)
classifier (Breiman, 2001) works well for this kind of prob-
lem. An RF classifier uses both bagging and feature bagging
to train a number of weak estimators in the form of deci-
sion tree classifiers. Let fi(c |x) be such a weak estimator
that models the probability of class c given a sample feature
x. Then, an RF classifier with Q ∈ N estimators models the
posterior class probability as

fRF(c |x)=
1
Q

Q∑
i=1
[c ∈ argmaxc′fi(c

′
|x)], (1)

where [·] is the Iverson bracket, returning 1 if the condition is
true and 0 otherwise. Consequently, the posterior class prob-
ability equals the fraction of individual estimators predicting
the class c, also known as majority voting.

The optimal danger level prediction dpred(x) is given by
the class with the highest posterior class probability (see
Eq. 2) and minimizes the probability of misclassification.
Furthermore, we can determine the expected danger level

davg(x) by applying Eq. (3).

dpred(x)= c̃(x) ∈ argmaxc′fRF(c |x) (2)

davg(x)= Ec|x[c] =
∑
c

c · fRF(c |x) (3)

It is important to emphasize that avalanche danger (or the
severity of avalanche conditions) increases exponentially
with the avalanche danger level (e.g., SLF, 2023). However,
the expected danger level (see Eq. 3) is determined based
on the levels rather than the danger, thereby maintaining the
nonlinear relationship.

4.2 Stage 2: interpolation

A trained RF classifier, as introduced in the classification
stage, is used to predict the danger level for a day of inter-
est at each AWS. For the spatial interpolation, we model the
expected danger level instead of the discrete danger level,
as it better captures the underlying continuous nature of the
avalanche danger. Consequently, we end up with N samples
distributed across the study area for a given day that can be
summarized as Davg = {(xi, di)}

N
i=1, where di ∈ [1,4] is the

expected danger level for station i computed according to
Eq. (3) and xi ∈ Rd represents the features of station i; e.g., if
the features correspond to the spatial location (latitude, lon-
gitude, elevation), d = 3. For a more compact notation, in-
put features {xi}Ni=1 are aggregated to the matrix X ∈ RN×d
and target variables {di}Ni=1 collected in the column vector
d ∈ RN so that Davg = (X,d). We further augment the data
by adding samples with a danger level of zero (i.e., expected
danger level di = 0.5) at manually chosen avalanche-free lo-
cations (i.e., Bern, Zurich, St. Gallen, and Luzern, depicted
as the ZERO-DL network in Fig. 1b) in the Swiss plateau
to model the notion of no forecast (no danger) as in the
avalanche bulletin.

The problem of generating dense spatial maps from
sparsely sampled data is known as spatial interpolation and
is widely applied across the domain of geosciences. Most
popular spatial interpolation techniques include inverse dis-
tance weighting or variants of kriging, while the latter addi-
tionally provides a notion to estimate uncertainty (e.g., Dale
and Fortin, 2014). Kriging is a geostatistical terminology
and its formulation is identical to Gaussian process regres-
sion, although geostatistical literature has focused primarily
on two- and three-dimensional input spaces (Rasmussen and
Williams, 2006). As we plan to enrich the input space defined
by the geographical location (i.e., latitude, longitude, eleva-
tion) with descriptive terrain features (e.g., slope angle, pro-
file curvature) we rely on the more modern notion of Gaus-
sian processes (GPs) (Rasmussen and Williams, 2006).

A GP is completely defined by a mean function
m(x) : Rd→ R and a covariance (or kernel) function
k(x, x′) : Rd ×Rd→ R, so we refer to it as f (x)∼

GP(m(x), k(x, x′)). The mean function and covariance
function are parameterized and optimized during the train-
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Figure 2. An overview of the three-stage model pipeline (RAvaFcast v1.0.0). In the classification stage avalanche danger level is assessed at
weather stations based on meteorological variables and stratigraphy. Secondly, predictions are interpolated to unobserved locations, forming
a high-resolution danger level map. In the final step of the pipeline, the danger levels in warning regions are estimated by aggregation.

ing procedure. To account for the noise in the danger level
assessments, we model the avalanche danger level with ho-
moscedastic additive noise (i.e., the level of noise is indepen-
dent of the location). In particular, we have

d(x)= f (x)+ ε(x), (4)

with ε ∼N (0, σ 2) and trainable variance σ 2. Accordingly,
for the dataset Davg = (X,d) the joint data distribution is de-
fined by means of a multivariate Gaussian distribution:

d= [d1, . . .,dN ]
>
∼N

(
m, K+ σ 2I

)
, (5)

where m= [m(x1), . . .,m(xN )]
> is the mean vector and K ∈

RN×N the covariance matrix with elements Kij = k(xi, xj ).
Then, assume a test location x∗ (not contained in the training
dataset), for which we are interested in the unknown noise-
free avalanche danger level f∗ := f (x∗). The joint distribu-
tion between the training data and f∗ is given by[

d
f∗

]
∼N

([
m

m(x∗)

]
,

[
K+ σ 2I k∗

k>∗ k(x∗, x∗)

])
, (6)

where k∗ = [k(x1, x∗), . . .,k(xN , x∗)]
> is the vector of

pairwise covariance between the sample locations and the
test location. Note that location refers to the geographical lo-
cation (latitude, longitude, elevation) and may be augmented
by several terrain attributes. As our joint distribution is Gaus-
sian, conditioning on the observed samples is straightfor-
ward. Thus, the posterior (or predictive) distribution is Gaus-
sian as well and given by

p(f ∗ |x∗, X, d)=N (µp, σ
2
p ), (7)

where the posterior (or predictive) mean is determined as

µp(x∗)=m(x∗)+ k>∗ (K+ σ
2I)−1(m−d), (8)

and the posterior (or predictive) variance is given by

σ 2
p (x∗)= k(x∗,x∗)− k>∗ (K+ σ

2I)−1k∗. (9)

The optimal prediction of the expected danger level at lo-
cation x∗ is given by the posterior mean f̂ (x∗)= µp(x∗).
On the other hand, we use the posterior standard deviation
σp(x∗) as a measure of uncertainty. Finally, computing the
optimal predictor and its uncertainty for every location of
a 1 km× 1 km grid covering Switzerland results in spatially
continuous expected danger level and uncertainty maps as
shown in Fig. 3.

