Articles | Volume 17, issue 18
https://doi.org/10.5194/gmd-17-6987-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-6987-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing
Department of Earth Science, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Andreas Born
Department of Earth Science, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Alexander Robinson
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Robert Law
Department of Earth Science, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Gerrit Gülle
Department of Physics, University of Hamburg, Hamburg, Germany
Related authors
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Therese Rieckh and Richard Anthes
Atmos. Meas. Tech., 11, 4309–4325, https://doi.org/10.5194/amt-11-4309-2018, https://doi.org/10.5194/amt-11-4309-2018, 2018
Short summary
Short summary
We compare the two-cornered hat (2CH) and three-cornered hat (3CH) method for estimating the error variances of two or more independent data sets using simulated data with various error correlations and biases.
We assess the accuracy of the 3CH and 2CH estimates and examine the sensitivity of the estimated error variances to the degree of error correlation between the data sets as well as sample size. The 3CH method is less sensitive to these factors and hence more accurate.
Richard Anthes and Therese Rieckh
Atmos. Meas. Tech., 11, 4239–4260, https://doi.org/10.5194/amt-11-4239-2018, https://doi.org/10.5194/amt-11-4239-2018, 2018
Short summary
Short summary
We show how multiple data sets, including observations and models, can be combined using the "N-cornered hat method" to estimate vertical profiles of the errors of each system. Using data from 2007, we estimate the error variances of radio occultation, radiosondes, ERA-Interim, and GFS model data sets at four radiosonde locations in the tropics and subtropics. A key assumption is the neglect of error correlations among the different data sets, and we examine the consequences of this assumption.
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 3091–3109, https://doi.org/10.5194/amt-11-3091-2018, https://doi.org/10.5194/amt-11-3091-2018, 2018
Short summary
Short summary
Water vapor is the most important tropospheric greenhouse gas and is also highly variable in space and time. We study the vertical structure and variability of tropospheric humidity using various observing techniques (GPS radio occultation, radiosondes, Atmospheric Infrared Sounder) and models. Time–height cross sections reveal seasonal biases for different pressure layers. We find that radio occultation humidity has high accuracy and can contribute valuable information in data assimilation.
Shay Gilpin, Therese Rieckh, and Richard Anthes
Atmos. Meas. Tech., 11, 2567–2582, https://doi.org/10.5194/amt-11-2567-2018, https://doi.org/10.5194/amt-11-2567-2018, 2018
Short summary
Short summary
Comparing observational systems when observations are not taken at the exact same time or location can introduce sampling errors that can be come significant during error analysis. In this study, we develop two methods to reduce sampling errors: using ellipse distance constraints rather than circles and subtracting model background. We found that both the ellipses and subtracting model background from
the observations reduce sampling errors caused by spatial and temporal differences.
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 10, 1093–1110, https://doi.org/10.5194/amt-10-1093-2017, https://doi.org/10.5194/amt-10-1093-2017, 2017
Short summary
Short summary
We use GPS radio occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the tropical western Pacific and compare them to various data sets (research aircraft, radiosonde, infrared sounder, and model reanalyses). All these data sets have limitations. We show that the RO data contribute significant information on the water vapor content. Our results also verify the quality of the reanalyses.
T. Rieckh, B. Scherllin-Pirscher, F. Ladstädter, and U. Foelsche
Atmos. Meas. Tech., 7, 3947–3958, https://doi.org/10.5194/amt-7-3947-2014, https://doi.org/10.5194/amt-7-3947-2014, 2014
Short summary
Short summary
Radio Occultation (RO) observations featuring high vertical resolution, global availability, and high accuracy were used to investigate global characteristics of the lapse rate tropopause. Climatological tropopause characteristics for the
RO record from 2001 to 2013 extend previous studies on tropopause structure and its temporal variability. Latitudinal and longitudinal variations as well as the annual cycle and inter-annual variability were analyzed for the tropopause altitude and temperature.
Tobias Zolles and Andreas Born
The Cryosphere, 18, 4831–4844, https://doi.org/10.5194/tc-18-4831-2024, https://doi.org/10.5194/tc-18-4831-2024, 2024
Short summary
Short summary
The Greenland ice sheet largely depends on the climate state. The uncertainties associated with the year-to-year variability have only a marginal impact on our simulated surface mass budget; this increases our confidence in projections and reconstructions. Basing the simulations on proxies, e.g., temperature, results in overestimates of the surface mass balance, as climatologies lead to small amounts of snowfall every day. This can be reduced by including sub-monthly precipitation variability.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Antonio Juarez-Martinez, Javier Blasco, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4257–4283, https://doi.org/10.5194/tc-18-4257-2024, https://doi.org/10.5194/tc-18-4257-2024, 2024
Short summary
Short summary
We present sea level projections for Antarctica in the context of ISMIP6-2300 with several forcings but extend the simulations to 2500, showing that more than 3 m of sea level contribution could be reached. We also test the sensitivity on a basal melting parameter and determine the timing of the loss of ice in the west region. All the simulations were carried out with the ice sheet model Yelmo.
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
The Cryosphere, 18, 4215–4232, https://doi.org/10.5194/tc-18-4215-2024, https://doi.org/10.5194/tc-18-4215-2024, 2024
Short summary
Short summary
Our study tries to understand how the ice temperature evolves in a large mass as in the case of Antarctica. We found a relation that tells us the ice temperature at any point. These results are important because they also determine how the ice moves. In general, ice moves due to slow deformation (as if pouring honey from a jar). Nevertheless, in some regions the ice base warms enough and melts. The liquid water then serves as lubricant and the ice slides and its velocity increases rapidly.
Javier Blasco, Ilaria Tabone, Daniel Moreno-Parada, Alexander Robinson, Jorge Alvarez-Solas, Frank Pattyn, and Marisa Montoya
Clim. Past, 20, 1919–1938, https://doi.org/10.5194/cp-20-1919-2024, https://doi.org/10.5194/cp-20-1919-2024, 2024
Short summary
Short summary
In this study, we assess Antarctic tipping points which may had been crossed during the mid-Pliocene Warm Period. For this, we use data from the PlioMIP2 ensemble. Additionally, we investigate various sources of uncertainty, like ice dynamics and bedrock configuration. Our research significantly enhances our comprehension of Antarctica's response to a warming climate, shedding light on potential future tipping points that may be surpassed.
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024, https://doi.org/10.5194/gmd-17-5263-2024, 2024
Short summary
Short summary
Ice sheets present a thickness of a few kilometres, leading to a vertical deformation of the crust of up to a kilometre. This process depends on properties of the solid Earth, which can be regionally very different. We propose a model that accounts for this often-ignored heterogeneity and run 100 000 simulation years in minutes. Thus, the evolution of ice sheets is modeled with better accuracy, which is critical for a good mitigation of climate change and, in particular, sea-level rise.
Sergio Pérez-Montero, Jorge Alvarez-Solas, Jan Swierczek-Jereczek, Daniel Moreno-Parada, Marisa Montoya, and Alexander Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1842, https://doi.org/10.5194/egusphere-2024-1842, 2024
Short summary
Short summary
The climate of the last 3 Myr varies between cold and warm periods. Numerous independent mechanisms have been proposed to explain this, however no effort has been made to study their competing effects. Here we present a simple but physically motivated model that includes these mechanisms in a modular way. We find that the main trigger is the displacement of the lithosphere due to the ice thickness evolution, but reproducing the climate records additionally requires the natural darkening of ice.