Equations (8) and (9) again demonstrate that interpolation
by means of GP regression is exclusively defined by a mean
function and covariance function. The mean function is com-
monly considered to be either zero or constant, and we favor
the latter option by setting m(x)= θc with parameter θc ∈ R
that can be learned. This approach offers the advantage of
not requiring standardization of the target variable (i.e., the
expected danger level), which is typically necessary when
using a zero mean function. In contrast, choosing a suitable
covariance function is more crucial as it captures the spatial
correlations effectively.

We choose the popular and widely used squared exponen-
tial kernel, which is also known as the radial basis function
(RBF) kernel (Rasmussen and Williams, 2006). It is defined
as

krbf(x, x
′)= exp

(
−
||x− x′||2

2l2

)
, (10)
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Figure 3. Maps of Switzerland showing (a) the interpolation and (b) the corresponding standard deviation as a measure of uncertainty at a
resolution of 1 km× 1 km. The circles on the map show the location of the AWSs, while in (a), they are colored according to the predicted
danger level by the RF classifier.

with a learnable length scale l ∈ R>0. The length scale pa-
rameter controls the degree of similarity between two sam-
ples x and x′. When increasing the length scale, the covari-
ance between the samples also increases, and vice versa. Ad-
ditionally, the RBF kernel has the property of being infinitely
differentiable so that the resulting Gaussian process is char-
acterized by a high level of smoothness.

To increase complexity and flexibility of the model we
construct expressive and interpretable kernels by allowing
the model to learn compositions of base kernels (Plate,
1999; Duvenaud et al., 2011, 2013). Consequently, let x =

[xi1 , xi2 , . . .,xim ]
> be an input feature vector, where xil rep-

resents one feature or one group of features (it does not nec-
essarily have to be a scalar). Then we can form a linear com-
bination of m kernels as

k(x, x′)=

m∑
j=1

αjkl(xij , x
′

ij
), (11)

where the weighting coefficients αl ≥ 0 are learned and
kj (·, ·) represents independently parameterized RBF kernel
functions (this combination can be extended to kernels of dif-
ferent types, but we stick to RBF kernels). When considering
different terrain features (e.g., slope angle, profile curvature)
the kernel is able to adapt to the daily avalanche danger sit-
uation by learning the appropriate weighting coefficient. No-
tably, the significance of a specific feature is reflected in the
corresponding weighting coefficient, meaning that more im-
portant features lead to higher coefficients, while less impor-
tant ones have lower coefficients.

4.3 Stage 3: aggregation

The first two stages of the three-stage pipeline for automated
avalanche forecasting were concerned with local avalanche
prediction at weather stations and the interpolation of these
on the 1 km× 1 km grid. Human-made avalanche forecasts

assess avalanche danger levels at a regional scale (Fig. 1a).
On that account, this section presents a method of deriving
a bulletin-like avalanche danger forecast by spatially aggre-
gating a high-resolution danger map (i.e., Dgrid) into assess-
ments for a set of fixed warning regions.

Let Dgrid = {(si,di)}
Ng
i=1 be this grid comprising Ng dan-

ger level assessments, where si ∈ R3 specifies the geograph-
ical location (latitude, longitude, elevation) of the ith grid
cell and di ∈ R>=0 its avalanche danger level. For Nw warn-
ing regions, we first partition Dgrid into disjoint sets {Di}

Nw
i=1

according to the spatial boundaries of the warning regions.
Each set contains the cells belonging to each region. Sec-
ondly, an aggregation function fagg(·) determines the danger
level of each warning region. Besides exploring standard ag-
gregation functions such as simple averaging (i.e., the mean
method), as proposed by Brabec and Meister (2001), we con-
sidered aggregating only a fraction α ∈ [0,1] of the highest
danger level predictions, a strategy that we denote as top-α.
Since we deal with complex topography, the simple averag-
ing might result in underestimation of the danger level, par-
ticularly when regions contain many low-elevation cells.

Avalanche danger is often elevation-dependent, with gen-
erally higher danger in higher-elevation zones. This is re-
flected in the human-made forecasts in Switzerland, where
an elevation threshold is generally indicated. More specif-
ically, for dry-snow avalanches, an elevation threshold of
telev ma.s.l. indicates that particularly affected altitudes are
above telev m a.s.l. In Switzerland, these thresholds are nor-
mally described in increments of 200 m, between 1000 and
3000 m a.s.l. If no elevation threshold is indicated in the
forecast, no particularly affected altitudes exist (SLF, 2023),
which is most often the case at danger level 1 (low). Conse-
quently, we propose an elevation-based aggregation strategy
that considers thresholds similar to those used in the human-
made avalanche bulletin. The key idea is to estimate, for each
region, the danger level at several chosen elevation ranges
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and consider the maximum over the elevation intervals to be
the final danger level estimate. This has the additional ad-
vantage that particularly affected altitudes are revealed, as
reported in human-made forecasts.

Consider an ordered set of elevations {ej }
Ne
j=1 containing

Ne elements, where ei ≤ ej for i ≤ j . Then, for a fixed band-
width b and a warning region i, danger level assessments in
the elevation band [ej − b/2,ej + b/2], which we denote as
D
ej
i , are averaged with the ordinary mean method to esti-

mate the danger level at elevation ej . The danger level for
dry-snow avalanches (as opposed to wet-snow avalanches)
typically increases with increasing elevation; determining the
maximum danger level iteratively from the bottom to top
provides an elevation threshold for a particularly affected
altitude range as in human-made forecasts. For this work
we choose similar elevation thresholds as in the avalanche
bulletins but restrict ourselves to the most commonly used
thresholds between 1400 and 2600 ma.s.l. (Pérez-Guillén
et al., 2022a), while the bandwidth b is fine-tuned on the val-
idation set (see Sect. 5.3).

The three proposed aggregation strategies above (i.e.,
mean, top-α, elevation-based) estimate the danger level as
a real number instead of a discrete value in the range of 0 to
4. Consequently, we perform a discretization as a last step in
the aggregation. More specifically, we consider a discretiza-
tion function fdis(d) : R→ {0, 1, 2, 3, 4} that defines the de-
cision boundaries as follows:

fdis(d)=



0 for d < t0
1 for t0 ≤ d < t1
2 for t1 ≤ d < t2
3 for t2 ≤ d < t3
4 for d ≥ t3,

(12)

where the thresholds t = (t0, t1, t2, t3) ∈ R4 specify the
range of the intervals. A possible greedy discretiza-
tion strategy is rounding, which ensures that values are
clamped to integers from 0 to 4, and is expressed as t =
(0.5, 1.5, 2.5, 3.5). However, it is important to note that the
target variable used for interpolation represents the expected
danger level, which arises from the class probabilities pre-
dicted by the RF classifier. Hence, the discretization strat-
egy should ideally map the expected danger level back to the
most probable level. As stated by Niculescu-Mizil and Caru-
ana (2005), RF classifiers suffer from one-sided errors due to
the variance of their base estimators. For instance, predicting
a class probability of p = 1 requires that all base estimators
predict the same class. Consequently, as the RF classifier pre-
dicts danger levels 1 (low) to 4 (high), the expected danger
level typically falls within the range of [1+ ε1, 4− ε2] for
both ε1 > 0 and ε2 > 0.