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
EGUsphere, https://doi.org/10.5194/egusphere-2024-922, https://doi.org/10.5194/egusphere-2024-922, 2024
Short summary
Short summary
Mass loss from the Greenland ice sheet significantly contributes to rising sea levels, threatening coastal communities globally. To improve future sea-level projections, we simulated ice sheet behavior until 2100, initializing the model with observed geometry and using various climate models. Predictions indicate a sea-level rise of 32 to 228 mm by 2100, with climate model uncertainty being the main source of variability in projections.
Gustav Jungdal-Olesen, Jane Lund Andersen, Andreas Born, and Vivi Kathrine Pedersen
The Cryosphere, 18, 1517–1532, https://doi.org/10.5194/tc-18-1517-2024, https://doi.org/10.5194/tc-18-1517-2024, 2024
Short summary
Short summary
We explore how the shape of the land and underwater features in Scandinavia affected the former Scandinavian ice sheet over time. Using a computer model, we simulate how the ice sheet evolved during different stages of landscape development. We discovered that early glaciations were limited in size by underwater landforms, but as these changed, the ice sheet expanded more rapidly. Our findings highlight the importance of considering landscape changes when studying ice-sheet history.
Thi-Khanh-Dieu Hoang, Aurélien Quiquet, Christophe Dumas, Andreas Born, and Didier M. Roche
EGUsphere, https://doi.org/10.5194/egusphere-2024-556, https://doi.org/10.5194/egusphere-2024-556, 2024
Short summary
Short summary
To improve the simulation of surface mass balance (SMB) that influences the advance-retreat of ice sheets, we run a snow model BESSI (BErgen Snow Simulator) with transient climate forcing obtained from an Earth system model iLOVECLIM over Greenland and Antarctica during the Last Interglacial period (130–116 kaBP). Compared to the existing simple SMB scheme of iLOVECLIM, BESSI gives more details about SMB processes with higher physics constraints while maintaining a low computational cost.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
EGUsphere, https://doi.org/10.5194/egusphere-2023-2690, https://doi.org/10.5194/egusphere-2023-2690, 2023
Short summary
Short summary
We introduce Nix, an ice-sheet model designed for understanding how large masses of ice behave. Nix as a computer program that simulates the movement and temperature changes in ice sheets. Nix helps us study how ice sheets respond to changes in the atmosphere and ocean. We found that how fast ice melts under the shelves and how heat is exchanged, play a role in determining the future of ice sheets. Nix is a useful tool for learning more about how climate change affects polar ice sheets.
Bjørg Risebrobakken, Mari F. Jensen, Helene R. Langehaug, Tor Eldevik, Anne Britt Sandø, Camille Li, Andreas Born, Erin Louise McClymont, Ulrich Salzmann, and Stijn De Schepper
Clim. Past, 19, 1101–1123, https://doi.org/10.5194/cp-19-1101-2023, https://doi.org/10.5194/cp-19-1101-2023, 2023
Short summary
Short summary
In the observational period, spatially coherent sea surface temperatures characterize the northern North Atlantic at multidecadal timescales. We show that spatially non-coherent temperature patterns are seen both in further projections and a past warm climate period with a CO2 level comparable to the future low-emission scenario. Buoyancy forcing is shown to be important for northern North Atlantic temperature patterns.
Daniel Moreno-Parada, Jorge Alvarez-Solas, Javier Blasco, Marisa Montoya, and Alexander Robinson
The Cryosphere, 17, 2139–2156, https://doi.org/10.5194/tc-17-2139-2023, https://doi.org/10.5194/tc-17-2139-2023, 2023
Short summary
Short summary
We have reconstructed the Laurentide Ice Sheet, located in North America during the Last Glacial Maximum (21 000 years ago). The absence of direct measurements raises a number of uncertainties. Here we study the impact of different physical laws that describe the friction as the ice slides over its base. We found that the Laurentide Ice Sheet is closest to prior reconstructions when the basal friction takes into account whether the base is frozen or thawed during its motion.
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022, https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Short summary
In this paper we present the climate component of the newly developed fast Earth system model CLIMBER-X. It has a horizontal resolution of 5°x5° and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to >100 000 years. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
Alexander Robinson, Daniel Goldberg, and William H. Lipscomb
The Cryosphere, 16, 689–709, https://doi.org/10.5194/tc-16-689-2022, https://doi.org/10.5194/tc-16-689-2022, 2022
Short summary
Short summary
Here we investigate the numerical stability of several commonly used methods in order to determine which of them are capable of resolving the complex physics of the ice flow and are also computationally efficient. We find that the so-called DIVA solver outperforms the others. Its representation of the physics is consistent with more complex methods, while it remains computationally efficient at high resolution.
Katharina M. Holube, Tobias Zolles, and Andreas Born
The Cryosphere, 16, 315–331, https://doi.org/10.5194/tc-16-315-2022, https://doi.org/10.5194/tc-16-315-2022, 2022
Short summary
Short summary
We simulated the surface mass balance of the Greenland Ice Sheet in the 21st century by forcing a snow model with the output of many Earth system models and four greenhouse gas emission scenarios. We quantify the contribution to uncertainty in surface mass balance of these two factors and the choice of parameters of the snow model. The results show that the differences between Earth system models are the main source of uncertainty. This effect is localised mostly near the equilibrium line.
Andreas Born and Alexander Robinson
The Cryosphere, 15, 4539–4556, https://doi.org/10.5194/tc-15-4539-2021, https://doi.org/10.5194/tc-15-4539-2021, 2021
Short summary
Short summary
Ice penetrating radar reflections from the Greenland ice sheet are the best available record of past accumulation and how these layers have been deformed over time by the flow of ice. Direct simulations of this archive hold great promise for improving our models and for uncovering details of ice sheet dynamics that neither models nor data could achieve alone. We present the first three-dimensional ice sheet model that explicitly simulates individual layers of accumulation and how they deform.
Tobias Zolles and Andreas Born
The Cryosphere, 15, 2917–2938, https://doi.org/10.5194/tc-15-2917-2021, https://doi.org/10.5194/tc-15-2917-2021, 2021
Short summary
Short summary
We investigate the sensitivity of a glacier surface mass and the energy balance model of the Greenland ice sheet for the cold period of the Last Glacial Maximum (LGM) and the present-day climate. The results show that the model sensitivity changes with climate. While for present-day simulations inclusions of sublimation and hoar formation are of minor importance, they cannot be neglected during the LGM. To simulate the surface mass balance over long timescales, a water vapor scheme is necessary.
Javier Blasco, Jorge Alvarez-Solas, Alexander Robinson, and Marisa Montoya
The Cryosphere, 15, 215–231, https://doi.org/10.5194/tc-15-215-2021, https://doi.org/10.5194/tc-15-215-2021, 2021
Short summary
Short summary
During the Last Glacial Maximum the Antarctic Ice Sheet was larger and more extended than at present. However, neither its exact position nor the total ice volume are well constrained. Here we investigate how the different climatic boundary conditions, as well as basal friction configurations, affect the size and extent of the Antarctic Ice Sheet and discuss its potential implications.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Alexander Robinson, Jorge Alvarez-Solas, Marisa Montoya, Heiko Goelzer, Ralf Greve, and Catherine Ritz
Geosci. Model Dev., 13, 2805–2823, https://doi.org/10.5194/gmd-13-2805-2020, https://doi.org/10.5194/gmd-13-2805-2020, 2020
Short summary
Short summary
Here we describe Yelmo v1.0, an intuitive and state-of-the-art hybrid ice sheet model. The model design and physics are described, and benchmark simulations are provided to validate its performance. Yelmo is a versatile ice sheet model that can be applied to a wide variety of problems.
Tine Nilsen, Dmitry V. Divine, Annika Hofgaard, Andreas Born, Johann Jungclaus, and Igor Drobyshev
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-123, https://doi.org/10.5194/cp-2019-123, 2019
Revised manuscript not accepted
Short summary
Short summary
Using a set of three climate model simulations we cannot find a consistent relationship between atmospheric conditions favorable for forest fire activity in northern Scandinavia and weaker ocean circulation in the North Atlantic subpolar gyre on seasonal timescales. In the literature there is support of such a relationship for longer timescales. With the motivation to improve seasonal prediction systems, we conclude that the gyre circulation alone does not indicate forthcoming model drought.
Jorge Alvarez-Solas, Marisa Montoya, and Alexander Robinson
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-96, https://doi.org/10.5194/cp-2019-96, 2019
Publication in CP not foreseen
Short summary
Short summary
Modelling the past abrupt climate changes often resorts to the use of freshwater flux (FWF) in the North Atlantic as an effective method to cause reorganizations of the Atlantic Meridional Overturning Circulation. This procedure has allowed to reproduce the timing of the events. However, the required FWF is inconsistent with reconstructions. Conversely, using a forcing derived from the sea-level record results in a poor fit with the data, highlighting the need of exploring other mechanisms.
Andreas Plach, Kerim H. Nisancioglu, Petra M. Langebroek, Andreas Born, and Sébastien Le clec'h
The Cryosphere, 13, 2133–2148, https://doi.org/10.5194/tc-13-2133-2019, https://doi.org/10.5194/tc-13-2133-2019, 2019
Short summary
Short summary
Meltwater from the Greenland ice sheet (GrIS) rises sea level and knowing how the GrIS behaved in the past will help to become better in predicting its future. Here, the evolution of the past GrIS is shown to be dominated by how much ice melts (a result of the prevailing climate) rather than how ice flow is represented in the simulations. Therefore, it is very important to know past climates accurately, in order to be able to simulate the evolution of the GrIS and its contribution to sea level.
Ilaria Tabone, Alexander Robinson, Jorge Alvarez-Solas, and Marisa Montoya
The Cryosphere, 13, 1911–1923, https://doi.org/10.5194/tc-13-1911-2019, https://doi.org/10.5194/tc-13-1911-2019, 2019
Short summary
Short summary
Recent reconstructions show that the North East Greenland Ice Stream (NEGIS) retreated away from its present-day position by 20–40 km during MIS-3. Atmospheric and external forcings were proposed as potential causes of this retreat, but the role of the ocean was not considered. Here, using a 3-D ice-sheet model, we suggest that oceanic warming is sufficient to induce a retreat of the NEGIS margin of many tens of kilometres during MIS-3, helping to explain this conundrum.
Jorge Alvarez-Solas, Rubén Banderas, Alexander Robinson, and Marisa Montoya
Clim. Past, 15, 957–979, https://doi.org/10.5194/cp-15-957-2019, https://doi.org/10.5194/cp-15-957-2019, 2019
Short summary
Short summary
The last glacial period was marked by the existence of of abrupt climatic changes; it is generally accepted that the presence of ice sheets played an important role in their occurrence. While an important effort has been made to investigate the dynamics and evolution of the Laurentide ice sheet during this period, the Eurasian ice sheet (EIS) has not received much attention. Here we investigate the response of the EIS to millennial-scale climate variability using a hybrid 3-D ice-sheet model.
Andreas Born, Michael A. Imhof, and Thomas F. Stocker
The Cryosphere, 13, 1529–1546, https://doi.org/10.5194/tc-13-1529-2019, https://doi.org/10.5194/tc-13-1529-2019, 2019
Short summary
Short summary
We present a new numerical model to simulate the surface energy and mass balance of snow and ice. While similar models exist and cover a wide range of complexity from empirical models to those that simulate the microscopic structure of individual snow grains, we aim to strike a balance between physical completeness and numerical efficiency. This new model will enable physically accurate simulations over timescales of hundreds of millennia, a key requirement of investigating ice age cycles.
Ilaria Tabone, Alexander Robinson, Jorge Alvarez-Solas, and Marisa Montoya
Clim. Past, 15, 593–609, https://doi.org/10.5194/cp-15-593-2019, https://doi.org/10.5194/cp-15-593-2019, 2019
Short summary
Short summary
By using a 3-D hybrid ice-sheet–shelf model, we investigate the impact of millennial-scale oceanic variability on the Greenland Ice Sheet (GrIS) evolution during the last glacial period (LGP). We show that the GrIS may have strongly reacted to oceanic temperature fluctuations associated with Dansgaard–Oeschger cycles, contributing to sea-level variations of more than 1 m. Our results open the chance for a non-negligible role of the GrIS in millennial-scale oceanic reorganisations during the LGP.
Javier Blasco, Ilaria Tabone, Jorge Alvarez-Solas, Alexander Robinson, and Marisa Montoya
Clim. Past, 15, 121–133, https://doi.org/10.5194/cp-15-121-2019, https://doi.org/10.5194/cp-15-121-2019, 2019
Short summary
Short summary
The LGP is a period punctuated by the presence of several abrupt climate events and sea-level variations of up to 20 m at millennial timescales. The origin of those fluctuations is attributed to NH paleo ice sheets, but a contribution from the AIS cannot be excluded. Here, for the first time, we investigate the response of the AIS to millennial climate variability using an ice sheet–shelf model. We shows that the AIS produces substantial sea-level rises and grounding line migrations.
Andreas Plach, Kerim H. Nisancioglu, Sébastien Le clec'h, Andreas Born, Petra M. Langebroek, Chuncheng Guo, Michael Imhof, and Thomas F. Stocker
Clim. Past, 14, 1463–1485, https://doi.org/10.5194/cp-14-1463-2018, https://doi.org/10.5194/cp-14-1463-2018, 2018
Short summary
Short summary
The Greenland ice sheet is a huge frozen water reservoir which is crucial for predictions of sea level in a warming future climate. Therefore, computer models are needed to reliably simulate the melt of ice sheets. In this study, we use climate model simulations of the last period where it was warmer than today in Greenland. We test different melt models under these climatic conditions and show that the melt models show very different results under these warmer conditions.
Therese Rieckh and Richard Anthes
Atmos. Meas. Tech., 11, 4309–4325, https://doi.org/10.5194/amt-11-4309-2018, https://doi.org/10.5194/amt-11-4309-2018, 2018
Short summary
Short summary
We compare the two-cornered hat (2CH) and three-cornered hat (3CH) method for estimating the error variances of two or more independent data sets using simulated data with various error correlations and biases.
We assess the accuracy of the 3CH and 2CH estimates and examine the sensitivity of the estimated error variances to the degree of error correlation between the data sets as well as sample size. The 3CH method is less sensitive to these factors and hence more accurate.