To refine the discretization, we derive the thresholds us-
ing a cumulative sum approach similar to Brabec and Meis-
ter (2001), which preserves the a priori danger level dis-

tributions of the training data. In particular, we first esti-
mate the cumulative distribution of the expected danger level
F̂davg(·) through kernel density estimation with Gaussian ker-
nels (Scott, 1992). The estimation is performed by utilizing
the out-of-bag predictions from the RF classifier to avoid any
data leakage to the validation and test set, which can be used
for model selection and hyperparameter tuning, and estima-
tion of the generalization error. Let F̂dtrue(i) be the empiri-
cal cumulative distribution function of the true danger levels
from the bulletins of the training data (see Fig. 4a). Then, the
thresholds are chosen so that

ti = F̂
−1
davg
(F̂dtrue(i)). (13)

Figure 4b visualizes the outcomes of this approach, with the
black points in the figure fulfilling Eq. (13) and ultimately
leading to threshold values of t = (0.5, 1.61, 2.42, 3.44).
This particular strategy is denoted as the refined rounding
method and is the preferred discretization strategy for all our
configurations of the three-stage pipeline.

5 Model optimization and selection

The proposed three-stage model pipeline (RAvaFcast v1.0.0)
consists of several independent models, in particular an RF
classifier for danger level prediction, a Gaussian process re-
gression for interpolation, and an aggregation step to esti-
mate a regional avalanche forecast. Consequently, model se-
lection and hyperparameter tuning occur at several points
throughout the pipeline. We will utilize the training set for
fitting and hyperparameter tuning of the RF classifier and
the validation set for selecting the combination of the best
interpolation model and aggregation strategy, while the best
pipeline configuration is evaluated in Sect. 6 on the (holdout)
test set.

5.1 Hyperparameter tuning for the RF classifier

We employ the same pre-processing and training strategy
as presented in Pérez-Guillén et al. (2022a). In particu-
lar, stations lying outside the indicated elevation threshold
and noisy data samples (i.e., danger level 4 (high) samples
recording less than 30 cm of 24 h fresh snow) are dropped
from the training data. Hyperparameters, such as the num-
ber of estimators (i.e., decision trees), the maximum depth of
the bagged trees, and parameters related to the splitting strat-
egy, are optimized via a grid search cross-validation. Split-
ting the training data into folds is performed group-wise, en-
suring that samples belonging to the same winter season end
up in the same fold. More specifically, the folds are Fold 1
(1997/98 to 2002/03), Fold 2 (2003/04 to 2006/07), Fold 3
(2007/08 to 2010/11), Fold 4 (2010/11 to 2013/14), and Fold
5 (2014/15 to 2017/18). For a more detailed overview of the
training strategy we refer to Pérez-Guillén et al. (2022a).
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Figure 4. (a) Empirical true danger level distribution of the training data. (b) Cumulative distribution (blue) and empirical distribution (gray)
of the expected danger level for the out-of-bag predictions of the training data; the former is computed by Gaussian kernel density estimation.
Points (black) fulfill Eq. (13) and hence define the refined thresholds for discretization.

5.2 Terrain feature selection

Recall that we proposed an adaptive composable kernel func-
tion (see Eq. 11) for the interpolation covariance. More
specifically, the kernel function is a linear combination of
RBF kernels, each covering a feature group (e.g., 2D spa-
tial location, elevation, slope angle). To investigate the effect
of these features, we compare different variants of the adap-
tive kernel function, including or excluding several features
and feature groups. These include GPall (i.e., all the terrain
features described in Sect. 3), GPno-aspect (i.e., all the fea-
tures except the aspect), GPxyz (i.e., 2D spatial location and
elevation), and GPslope (i.e., 2D spatial location, elevation,
and slope angle). We append “-1” to the identifier of models
(e.g., GPxyz-1 for GPxyz) to denote that features are com-
puted with five-level Gaussian pyramids, hence incorporat-
ing multiscale information.

One of the most common ways of evaluating the perfor-
mance of a spatial interpolation algorithm relies on cross-
validation, especially on leave-one-out cross-validation
(LOOCV) since the number of samples per day is rather
small (e.g., Agou et al., 2022; Wu and Hung, 2016). Given
N samples, LOOCV trains the spatial interpolation model
on N − 1 samples and predicts the value for the remaining
sample. This is repeated for all possible N splits. Recall that
the validation set – which was used as a holdout test set in
Pérez-Guillén et al. (2022a) for final evaluation of the RF
classifier – is now used as a training set for the spatial in-
terpolation and LOOCV is used to perform model selection
of the GP regression. Finally, performance is evaluated using

standard error measures, which include the mean error (ME),
the mean absolute error (MAE), and the root mean square er-
ror (RMSE). The smaller the measures, the better the model’s
performance. Formal definitions of the error measures are
given in the Appendix (Sect. A2). However, since the vali-
dation set covers a period of two winter seasons, we compute
the LOOCV errors per day and consider several statistics, es-
pecially the mean and the median, including confidence in-
tervals.

The results of the LOOCV are shown in Table 1. Gaussian-
process-based interpolation models clearly outperform the
simple nearest-neighbor (NN) interpolator, but there are only
small differences in terms of performance gain between vari-
ations of the adaptive kernel function. Nevertheless, it is pos-
sible to discern certain emerging trends within these varia-
tions, such as the slightly improved LOOCV errors for vari-
ations utilizing features extracted from Gaussian pyramids
(i.e., models with a 1 in the name). Furthermore, models
with a reduced terrain feature set (e.g., GPxyz, GPslope) per-
form better than models with the complete set of features,
such as GPall−1. Finally, it can be affirmed that the GPxyz−1
model stands out as the most effective choice for interpolat-
ing avalanche danger, as it consistently exhibits the lowest
errors across the majority of the evaluated metrics.