Richard Anthes and Therese Rieckh
Atmos. Meas. Tech., 11, 4239–4260, https://doi.org/10.5194/amt-11-4239-2018, https://doi.org/10.5194/amt-11-4239-2018, 2018
Short summary
Short summary
We show how multiple data sets, including observations and models, can be combined using the "N-cornered hat method" to estimate vertical profiles of the errors of each system. Using data from 2007, we estimate the error variances of radio occultation, radiosondes, ERA-Interim, and GFS model data sets at four radiosonde locations in the tropics and subtropics. A key assumption is the neglect of error correlations among the different data sets, and we examine the consequences of this assumption.
Mari F. Jensen, Aleksi Nummelin, Søren B. Nielsen, Henrik Sadatzki, Evangeline Sessford, Bjørg Risebrobakken, Carin Andersson, Antje Voelker, William H. G. Roberts, Joel Pedro, and Andreas Born
Clim. Past, 14, 901–922, https://doi.org/10.5194/cp-14-901-2018, https://doi.org/10.5194/cp-14-901-2018, 2018
Short summary
Short summary
We combine North Atlantic sea-surface temperature reconstructions and global climate model simulations to study rapid glacial climate shifts (30–40 000 years ago). Pre-industrial climate boosts similar, albeit weaker, sea-surface temperature variability as the glacial period. However, in order to reproduce most of the amplitude of this variability, and to see temperature variability in Greenland similar to the ice-core record, although with a smaller amplitude, we need forced simulations.
Rubén Banderas, Jorge Alvarez-Solas, Alexander Robinson, and Marisa Montoya
Geosci. Model Dev., 11, 2299–2314, https://doi.org/10.5194/gmd-11-2299-2018, https://doi.org/10.5194/gmd-11-2299-2018, 2018
Short summary
Short summary
Here we present a new approach to force ice-sheet models offline, which accounts for a more realistic treatment of millennial-scale climate variability as compared to the existing methods. Our results reveal that an incorrect representation of the characteristic pattern of millennial-scale climate variability within the climate forcing not only affects NH ice-volume variations at millennial timescales but has consequences for glacial–interglacial ice-volume changes too.
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 3091–3109, https://doi.org/10.5194/amt-11-3091-2018, https://doi.org/10.5194/amt-11-3091-2018, 2018
Short summary
Short summary
Water vapor is the most important tropospheric greenhouse gas and is also highly variable in space and time. We study the vertical structure and variability of tropospheric humidity using various observing techniques (GPS radio occultation, radiosondes, Atmospheric Infrared Sounder) and models. Time–height cross sections reveal seasonal biases for different pressure layers. We find that radio occultation humidity has high accuracy and can contribute valuable information in data assimilation.
Shay Gilpin, Therese Rieckh, and Richard Anthes
Atmos. Meas. Tech., 11, 2567–2582, https://doi.org/10.5194/amt-11-2567-2018, https://doi.org/10.5194/amt-11-2567-2018, 2018
Short summary
Short summary
Comparing observational systems when observations are not taken at the exact same time or location can introduce sampling errors that can be come significant during error analysis. In this study, we develop two methods to reduce sampling errors: using ellipse distance constraints rather than circles and subtracting model background. We found that both the ellipses and subtracting model background from
the observations reduce sampling errors caused by spatial and temporal differences.
Ilaria Tabone, Javier Blasco, Alexander Robinson, Jorge Alvarez-Solas, and Marisa Montoya
Clim. Past, 14, 455–472, https://doi.org/10.5194/cp-14-455-2018, https://doi.org/10.5194/cp-14-455-2018, 2018
Short summary
Short summary
The response of the Greenland Ice Sheet (GrIS) to palaeo-oceanic changes on a glacial–interglacial timescale is studied from a modelling perspective. A 3-D hybrid ice-sheet–shelf model which includes a parameterization of the basal melting rate at the GrIS marine margins is used. The results show that the oceanic forcing plays a key role in the GrIS evolution, not only by controlling the ice retreat during the deglaciation but also by driving the ice expansion in glacial periods.
Jorge Alvarez-Solas, Rubén Banderas, Alexander Robinson, and Marisa Montoya
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-143, https://doi.org/10.5194/cp-2017-143, 2017
Revised manuscript not accepted
Short summary
Short summary
The last glacial period was marked by the existence of of abrupt climatic changes. It is generally accepted that the presence of ice sheets played an
important role in their occurrence. While an important effort has been made to investigate the dynamics and evolution of the Laurentide Ice Sheet during this period, the Eurasian Ice Sheet (EIS) has not received much attention. Here we investigate the response of the EIS to millennial-scale climate variability. We use a hybrid 3D ice-sheet model.
Mario Krapp, Alexander Robinson, and Andrey Ganopolski
The Cryosphere, 11, 1519–1535, https://doi.org/10.5194/tc-11-1519-2017, https://doi.org/10.5194/tc-11-1519-2017, 2017
Short summary
Short summary
We present the snowpack model SEMIC. It calculates snow height, surface temperature, surface albedo, and the surface mass balance of snow- and ice-covered surfaces while using meteorological data as input. In this paper we describe how SEMIC works and how well it compares with snowpack data of a more sophisticated regional climate model applied to the Greenland ice sheet. Because of its simplicity and efficiency, SEMIC can be used as a coupling interface between atmospheric and ice sheet models.
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 10, 1093–1110, https://doi.org/10.5194/amt-10-1093-2017, https://doi.org/10.5194/amt-10-1093-2017, 2017
Short summary
Short summary
We use GPS radio occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the tropical western Pacific and compare them to various data sets (research aircraft, radiosonde, infrared sounder, and model reanalyses). All these data sets have limitations. We show that the RO data contribute significant information on the water vapor content. Our results also verify the quality of the reanalyses.
A. Robinson and M. Perrette
Geosci. Model Dev., 8, 1877–1883, https://doi.org/10.5194/gmd-8-1877-2015, https://doi.org/10.5194/gmd-8-1877-2015, 2015
Short summary
Short summary
Here we present a concise interface to the NetCDF library designed to simplify reading and writing tasks of up to 6-D arrays in Fortran programs.
R. Calov, A. Robinson, M. Perrette, and A. Ganopolski
The Cryosphere, 9, 179–196, https://doi.org/10.5194/tc-9-179-2015, https://doi.org/10.5194/tc-9-179-2015, 2015
Short summary
Short summary
Ice discharge into the ocean from outlet glaciers is an important
component of mass loss of the Greenland ice sheet. Here, we present a
simple parameterization of ice discharge for coarse resolution ice
sheet models, suitable for large ensembles or long-term palaeo
simulations. This parameterization reproduces in a good approximation
the present-day ice discharge compared with estimates, and the
simulation of the present-day ice sheet elevation is considerably
improved.
T. Rieckh, B. Scherllin-Pirscher, F. Ladstädter, and U. Foelsche
Atmos. Meas. Tech., 7, 3947–3958, https://doi.org/10.5194/amt-7-3947-2014, https://doi.org/10.5194/amt-7-3947-2014, 2014
Short summary
Short summary
Radio Occultation (RO) observations featuring high vertical resolution, global availability, and high accuracy were used to investigate global characteristics of the lapse rate tropopause. Climatological tropopause characteristics for the
RO record from 2001 to 2013 extend previous studies on tropopause structure and its temporal variability. Latitudinal and longitudinal variations as well as the annual cycle and inter-annual variability were analyzed for the tropopause altitude and temperature.
A. Robinson and H. Goelzer
The Cryosphere, 8, 1419–1428, https://doi.org/10.5194/tc-8-1419-2014, https://doi.org/10.5194/tc-8-1419-2014, 2014
Related subject area
Cryosphere
SnowQM 1.0: a fast R package for bias-correcting spatial fields of snow water equivalent using quantile mapping
Simulation of snow albedo and solar irradiance profile with the Two-streAm Radiative TransfEr in Snow (TARTES) v2.0 model
Evaluation of MITgcm-based ocean reanalyses for the Southern Ocean
Improvements in the land surface configuration to better simulate seasonal snow cover in the European Alps with the CNRM-AROME (cycle 46) convection-permitting regional climate model
A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
A global–land snow scheme (GLASS) v1.0 for the GFDL Earth System Model: formulation and evaluation at instrumented sites
Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the system and evaluation of synoptic-scale sea ice forecasts
Lagrangian tracking of sea ice in Community Ice CodE (CICE; version 5)
openAMUNDSEN v1.0: an open-source snow-hydrological model for mountain regions
OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches
Refactoring the elastic–viscous–plastic solver from the sea ice model CICE v6.5.1 for improved performance
Tuning parameters of a sea ice model using machine learning
A new 3D full-Stokes calving algorithm within Elmer/Ice (v9.0)
Towards deep learning solutions for classification of automated snow height measurements (CleanSnow v1.0.0)
Clustering simulated snow profiles to form avalanche forecast regions
Quantitative Sub-Ice and Marine Tracing of Antarctic Sediment Provenance (TASP v1.0)
Simulations of Snow Physicochemical Properties in Northern China using WRF-Chem
A novel numerical implementation for the surface energy budget of melting snowpacks and glaciers
SnowPappus v1.0, a blowing-snow model for large-scale applications of the Crocus snow scheme
A stochastic parameterization of ice sheet surface mass balance for the Stochastic Ice-Sheet and Sea-Level System Model (StISSM v1.0)
Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)
A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0)
AvaFrame com1DFA (v1.3): a thickness-integrated computational avalanche module – theory, numerics, and testing
Universal differential equations for glacier ice flow modelling
A new model for supraglacial hydrology evolution and drainage for the Greenland Ice Sheet (SHED v1.0)
Modeling sensitivities of thermally and hydraulically driven ice stream surge cycling
A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
Automatic snow type classification of snow micropenetrometer profiles with machine learning algorithms
An empirical model to calculate snow depth from daily snow water equivalent: SWE2HS 1.0
A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance
The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research
Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean
Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
SUHMO: an adaptive mesh refinement SUbglacial Hydrology MOdel v1.0
Improving snow albedo modeling in the E3SM land model (version 2.0) and assessing its impacts on snow and surface fluxes over the Tibetan Plateau
The Multiple Snow Data Assimilation System (MuSA v1.0)
The Stochastic Ice-Sheet and Sea-Level System Model v1.0 (StISSM v1.0)
Improved representation of the contemporary Greenland ice sheet firn layer by IMAU-FDM v1.2G
Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0.
Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)
SnowClim v1.0: high-resolution snow model and data for the western United States
Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt
MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
Explicitly modelling microtopography in permafrost landscapes in a land surface model (JULES vn5.4_microtopography)
Geometric remapping of particle distributions in the Discrete Element Model for Sea Ice (DEMSI v0.0)
Mapping high-resolution basal topography of West Antarctica from radar data using non-stationary multiple-point geostatistics (MPS-BedMappingV1)
NEMO-Bohai 1.0: a high-resolution ocean and sea ice modelling system for the Bohai Sea, China
An improved regional coupled modeling system for Arctic sea ice simulation and prediction: a case study for 2018
WIFF1.0: a hybrid machine-learning-based parameterization of wave-induced sea ice floe fracture
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev., 17, 8969–8988, https://doi.org/10.5194/gmd-17-8969-2024, https://doi.org/10.5194/gmd-17-8969-2024, 2024
Short summary
Short summary
We present a method to correct snow cover maps (represented in terms of snow water equivalent) to match better-quality maps. The correction can then be extended backwards and forwards in time for periods when better-quality maps are not available. The method is fast and gives good results. It is then applied to obtain a climatology of the snow cover in Switzerland over the past 60 years at a resolution of 1 d and 1 km. This is the first time that such a dataset has been produced.
Ghislain Picard and Quentin Libois
Geosci. Model Dev., 17, 8927–8953, https://doi.org/10.5194/gmd-17-8927-2024, https://doi.org/10.5194/gmd-17-8927-2024, 2024
Short summary
Short summary
The Two-streAm Radiative TransfEr in Snow (TARTES) is a radiative transfer model to compute snow albedo in the solar domain and the profiles of light and energy absorption in a multi-layered snowpack whose physical properties are user defined. It uniquely considers snow grain shape flexibly, based on recent insights showing that snow does not behave as a collection of ice spheres but instead as a random medium. TARTES is user-friendly yet performs comparably to more complex models.
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Yafei Nie, Ian Fenty, Matthew Mazloff, Armin Köhl, and Dimitris Menemenlis
Geosci. Model Dev., 17, 8613–8638, https://doi.org/10.5194/gmd-17-8613-2024, https://doi.org/10.5194/gmd-17-8613-2024, 2024
Short summary
Short summary
Global- and basin-scale ocean reanalyses are becoming easily accessible. However, such ocean reanalyses are optimized for their entire model domains and their ability to simulate the Southern Ocean requires evaluation. We conduct intercomparison analyses of Massachusetts Institute of Technology General Circulation Model (MITgcm)-based ocean reanalyses. They generally perform well for the open ocean, but open-ocean temporal variability and Antarctic continental shelves require improvements.
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
Geosci. Model Dev., 17, 7645–7677, https://doi.org/10.5194/gmd-17-7645-2024, https://doi.org/10.5194/gmd-17-7645-2024, 2024
Short summary
Short summary
Modeling snow cover in climate and weather forecasting models is a challenge even for high-resolution models. Recent simulations with CNRM-AROME have shown difficulties when representing snow in the European Alps. Using remote sensing data and in situ observations, we evaluate modifications of the land surface configuration in order to improve it. We propose a new surface configuration, enabling a more realistic simulation of snow cover, relevant for climate and weather forecasting applications.
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024, https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
Short summary
By harnessing AI models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland's avalanche-prone regions.
Enrico Zorzetto, Sergey Malyshev, Paul Ginoux, and Elena Shevliakova
Geosci. Model Dev., 17, 7219–7244, https://doi.org/10.5194/gmd-17-7219-2024, https://doi.org/10.5194/gmd-17-7219-2024, 2024
Short summary
Short summary
We describe a new snow scheme developed for use in global climate models, which simulates the interactions of snowpack with vegetation, atmosphere, and soil. We test the new snow model over a set of sites where in situ observations are available. We find that when compared to a simpler snow model, this model improves predictions of seasonal snow and of soil temperature under the snowpack, important variables for simulating both the hydrological cycle and the global climate system.
Fu Zhao, Xi Liang, Zhongxiang Tian, Ming Li, Na Liu, and Chengyan Liu
Geosci. Model Dev., 17, 6867–6886, https://doi.org/10.5194/gmd-17-6867-2024, https://doi.org/10.5194/gmd-17-6867-2024, 2024
Short summary
Short summary
In this work, we introduce a newly developed Antarctic sea ice forecasting system, namely the Southern Ocean Ice Prediction System (SOIPS). The system is based on a regional sea ice‒ocean‒ice shelf coupled model and can assimilate sea ice concentration observations. By assessing the system's performance in sea ice forecasts, we find that the system can provide reliable Antarctic sea ice forecasts for the next 7 d and has the potential to guide ship navigation in the Antarctic sea ice zone.