An alternative method for assessing the importance of var-
ious terrain features involves examining the learned coeffi-
cients denoted as αl within the adaptive kernel function (see
Eq. 11). In particular, for every day in the validation set, the
interpolation model is fitted to record learned coefficients,
which then serve as a means to gauge the importance of dif-
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Table 1. Statistics of daily LOOCV errors (ME, MAE, RMSE) for different variations of the adaptive kernel function and a simple nearest-
neighbor (NN) interpolation. Errors are computed for the validation set (in fact a training set for the interpolation stage), which includes
winter seasons 2018/2019 and 2019/2020. The best scores are marked in bold.

Model∗ ME MAE RMSE

Mean Median SD Mean Median SD Mean Median SD

GPall 0.000 0.000 0.005 0.239 0.242 0.074 0.317 0.327 0.093
GPall−1 0.002 0.002 0.005 0.233 0.234 0.071 0.306 0.308 0.091
GPno-aspect 0.000 0.000 0.004 0.237 0.244 0.073 0.315 0.326 0.093
GPno-aspect−1 0.002 0.002 0.005 0.231 0.233 0.071 0.305 0.307 0.091
GPxyz 0.002 0.001 0.003 0.232 0.236 0.074 0.314 0.319 0.093
GPxyz−1 0.001 0.001 0.003 0.228 0.229 0.071 0.300 0.303 0.089
GPslope 0.001 0.001 0.003 0.233 0.238 0.074 0.314 0.320 0.094
GPslope−1 0.002 0.001 0.004 0.230 0.234 0.072 0.303 0.308 0.091
NN −0.016 −0.016 0.023 0.260 0.255 0.084 0.359 0.353 0.114

∗ These include GPall (i.e., all the terrain features described in Sect. 3), GPno-aspect (i.e., all the features except the aspect), GPxyz (i.e.,
2D spatial location and elevation), and GPslope (i.e., 2D spatial location, elevation, and slope angle). We append “−1” to the identifier of
models (e.g., GPxyz−1 for GPxyz) to denote that features are computed with five-level Gaussian pyramids, hence incorporating
multiscale information.

Table 2. Statistics of the adaptive kernel function’s weighting coefficients, defined in Eq. (11), for GPall evaluated on the validation set. The
higher the value of the weighting coefficient, the more important the corresponding feature group. The best metrics are marked in bold.

Coeff.∗ Mean Mean CI 95 % Median Median CI 95 % SD Max Min

αxy 1.364 [1.315, 1.412] 1.380 [1.324, 1.470] 0.470 3.443 0.228
αz 3.302 [3.177, 3.428] 3.006 [2.901, 3.109] 1.209 9.068 1.395
αang 1.366 [1.341, 1.391] 1.324 [1.296, 1.364] 0.241 1.905 0.884
αcurv 1.271 [1.248, 1.294] 1.242 [1.223, 1.271] 0.226 1.843 0.729
αasp 0.834 [0.803, 0.866] 0.792 [0.764, 0.832] 0.304 2.214 0.172
αdog 0.725 [0.670, 0.780] 0.652 [0.554, 0.728] 0.530 2.168 0.006
αdid 0.706 [0.648, 0.764] 0.537 [0.455, 0.626] 0.561 2.111 0.006

∗ Learnable coefficients within the adaptive kernel function (see Eq. 11): αxy (spatial location), αz (elevation), αang (slope
angle), αcurv (profile curvature), αasp (aspect), αdog (DoGs), and αdid (directional derivatives).

ferent terrain characteristics. The statistical properties (i.e.,
mean, median, etc.) of these coefficients (see Table 2) align
with the LOOCV errors, as they show that the elevation co-
efficient αz stands out with substantially higher mean and
median values. In contrast, coefficients associated with fea-
ture categories such as the aspect αasp, difference of Gaus-
sians αdog, and directional derivatives αdid are less significant
compared to elevation. Nevertheless, certain feature groups
demonstrate a moderate level of importance, as evidenced by
the mean and median values of their respective coefficients
(i.e., αang and αcurv).

5.3 Aggregation strategy selection

In Sect. 4.3 we propose novel aggregation strategies, in par-
ticular the top-α and the elevation-based strategy. Both of
them have free parameters (i.e., the fraction α, the band-
width b, or the elevation thresholds) that can be tuned. To
compare different aggregation strategies, we determine the
expected daily performance by considering several statis-
tics (e.g., mean and median) for the daily accuracy of the

pipeline-predicted avalanche bulletin and the true avalanche
bulletin.

For the elevation-based aggregation strategy we fix two
sets of elevation thresholds that are in line with those used in
the bulletin from the forecasters. The first strategy, denoted
as elev-simple, operates with a reduced set of coarser-grained
elevation thresholds (or bands). This choice is motivated by
the desire for simplicity and the primary objective of ac-
curately predicting the avalanche danger level within each
warning region. In contrast, the elev-full strategy takes into
account finer-grained thresholds. Specifically, we have the
following.

– elev-simple: {1200, 1600, 2000, 2400} ma.s.l.

– elev-full: {1200, 1400, 1600, 1800, 2000, 2200, 2400,
2600}ma.s.l.

Figure 5a and b clearly show that, regardless of the chosen
interpolation model, the elevation-based aggregation and the
top-α aggregation outperform the mean method by a consid-
erable margin. Furthermore, combinations involving an in-
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terpolation model utilizing solely elevation and slope as ad-
ditional terrain features (e.g., GPxyz, GPslope) tend to yield
superior performance, which is in accordance with the out-
comes of the LOOCV (see Sect. 5.2). Nevertheless, it is note-
worthy that interpolation models employing Gaussian pyra-
mids seem to have a negative effect on the accuracy of the
predicted avalanche bulletin, which stands in contrast to the
reduced errors observed during the LOOCV evaluation. This
discrepancy could potentially be attributed to the smoothing
that occurs in both low- and high-elevation zones when using
Gaussian pyramids.

The top-α strategy is a simple modification of the mean
aggregation that already shows a large improvement, at least
in combination with GP regression models. Fine-tuning the
fraction to α = 0.3 (see Fig. 5c) in combination with GPxyz
gives a mean day accuracy of 0.685 and a median day accu-
racy of 0.700 for the validation set. Nevertheless, elevation-
based aggregation strategies elev-simple and elev-full per-
form even better. Figure 5d shows the mean day accuracy
and the median day accuracy when varying the bandwidth
b. We observe that scores exhibit a substantial increase un-
til the bandwidth reaches a point where the elevation bands
start to overlap. In the case of elev-full, this transition oc-
curs at b = 200, and for elev-simple, it happens at b = 400.
Slightly overlapping elevation bands can marginally enhance
the accuracy scores, but the actual improvement gained is
quite low. Elevation-based aggregation strategies with large
bandwidths will eventually be equal to the mean aggregation
strategy.

To sum up, the best accuracy score for the validation set
is attained by combining the interpolation model GPxyz with
the elev-simple aggregation strategy, a bandwidth parameter
set to b = 400, and a refined rounding strategy. We denote
this configuration of the pipeline as GP∗xyz.

6 Evaluation

This section assesses the performance of the optimal pipeline
configuration GP∗xyz as determined through the model se-
lection conducted in Sect. 5. To prevent any potential data
leakage, we evaluate the model on a dedicated holdout test
set that was neither utilized for training nor employed in the
model selection process. This test set covers the winter sea-
son 2020/2021. Additionally, we provide scores computed on
the validation set to examine the generalization gap.

For evaluation purposes, we split the territory of Switzer-
land into five geographical regions, shown in Fig. 6. These
are the Jura Mountains in the northwest, the Swiss plateau
with few hills reaching elevations higher than 1000 ma.s.l.,
and the Swiss Alps, with the Alps surrounded by the Pre-
Alps in the north and the Southern Alps in the south. This
particular subdivision takes into account the fact that the
Swiss plateau normally has no avalanche danger and where
no forecast is thus issued. This region is excluded from the

analysis. Moreover, the remaining parts are grouped accord-
ing to the number of weather stations above the tree line,
with the bulk of the stations in the Alps and very few, if any,
stations in the Jura, Pre-Alps, and Southern Alps (see also
Fig. 1b). We perform the evaluation for all regions combined
(All), combining the three regions of the Swiss Alps exclud-
ing the Jura (No Jura), and for the four regions separately.

6.1 Performance of the RF classifier

We employed the same pre-processing, splitting, and training
strategy as outlined in Pérez-Guillén et al. (2022a). However,
our results yielded a lower overall accuracy of 0.699 for the
validation set and 0.707 for the test set, in contrast to the 0.74
overall accuracy reported in Pérez-Guillén et al. (2022; Ta-
ble 1a) for their standard RF classifier. Similar trends were
observed for the macro F1 score, where our RF classifier
achieved macro F1 scores of 0.686 for the validation set and
0.656 for the test set, marking a reduction of up to 0.044
compared to the RF classifier of Pérez-Guillén et al..

Possible explanations for this may be related to our RF
classifier being trained on a slightly different dataset com-
pared to Pérez-Guillén et al. (2022a) (see Sect. 5.1) and re-
lying on snow stratigraphy simulations using a more recent
SNOWPACK version (i.e., v.3.6.0). Still, these differences in
performance are minor and do not affect our analysis and ex-
tension of the model.

6.2 Performance of the three-stage pipeline

One of the performance measures we consider for the eval-
uation of the proposed three-stage pipeline is the daily
agreement between the avalanche bulletin predicted by the
pipeline and the forecast danger level in the true avalanche
bulletin. We refer to this agreement as accuracy. Calculating
statistics such as the mean and median of the daily accuracy
across the entire test set provides valuable insights into the
pipeline’s overall performance. Figure 7 shows box plots of
the daily accuracy for the test set and the validation set for
the best pipeline configuration GP∗xyz, but also for the point
predictions of the RF classifier used as input for the pipeline.
Considering all regions (All in Fig. 7a), the pipeline achieves
a mean accuracy of 0.662 and a median accuracy of 0.700
for the test set and is thus comparable to the RF classifier’s
accuracy values.

As already identified by Pérez-Guillén et al. (2022a), the
RF classifier’s agreement with the forecast danger levels
varies from day to day, with several days exhibiting a partic-
ularly strong mismatch between the pipeline-predicted and
the human-forecast bulletin, resulting in remarkably low ac-
curacy values (Fig. 8). As can be seen, the patterns in the
RF classifier’s daily scores propagate to the accuracy scores
of the pipeline, resulting in high Pearson correlations across
the validation and test set. The comparably few days with
very poor agreement between the forecast and pipeline, rep-
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Figure 5. (a, b) Mean day accuracy for combinations of interpolation models and aggregation strategy. (c) Mean and median day accuracy
of GPxyz with top-α for different values of α. (d) Mean and median day accuracy of GPxyz combined with elevation-based aggregation
strategies for varying bandwidth b values. All scores are computed on the validation set.

Figure 6. Maps of Switzerland showing the boundaries of the warning regions within the time span encompassed by the validation set (a)
and the test set (b), as well as their aggregation into larger geographic regions. The number of warning regions is indicated in parentheses.

resented as outliers in Fig. 7a, influence the overall mean
daily accuracy. As a result, both the pipeline and the RF clas-
sifier show negatively skewed patterns of accuracy values,
with the median accuracy consistently surpassing the mean
accuracy. When contrasting the pipeline’s mean and median
accuracy for the test set with those calculated for the valida-
tion set, we observe a decline between 0.03 and 0.04 and a
generally wider spread in the interquartile range (IQR) and
whiskers shown in the box plot (Fig. 7a).

Given the imbalanced distribution of avalanche danger
levels, we incorporate the F1 score as a supplementary per-
formance metric for the evaluation (Fig. 7b, c). Specifically,

we consider two F1 scores, one which is simply averaged
over the classes (F1 macro) and one that is a weighted aver-
age according to the class size (F1 weighted) (see definitions
for these in Appendix A). These metrics address the class
imbalance and offer deeper insights into the individual class
(or danger level) performance, as opposed to accuracy. We
calculate the F1 scores on a global scale across the entire
test set (or validation set), thereby disregarding any tempo-
ral dependencies in the predictions, as opposed to the pre-
viously considered accuracy score that is computed per day.
To ensure a fair comparison between the RF classifier and
the overall pipeline, we analyze F1 scores excluding class
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Figure 7. Evaluation of the RF classifier and the three-stage pipeline-predicted bulletin for different groups of warning regions, as defined
in Fig. 6. (a) Box plots summarizing the daily accuracy scores shown in the time series in Fig. 8. The median is marked by a horizontal line,
and the mean is denoted by a triangle-shaped marker. The respective values are shown either above (median) or below (mean). (b, c) Overall
per-class F1 scores (F1 macro and F1 weighted). The narrow bars featuring a black edge highlight the corresponding F1 score calculated by
excluding the class 0 (i.e., the class for no danger).