Chenhui Ning, Shiming Xu, Yan Zhang, Xuantong Wang, Zhihao Fan, and Jiping Liu
Geosci. Model Dev., 17, 6847–6866, https://doi.org/10.5194/gmd-17-6847-2024, https://doi.org/10.5194/gmd-17-6847-2024, 2024
Short summary
Short summary
Sea ice models are mainly based on non-moving structured grids, which is different from buoy measurements that follow the ice drift. To facilitate Lagrangian analysis, we introduce online tracking of sea ice in Community Ice CodE (CICE). We validate the sea ice tracking with buoys and evaluate the sea ice deformation in high-resolution simulations, which show multi-fractal characteristics. The source code is openly available and can be used in various scientific and operational applications.
Ulrich Strasser, Michael Warscher, Erwin Rottler, and Florian Hanzer
Geosci. Model Dev., 17, 6775–6797, https://doi.org/10.5194/gmd-17-6775-2024, https://doi.org/10.5194/gmd-17-6775-2024, 2024
Short summary
Short summary
openAMUNDSEN is a fully distributed open-source snow-hydrological model for mountain catchments. It includes process representations of an empirical, semi-empirical, and physical nature. It uses temperature, precipitation, humidity, radiation, and wind speed as forcing data and is computationally efficient, of a modular nature, and easily extendible. The Python code is available on GitHub (https://github.com/openamundsen/openamundsen), including documentation (https://doc.openamundsen.org).
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024, https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Till Andreas Soya Rasmussen, Jacob Poulsen, Mads Hvid Ribergaard, Ruchira Sasanka, Anthony P. Craig, Elizabeth C. Hunke, and Stefan Rethmeier
Geosci. Model Dev., 17, 6529–6544, https://doi.org/10.5194/gmd-17-6529-2024, https://doi.org/10.5194/gmd-17-6529-2024, 2024
Short summary
Short summary
Earth system models (ESMs) today strive for better quality based on improved resolutions and improved physics. A limiting factor is the supercomputers at hand and how best to utilize them. This study focuses on the refactorization of one part of a sea ice model (CICE), namely the dynamics. It shows that the performance can be significantly improved, which means that one can either run the same simulations much cheaper or advance the system according to what is needed.
Anton Korosov, Yue Ying, and Einar Olason
EGUsphere, https://doi.org/10.5194/egusphere-2024-2527, https://doi.org/10.5194/egusphere-2024-2527, 2024
Short summary
Short summary
We have developed a new method to improve the accuracy of sea ice models, which predict how ice moves and deforms due to wind and ocean currents. Traditional models use parameters that are often poorly defined. The new approach uses machine learning to fine-tune these parameters by comparing simulated ice drift with satellite data. The method identifies optimal settings for the model by analysing patterns in ice deformation. This results in more accurate simulations of sea ice drift forecasting.
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger
Geosci. Model Dev., 17, 5759–5777, https://doi.org/10.5194/gmd-17-5759-2024, https://doi.org/10.5194/gmd-17-5759-2024, 2024
Short summary
Short summary
Calving, the detachment of large icebergs from glaciers, is one of the largest uncertainties in future sea level rise projections. This process is poorly understood, and there is an absence of detailed models capable of simulating calving. A new 3D calving model has been developed to better understand calving at glaciers where detailed modelling was previously limited. Importantly, the new model is very flexible. By allowing for unrestricted calving geometries, it can be applied at any location.
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
EGUsphere, https://doi.org/10.5194/egusphere-2024-1752, https://doi.org/10.5194/egusphere-2024-1752, 2024
Short summary
Short summary
Accurately measuring snow height is key for modeling approaches in climate sciences, snow hydrology and avalanche forecasting. Erroneous snow height measurements often occur when the snow height is low or changes, for instance, during a snowfall in the summer. We prepare a new benchmark dataset with annotated snow height data and demonstrate how to improve the measurement quality using modern deep learning approaches. Our approach can be easily implemented into a data pipeline for snow modeling.
Simon Horton, Florian Herla, and Pascal Haegeli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1609, https://doi.org/10.5194/egusphere-2024-1609, 2024
Short summary
Short summary
We present a method for avalanche forecasters to analyze patterns in snowpack model simulations. It uses fuzzy clustering to group small regions into larger forecast areas based on snow characteristics, location, and time. Tested in the Columbia Mountains during winter 2022–23, it accurately matched real forecast regions and identified major avalanche hazard patterns. This approach simplifies complex model outputs, helping forecasters make informed decisions.
Jim Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-104, https://doi.org/10.5194/gmd-2024-104, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Ice sheet models can help predict how Antarctica's ice sheets respond to environmental change, and such models benefit from comparison to geological data. Here, we use an ice sheet model output, plus other data, to predict the erosion of debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-37, https://doi.org/10.5194/gmd-2024-37, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We employed the WRF-Chem model to parameterize atmospheric nitrate deposition in snow and evaluated its performance in simulating snow cover, snow depth, and concentrations of black carbon (BC), dust, and nitrate using new observations from Northern China. The results generally exhibit reasonable agreement with field observations in northern China, demonstrating the model's capability to simulate snow properties, including concentrations of reservoir species.
Kévin Fourteau, Julien Brondex, Fanny Brun, and Marie Dumont
Geosci. Model Dev., 17, 1903–1929, https://doi.org/10.5194/gmd-17-1903-2024, https://doi.org/10.5194/gmd-17-1903-2024, 2024
Short summary
Short summary
In this paper, we provide a novel numerical implementation for solving the energy exchanges at the surface of snow and ice. By combining the strong points of previous models, our solution leads to more accurate and robust simulations of the energy exchanges, surface temperature, and melt while preserving a reasonable computation time.
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024, https://doi.org/10.5194/gmd-17-1297-2024, 2024
Short summary
Short summary
Increasing the spatial resolution of numerical systems simulating snowpack evolution in mountain areas requires representing small-scale processes such as wind-induced snow transport. We present SnowPappus, a simple scheme coupled with the Crocus snow model to compute blowing-snow fluxes and redistribute snow among grid points at 250 m resolution. In terms of numerical cost, it is suitable for large-scale applications. We present point-scale evaluations of fluxes and snow transport occurrence.
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024, https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Short summary
The surface mass balance (SMB) of an ice sheet describes the net gain or loss of mass from ice sheets (such as those in Greenland and Antarctica) through interaction with the atmosphere. We developed a statistical method to generate a wide range of SMB fields that reflect the best understanding of SMB processes. Efficiently sampling the variability of SMB will help us understand sources of uncertainty in ice sheet model projections.
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024, https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary
Short summary
We solve momentum balance for unstructured meshes to predict ice flow for real glaciers using a pseudo-transient method on graphics processing units (GPUs) and compare it to a standard central processing unit (CPU) implementation. We justify the GPU implementation by applying the price-to-performance metric for up to million-grid-point spatial resolutions. This study represents a first step toward leveraging GPU processing power, enabling more accurate polar ice discharge predictions.