0 (i.e., danger level zero), as the RF classifier exclusively
predicts danger levels 1 (low) through 4 (high). Considering
all regions, the pipeline achieves a macro F1 score of 0.673
and an F1 weighted score of 0.679 for the test set, which is
slightly lower than the corresponding scores for the RF clas-
sifier. Having a look at the F1 scores considering the zero
danger level, we recognize that scores are lower, particularly
with a significant decrease of up to 0.1 in the macro F1 score.
This is expected, since the only notion of danger level zero is
induced by the data augmentation that adds samples of dan-
ger level zero at locations with no avalanche forecast. We will
further investigate the per-class performance in Sect. 6.4.

6.3 Regional performance

When interpreting the findings in the previous section, we
want to emphasize that performance scores for the RF clas-
sifier were only computed for predictions at weather stations
which have a ground truth available. Thus, the RF classifier is
primarily compared to the forecast in the Alps due to the high
density of weather stations in this particular region, while the
pipeline was compared to the entire forecast domain. As can
be seen in Fig. 7 for No Jura, excluding Jura improves the
scores to a level that they match and sometimes even out-
perform the RF classifier’s scores. The best accuracy values
are achieved for the Alps, with all scores surpassing the RF
classifier’s performance. In the regions adjacent to the Alps,
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Figure 8. Per day comparison of the accuracy of the RF classifier (dashed orange) and the pipeline predictions (solid blue) for (a, b) the
validation set and (c) the test set for the region No Jura. The Pearson correlation between these two scores is displayed in the lower left
corner.

Pre-Alps, and Southern Alps), performance is lower, while
particularly poor performance was observed for Jura. For in-
stance, in Jura, the mean daily accuracy was a mere 0.424 for
the test set. Higher scores for the regions of the Alps are not
surprising as nearly all available weather stations in Switzer-
land are located in this region, and only a few warning re-
gions have no weather stations. This result also emphasizes
that a low density of weather stations, as is the case in Jura,
proves insufficient to reliably interpolate across space and el-
evations, which is not surprising given the variable nature of
avalanche conditions across space and different elevations.

6.4 Per-class performance

Figure 9 displays the per-class F1 scores attained for the test
set for different regions, offering a comprehensive insight
into the individual class performance. It can be recognized
that the distribution of the F1 score across the classes is more
uniform in comparison to the RF classifier, at least for re-
gions with an overall macro F1 score ≥ 0.67 (i.e., regions
All, No Jura, and Alps). For instance, for the Alps the class-
wise performance of the pipeline ranges between 0.672 and
0.742 compared to 0.598 and 0.75 for the RF classifier. The
most notable improvement compared to the point predictions
of the RF classifier is shown for danger level 4 (high), with
the F1 score reaching 0.698 in the region of the Alps. This is
interesting considering that the interpolation model only uses
the geographical location (latitude, longitude, elevation) as
additional information, combined with a slight re-adjustment
of the thresholds used to distinguish between danger levels

3 (considerable) and 4 (high) (3.44 vs. 3.5; see Sect. 4.3 and
Fig. 4b). Additionally, there are reasonable increases in the
F1 score for 2 (moderate) for all regions except Pre-Alps
and Jura, which, however, come at the cost of slightly lower
scores for 3 (considerable). The other notable difference re-
lates to the F1 score for danger level 1 (low), which is sub-
stantially lower compared to the RF classifier. Nevertheless,
regions that basically never have zero avalanche danger, such
as the Alps and the Southern Alps, exhibit a less deficient F1
score for danger level 1 (low) compared to the Pre-Alps. We
suppose, but have not empirically verified, that the notion of
danger level zero has increased the complexity of the clas-
sification task, making it challenging to distinguish between
danger levels 1 (low) and zero in some settings. Furthermore,
the F1 score for danger level zero is consistently poor across
all regions; thus, we suggest not using this approach to dif-
ferentiate between regions with a low danger (1 – low) and
no avalanche danger (zero).

7 Discussion and outlook

We have demonstrated that our three-stage pipeline for re-
gional avalanche danger forecasting (RAvaFcast v1.0.0), pro-
ducing output similar to human-made avalanche bulletins,
achieves a comparable performance as the RF classifier,
which predicts danger levels at weather stations. However,
when excluding warning regions with very few or no weather
stations (i.e., Jura), our pipeline surpasses the RF classi-
fier’s performance. In other words, given a reasonable den-
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Figure 9. Day-independent overall per-class F1 scores for the pipeline configuration GP∗xyz and the RF classifier evaluated on the test set for
different groups of warning regions, as defined by Fig. 6.

sity of weather stations, a combination of interpolation and
elevation-based aggregation shows proficient capabilities of
extrapolating point estimates of avalanche danger to a re-
gional context. In contrast, in regions where station density
is low, performance depends strongly on how well condi-
tions are represented by the few, and often far-away points,
for which predictions are available. This is a serious limita-
tion for the applicability of the pipeline for the Jura, which
is not only far away from the Alps compared to the Pre-Alps
and Southern Alps but in addition has a different topography
compared to Alpine regions. This also explains why extrapo-
lation is more likely to succeed in the Southern Alps than in
the Jura.

To aid the interpretation of the spatial predictions, uncer-
tainty maps provided by the GP-based interpolation model
enable quantifying and distinguishing between regions with
low and high uncertainty in the spatial predictions (see ex-
ample in Fig. 3b). Notably, areas and elevations with low sta-
tion coverage exhibit higher uncertainty, while regions with
denser station networks show lower uncertainty. This is in
line with the observed performance values for these regions.
In addition to using uncertainty maps when interpreting pre-
dicted conditions on a specific day, long-term summaries of
these data may be a way to identify locations where new
weather stations would provide the greatest benefit when
consistent performance of spatial interpolations is required.

We have further shown that the pipeline’s performance is
substantially impacted by the performance of the initial clas-
sification model; for instance, on days when the accuracy of
the RF classifier predictions was high, the accuracy of the re-
sulting predictions of the pipeline tended to be high as well,
and vice versa. Thus, we conclude that the classifier’s perfor-
mance is another potential bottleneck in the proposed three-
stage pipeline. Moreover, if the conditions captured by the
AWSs and SNOWPACK differ significantly from those on

the nearby slopes, it is expected that the RF classifier may
generate more inaccurate predictions. We explored the per-
formance of the classifier and the pipeline at the resolution
of the danger levels, similar to the evaluation performed by
Pérez-Guillén et al. (2022a). However, based on the analy-
sis by Techel et al. (2022), who showed that the expected
danger level davg(x) (Eq. 3) correlates with the recently in-
troduced sub-levels in the Swiss avalanche forecast, which
indicate whether expected danger is high (+), in the mid-
dle (=), or low (−) within the level (see also Lucas et al.,
2023), we surmise that errors in the predictions provided by
the RF classifier, and therefore the pipeline, may actually of-
ten be less than a full danger level. Moreover, some observed
errors may be due to erroneous avalanche forecasts, which
we used as ground truth for evaluation of the classifier and
pipeline, rather than wrong model predictions (e.g., Pérez-
Guillén et al., 2022a). Even though additional work will be
required, we believe that it should be possible to train a re-
gression or ordinal classification model using the sub-levels
as input and to adapt the aggregation strategy in a way to
provide predictions incorporating sub-level information.