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023, https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary
Short summary
Vapor diffusion is one of the main processes governing snowpack evolution, and it must be accounted for in models. Recent attempts to represent vapor diffusion in numerical models have faced several difficulties regarding computational cost and mass and energy conservation. Here, we develop our own finite-element software to explore numerical approaches and enable us to overcome these difficulties. We illustrate the capability of these approaches on established numerical benchmarks.
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez
Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023, https://doi.org/10.5194/gmd-16-6671-2023, 2023
Short summary
Short summary
We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise.
Prateek Gantayat, Alison F. Banwell, Amber A. Leeson, James M. Lea, Dorthe Petersen, Noel Gourmelen, and Xavier Fettweis
Geosci. Model Dev., 16, 5803–5823, https://doi.org/10.5194/gmd-16-5803-2023, https://doi.org/10.5194/gmd-16-5803-2023, 2023
Short summary
Short summary
We developed a new supraglacial hydrology model for the Greenland Ice Sheet. This model simulates surface meltwater routing, meltwater drainage, supraglacial lake (SGL) overflow, and formation of lake ice. The model was able to reproduce 80 % of observed lake locations and provides a good match between the observed and modelled temporal evolution of SGLs.
Kevin Hank, Lev Tarasov, and Elisa Mantelli
Geosci. Model Dev., 16, 5627–5652, https://doi.org/10.5194/gmd-16-5627-2023, https://doi.org/10.5194/gmd-16-5627-2023, 2023
Short summary
Short summary
Physically meaningful modeling of geophysical system instabilities is numerically challenging, given the potential effects of purely numerical artifacts. Here we explore the sensitivity of ice stream surge activation to numerical and physical model aspects. We find that surge characteristics exhibit a resolution dependency but converge at higher horizontal grid resolutions and are significantly affected by the incorporation of bed thermal and sub-glacial hydrology models.
Yannic Fischler, Thomas Kleiner, Christian Bischof, Jeremie Schmiedel, Roiy Sayag, Raban Emunds, Lennart Frederik Oestreich, and Angelika Humbert
Geosci. Model Dev., 16, 5305–5322, https://doi.org/10.5194/gmd-16-5305-2023, https://doi.org/10.5194/gmd-16-5305-2023, 2023
Short summary
Short summary
Water underneath ice sheets affects the motion of glaciers. This study presents a newly developed code, CUAS-MPI, that simulates subglacial hydrology. It is designed for supercomputers and is hence a parallelized code. We measure the performance of this code for simulations of the entire Greenland Ice Sheet and find that the code works efficiently. Moreover, we validated the code to ensure the correctness of the solution. CUAS-MPI opens new possibilities for simulations of ice sheet hydrology.
Julia Kaltenborn, Amy R. Macfarlane, Viviane Clay, and Martin Schneebeli
Geosci. Model Dev., 16, 4521–4550, https://doi.org/10.5194/gmd-16-4521-2023, https://doi.org/10.5194/gmd-16-4521-2023, 2023
Short summary
Short summary
Snow layer segmentation and snow grain classification are essential diagnostic tasks for cryospheric applications. A SnowMicroPen (SMP) can be used to that end; however, the manual classification of its profiles becomes infeasible for large datasets. Here, we evaluate how well machine learning models automate this task. Of the 14 models trained on the MOSAiC SMP dataset, the long short-term memory model performed the best. The findings presented here facilitate and accelerate SMP data analysis.
Johannes Aschauer, Adrien Michel, Tobias Jonas, and Christoph Marty
Geosci. Model Dev., 16, 4063–4081, https://doi.org/10.5194/gmd-16-4063-2023, https://doi.org/10.5194/gmd-16-4063-2023, 2023
Short summary
Short summary
Snow water equivalent is the mass of water stored in a snowpack. Based on exponential settling functions, the empirical snow density model SWE2HS is presented to convert time series of daily snow water equivalent into snow depth. The model has been calibrated with data from Switzerland and validated with independent data from the European Alps. A reference implementation of SWE2HS is available as a Python package.
Eric Keenan, Nander Wever, Jan T. M. Lenaerts, and Brooke Medley
Geosci. Model Dev., 16, 3203–3219, https://doi.org/10.5194/gmd-16-3203-2023, https://doi.org/10.5194/gmd-16-3203-2023, 2023
Short summary
Short summary
Ice sheets gain mass via snowfall. However, snowfall is redistributed by the wind, resulting in accumulation differences of up to a factor of 5 over distances as short as 5 km. These differences complicate estimates of ice sheet contribution to sea level rise. For this reason, we have developed a new model for estimating wind-driven snow redistribution on ice sheets. We show that, over Pine Island Glacier in West Antarctica, the model improves estimates of snow accumulation variability.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023, https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary
Short summary
State-of-the-art Earth system models simulate the observed sea ice extent relatively well, but this is often due to errors in the dynamic and other processes in the simulated sea ice changes cancelling each other out. We assessed the sensitivity of these processes simulated by the coupled ocean–sea ice model NEMO4.0-SI3 to 18 parameters. The performance of the model in simulating sea ice change processes was ultimately improved by adjusting the three identified key parameters.
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023, https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
Short summary
Most current generation climate and weather models have a relatively simplistic description of snow and snow–atmosphere interaction. One reason for this is the belief that including an advanced snow model would make the simulations too computationally demanding. In this study, we bring together two state-of-the-art models for atmosphere (WRF) and snow cover (SNOWPACK) and highlight both the feasibility and necessity of such coupled models to explore underexplored phenomena in the cryosphere.
Anne M. Felden, Daniel F. Martin, and Esmond G. Ng
Geosci. Model Dev., 16, 407–425, https://doi.org/10.5194/gmd-16-407-2023, https://doi.org/10.5194/gmd-16-407-2023, 2023
Short summary
Short summary
We present and validate a novel subglacial hydrology model, SUHMO, based on an adaptive mesh refinement framework. We propose the addition of a pseudo-diffusion to recover the wall melting in channels. Computational performance analysis demonstrates the efficiency of adaptive mesh refinement on large-scale hydrologic problems. The adaptive mesh refinement approach will eventually enable better ice bed boundary conditions for ice sheet simulations at a reasonable computational cost.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Vincent Verjans, Alexander A. Robel, Helene Seroussi, Lizz Ultee, and Andrew F. Thompson
Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, https://doi.org/10.5194/gmd-15-8269-2022, 2022
Short summary
Short summary
We describe the development of the first large-scale ice sheet model that accounts for stochasticity in a range of processes. Stochasticity allows the impacts of inherently uncertain processes on ice sheets to be represented. This includes climatic uncertainty, as the climate is inherently chaotic. Furthermore, stochastic capabilities also encompass poorly constrained glaciological processes that display strong variability at fine spatiotemporal scales. We present the model and test experiments.
Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke
Geosci. Model Dev., 15, 7121–7138, https://doi.org/10.5194/gmd-15-7121-2022, https://doi.org/10.5194/gmd-15-7121-2022, 2022
Short summary
Short summary
Firn covers the Greenland ice sheet (GrIS) and can temporarily prevent mass loss. Here, we present the latest version of our firn model, IMAU-FDM, with an application to the GrIS. We improved the density of fallen snow, the firn densification rate and the firn's thermal conductivity. This leads to a higher air content and 10 m temperatures. Furthermore we investigate three case studies and find that the updated model shows greater variability and an increased sensitivity in surface elevation.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022, https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
Short summary
The rate at which marine ice sheets such as the West Antarctic ice sheet will retreat in a warming climate and ocean is still uncertain. Numerical ice-sheet models, which solve the physical equations that describe the way glaciers and ice sheets deform and flow, have been substantially improved in recent years. Here we present the results of several years of work on IMAU-ICE, an ice-sheet model of intermediate complexity, which can be used to study ice sheets of both the past and the future.