Although we explored several combinations of terrain fea-
tures derived at various scales, the most successful interpo-
lation model relied solely on the geographical location (co-
ordinates) and elevation. Maybe this is not too surprising as
we derived terrain characteristics using a comparably coarse
scale (kilometer to several kilometers), while models clas-
sifying avalanche terrain normally use a much higher reso-
lution (a few meters; e.g., Harvey et al., 2018). Moreover,
aggregating predictions over an area of 200 km2, the average
size of the warning regions in Switzerland, means that a wide
range of terrain properties will be included in a single spatial
unit.

In this study, we focused on the development and vali-
dation of the interpolation algorithm and aggregation strat-
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egy, optimizing their performance with regard to predict-
ing the regional danger level. However, in the human-made
avalanche bulletin, the regional danger level is directly linked
to the respective most critical elevation and slope aspects.
Avalanche danger, and hence the risk to be caught in a poten-
tially life-threatening avalanche, often changes considerably
with elevation (Winkler et al., 2021). As we did not evalu-
ate the pipeline’s predicted elevation threshold, we can only
assume that the elevational threshold provides a reasonably
good correlation with forecast conditions. This assumption
is based on the studies by Pérez-Guillén et al. (2022a, for
elevation threshold) and Techel et al. (2022, for aspect and
elevation), who showed that the RF classifier’s point predic-
tions capture variations in forecast avalanche conditions as a
function of aspect and elevation.

Recent advances in grid-based predictions of snow cover
properties like new-snow height and total snow height, cou-
pling numerical weather prediction models and snow cover
simulations and assimilating ground-based measurements
(e.g., Mott et al., 2023), and snow coverage products derived
from satellite images offer the potential to be used as sup-
plementary features in the interpolation model. Moreover,
physical snowpack simulations are increasingly being driven
by gridded weather and snow data directly rather than ex-
clusively at the locations of weather stations (e.g., Bellaire
et al., 2011; Sharma et al., 2023; Mott et al., 2023; Herla
et al., 2024). While this development reduces the need to
obtain spatial predictions through interpolation from a small
number of points, the complex and spatially highly resolved
data must be provided in an accessible way to allow efficient
interpretation by humans (e.g., Herla et al., 2022). The pro-
posed aggregation strategy may be one suitable approach to
summarize and smooth in spatially consistent ways such in-
formation, regardless whether this is done for fixed regions,
as in this study, or at other spatial scales.

8 Conclusions

We developed and evaluated a three-stage pipeline for re-
gional avalanche forecasting in Switzerland (RAvaFcast
v1.0.0) with the stages comprising the following.

1. Classification. Avalanche danger is predicted at the lo-
cation of automated weather stations using weather data
and physical snow cover simulations as input.

2. Interpolation. Point predictions are interpolated on a
1 km× 1 km resolution DSM grid using latitude, lon-
gitude, and elevation as input features.

3. Aggregation. Gridded predictions are aggregated to in-
fer a regional avalanche danger level for predefined
warning regions, similar to human-made avalanche
forecasts in Switzerland.

While relying on the Pérez-Guillén et al. (2022a) RF clas-
sifier for avalanche danger level prediction, we introduced
data-driven classification thresholds, optimizing the classi-
fication task and leading to a more balanced performance
across danger levels. We investigated the performance of
Gaussian-process-based interpolation models using a variety
of terrain features (e.g., elevation, slope) as predictors ex-
tracted from a digital surface model; however, interpolation
using a relatively simple set of features (location and ele-
vation) proved to be the best approach. And lastly, we pro-
posed a novel elevation-based aggregation strategy provid-
ing regional danger level predictions, which additionally in-
dicates the elevation band where the respective danger level
is reached.

The performance of the regional danger level predictions
provided by the three-stage pipeline strongly depends on the
RF classifier’s performance. In the Alps, where station den-
sity is high, the pipeline exceeded the classifier performance
on most days, achieving a mean day accuracy of about 70 %.
However, on days when the RF classifier performed poorly or
in regions where station density is low, the pipeline’s predic-
tions were of particularly poor quality (i.e., Jura). This causes
a lower mean day accuracy of 66 % for the entire forecast
domain, closely aligning with the RF classifier’s mean day
accuracy of 68 %. Thus, we conclude that both the number
of stations, distributed over a range of elevations, and the ac-
curacy of the input model are the key bottlenecks hindering
a fully automated regional danger level prediction using a
station-based approach.

Swiss avalanche forecasters operationally use the RF clas-
sifier’s point predictions to support their danger level assess-
ments (van Herwijnen et al., 2023). The proposed pipeline
can further aid avalanche forecasting by providing a second
opinion regarding the critical elevation threshold. However,
the poor performances of the classifier and pipeline on some
days, and in general in the Jura, emphasize that such fully
automated danger level forecasts can assist avalanche fore-
casters but cannot yet fully replace human-made forecasts.

Appendix A: Scores and error metrics

In this section of the Appendix, we define scores and error
metrics used for model selection and evaluation.

A1 Classification metrics

Accuracy is defined as follows.

Accuracy=
TP+TN

TP+FP+TN+FN
, (A1)

where TP is true positive, FP is false positive, TN is true
negative, and FN is false negative.
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Precision quantifies the accuracy of the positive predic-
tions and is formally defined as follows.

Precision=
TP

TP+FP
. (A2)

On the other hand, the recall is defined as the proportion of
the actual positives that were identified correctly by the clas-
sifier. It assesses the classifier’s ability to identify all the pos-
itives.

Recall=
TP

TP+FN
(A3)

Finally, the F1 score balances precision and recall; more
specifically, it is defined as the harmonic mean.

F1score=
2

Precision−1
+Recall−1

=
2×Precision×Recall

Precision+Recall
(A4)

In multi-class classification, the above scores are computed
per class and averaged. Concretely, macro-averaging is a
simple average, and weighted averaging considers the sup-
port of each class. We refer to Sokolova and Lapalme (2009)
for a complete discussion of classification metrics.

A2 Interpolation error metrics

Let D = {(xi,yi)}ni=1 be a dataset and ŷi the predicted value
by the interpolation model. Then, the following common er-
ror metrics for quantitative model assessment can be defined.

Mean error (ME)

1
n

n∑
i=1

yi − ŷi (A5)

Mean absolute error (MAE)

1
n

n∑
i=1
|yi − ŷi | (A6)

Root mean squared error (RMSE)√√√√1
n

n∑
i=1
(yi − ŷi)

2 (A7)

For leave-one-out cross-validation, ŷi = fi(xi), while the
model fi(·) is trained on all samples except xi .

Appendix B: Case study

– 12 December 2020 (Fig. B1, left column). The RF clas-
sifier’s accuracy is 0.753, while 85 out of 97 AWSs lie
above the forecast elevation threshold in the published

bulletin. The interpolation algorithm interpolates well to
unobserved locations, leading to a predicted avalanche
bulletin exhibiting an accuracy of 0.743. Under the cir-
cumstances of only having one active station in the re-
gion of Jura the pipeline’s predictions show an accu-
racy of about 0.5 for this particular region. Further-
more, it is noteworthy that the predicted danger level 3
(considerable) was reached for an elevation threshold of
1600 ma.s.l., which would put only three isolated Jura
summits into this class.

– 23 December 2020 (Fig. B1, right column). With 0.667,
the RF classifier’s accuracy is below its mean accu-
racy for the test set. A total of 69 out of 93 AWSs
lie above the elevation threshold indicated in the pub-
lished bulletin. Nonetheless, the interpolation model
and elevation-based strategy successfully smooth out er-
roneous predictions, leading to an accuracy of 0.783 for
the predicted avalanche bulletin, which is higher than
the corresponding mean accuracy. Considering that the
pipeline exhibits a nearly complete failure to predict the
correct danger level in Jura due to the missing local dan-
ger level assessments, the overall accuracy is still rel-
atively high. Excluding the Jura gives an accuracy of
0.813.

– 27 February 2021 (Fig. B2, left column). The RF
classifier’s accuracy stands at a remarkable 0.906,
while nearly all AWSs lie above the forecast elevation
threshold in the published bulletin. Consequently, the
pipeline-predicted bulletin has an exceptional accuracy
of 0.943.

– 19 January 2021 (Fig. B2, right column). The RF clas-
sifier achieved an accuracy of 0.802, with 111 out of
123 AWSs lying above the indicated elevation thresh-
old. The accuracy of the pipeline-predicted bulletin is
0.893. On this day, four stations in Jura provided pre-
dictions, leading to a more reasonable interpolation and
aggregation in this particular region. However, despite
having comparably many stations providing predictions
in Jura, only about half of the warning regions align
with the published bulletin’s danger level. Similar as on
12 December 2020 (Fig. B1, left column), the predicted
danger level 3 (considerable) in Jura applies for eleva-
tions higher than 1600 ma.s.l.

– 28 January 2021 (Fig. B3, left column). The accuracy
of the RF classifier stands at 0.706, while 107 out of 121
AWSs lie above the forecast elevation threshold in the
true bulletin. The distribution of the RF classifier pre-
dictions (samples used for the interpolation) is such that
52 % of them predict 4 (high) and 39 % 3 (considerable).
This makes interpolation and aggregation easier, result-
ing in an accuracy of 0.793 for the pipeline-predicted
bulletin and an accuracy of 0.844 when disregarding re-
gions in Jura.
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– 30 January 2021 (Fig. B3, right column). The RF clas-
sifier yields an accuracy of 0.654, while 109 out of 121
AWSs lie above the elevation threshold that indicates
particularly avalanche-prone locations. A total of 77 %
of the RF classifier predictions are classified as 3 (con-
siderable), while only 13 % belong to danger level 4
(high). Consequently, the pipeline mostly fails to pre-
dict a danger level of 4 (high), leading to an accuracy of
0.629.
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Figure B1. The true avalanche bulletin (a, b) and danger level predictions of the three-stage pipeline (c–h) for 12 December 2020 and 23 De-
cember 2020. Maps (c) and (d) illustrate the interpolation of the RF classifier’s predictions of the local danger level at AWSs, represented by
circular markers. Maps (e) and (f) depict the predictions at the scale of warning regions resulting in an avalanche bulletin, with corresponding
elevation thresholds in maps (g) and (h).
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Figure B2. The true avalanche bulletin (a, b) and danger level predictions of the three-stage pipeline (c–h) for 27 February 2021 and 19 Jan-
uary 2021. Maps (c) and (d) illustrate the interpolation of the RF classifier’s predictions of the local danger level at AWSs, represented by
circular markers. Maps (e) and (f) depict the predictions at the scale of warning regions resulting in an avalanche bulletin, with corresponding
elevation thresholds in maps (g) and (h).
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Figure B3. The true avalanche bulletin (a, b) and danger level predictions of the three-stage pipeline (c–h) for 28 January 2021 and 30 Jan-
uary 2021. Maps (c) and (d) illustrate the interpolation of the RF classifier’s predictions of the local danger level at AWSs, represented by
circular markers. Maps (e) and (f) depict the predictions at the scale of warning regions resulting in an avalanche bulletin, with corresponding
elevation thresholds in maps (g) and (h).
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Code and data availability. The code and software developed for
this project are available via Zenodo at https://doi.org/10.5281/
zenodo.10521973 (Maissen et al., 2023) or via Renku at https:
//renkulab.io/projects/deapsnow/three-stage-pipeline (last access:
9 August 2024). The repository contains all the necessary datasets,
scripts, modules, and data processing files required to reproduce the
results and plots of this paper. Additionally, detailed instructions on
setting up the environment and running the code are provided in the
repository’s README file.

Supplement. We provide the evolution of the three-stage pipeline’s
predictions (b–d) for the winter season 2018/2019 until the win-
ter season 2020/2021 in comparison to the true avalanche bulletin
(a). Map (b) illustrates the interpolation of the RF classifier’s pre-
dictions of the local danger level at AWSs, represented by circular
markers. Map (c) depicts the predictions at the scale of warning re-
gions resulting in an avalanche bulletin, with corresponding eleva-
tion thresholds in map (d). The supplement related to this article
is available online at: https://doi.org/10.5194/gmd-17-7569-2024-
supplement.
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