Abby C. Lute, John Abatzoglou, and Timothy Link
Geosci. Model Dev., 15, 5045–5071, https://doi.org/10.5194/gmd-15-5045-2022, https://doi.org/10.5194/gmd-15-5045-2022, 2022
Short summary
Short summary
We developed a snow model that can be used to quantify snowpack over large areas with a high degree of spatial detail. We ran the model over the western United States, creating a snow and climate dataset for three time periods. Compared to observations of snowpack, the model captured the key aspects of snow across time and space. The model and dataset will be useful in understanding historical and future changes in snowpack, with relevance to water resources, agriculture, and ecosystems.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022, https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
Short summary
Knowing in real time how much snow and glacier ice has accumulated across the landscape has significant implications for water-resource management and flood control. This paper presents a computer model – S3M – allowing scientists and decision makers to predict snow and ice accumulation during winter and the subsequent melt during spring and summer. S3M has been employed for real-world flood forecasting since the early 2000s but is here being made open source for the first time.
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022, https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary
Short summary
We present the dynamical core of the MPAS-Seaice model, which uses a mesh consisting of a Voronoi tessellation with polygonal cells. Such a mesh allows variable mesh resolution in different parts of the domain and the focusing of computational resources in regions of interest. We describe the velocity solver and tracer transport schemes used and examine errors generated by the model in both idealized and realistic test cases and examine the computational efficiency of the model.
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022, https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Short summary
The Arctic has large areas of small mounds that are caused by ice lifting up the soil. Snow blown by wind gathers in hollows next to these mounds, insulating them in winter. The hollows tend to be wetter, and thus the soil absorbs more heat in summer. The warm wet soil in the hollows decomposes, releasing methane. We have made a model of this, and we have tested how it behaves and whether it looks like sites in Scandinavia and Siberia. Sometimes we get more methane than a model without mounds.
Adrian K. Turner, Kara J. Peterson, and Dan Bolintineanu
Geosci. Model Dev., 15, 1953–1970, https://doi.org/10.5194/gmd-15-1953-2022, https://doi.org/10.5194/gmd-15-1953-2022, 2022
Short summary
Short summary
We developed a technique to remap sea ice tracer quantities between circular discrete element distributions. This is needed for a global discrete element method sea ice model being developed jointly by Los Alamos National Laboratory and Sandia National Laboratories that has the potential to better utilize newer supercomputers with graphics processing units and better represent sea ice dynamics. This new remapping technique ameliorates the effect of element distortion created by sea ice ridging.
Zhen Yin, Chen Zuo, Emma J. MacKie, and Jef Caers
Geosci. Model Dev., 15, 1477–1497, https://doi.org/10.5194/gmd-15-1477-2022, https://doi.org/10.5194/gmd-15-1477-2022, 2022
Short summary
Short summary
We provide a multiple-point geostatistics approach to probabilistically learn from training images to fill large-scale irregular geophysical data gaps. With a repository of global topographic training images, our approach models high-resolution basal topography and quantifies the geospatial uncertainty. It generated high-resolution topographic realizations to investigate the impact of basal topographic uncertainty on critical subglacial hydrological flow patterns associated with ice velocity.
Yu Yan, Wei Gu, Andrea M. U. Gierisch, Yingjun Xu, and Petteri Uotila
Geosci. Model Dev., 15, 1269–1288, https://doi.org/10.5194/gmd-15-1269-2022, https://doi.org/10.5194/gmd-15-1269-2022, 2022
Short summary
Short summary
In this study, we developed NEMO-Bohai, an ocean–ice model for the Bohai Sea, China. This study presented the scientific design and technical choices of the parameterizations for the NEMO-Bohai model. The model was calibrated and evaluated with in situ and satellite observations of ocean and sea ice. NEMO-Bohai is intended to be a valuable tool for long-term ocean and ice simulations and climate change studies.
Chao-Yuan Yang, Jiping Liu, and Dake Chen
Geosci. Model Dev., 15, 1155–1176, https://doi.org/10.5194/gmd-15-1155-2022, https://doi.org/10.5194/gmd-15-1155-2022, 2022
Short summary
Short summary
We present an improved coupled modeling system for Arctic sea ice prediction. We perform Arctic sea ice prediction experiments with improved/updated physical parameterizations, which show better skill in predicting sea ice state as well as atmospheric and oceanic state in the Arctic compared with its predecessor. The improved model also shows extended predictive skill of Arctic sea ice after the summer season. This provides an added value of this prediction system for decision-making.
Christopher Horvat and Lettie A. Roach
Geosci. Model Dev., 15, 803–814, https://doi.org/10.5194/gmd-15-803-2022, https://doi.org/10.5194/gmd-15-803-2022, 2022
Short summary
Short summary
Sea ice is a composite of individual pieces, called floes, ranging in horizontal size from meters to kilometers. Variations in sea ice geometry are often forced by ocean waves, a process that is an important target of global climate models as it affects the rate of sea ice melting. Yet directly simulating these interactions is computationally expensive. We present a neural-network-based model of wave–ice fracture that allows models to incorporate their effect without added computational cost.
Cited articles
AntArchitecture: Archiving and interrogating Antarctica's internal structure from radar sounding, in: Workshop to establish scientific goals, working practices, and funding routes, Tech. rep., School of GeoSciences, 2017. a
Born, A.: Tracer transport in an isochronal ice sheet model, J. Glaciol., 63, 22–38, https://doi.org/10.1017/jog.2016.111, 2017. a, b, c, d
Born, A. and Robinson, A.: Modeling the Greenland englacial stratigraphy, The Cryosphere, 15, 4539–4556, https://doi.org/10.5194/tc-15-4539-2021, 2021. a, b, c
Brondex, J., Gillet-Chaulet, F., and Gagliardini, O.: Sensitivity of centennial mass loss projections of the Amundsen basin to the friction law, The Cryosphere, 13, 177–195, https://doi.org/10.5194/tc-13-177-2019, 2019. a
Cavitte, M. G. P., Young, D. A., Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L., Tozer, C. R., Schroeder, D. M., and Blankenship, D. D.: A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, 2021. a
Choi, Y., Seroussi, H., Gardner, A., and Schlegel, N.-J.: Uncovering basal friction in Northwest Greenland using an ice flow model and observations of the past decade, J. Geophy. Res.-Earth Surf., 127, e2022JF006710, https://doi.org/10.1029/2022JF006710, 2022. a
Clarke, G. K. and Marshall, S. J.: Isotopic balance of the Greenland Ice Sheet : modelled concentrations of water isotopes from 30,000 BP to present, Quaternary Sci. Rev., 21, 419–430, https://doi.org/10.1016/S0277-3791(01)00111-1, 2002. a
Clarke, G. K., Lhomme, N., and Marshall, S. J.: Tracer transport in the Greenland ice sheet: three-dimensional isotopic stratigraphy, Quaternary Sci. Rev., 24, 155–171, https://doi.org/10.1016/j.quascirev.2004.08.021, 2005. a
Dahl-Jensen, D., Albert, M. R., Aldahan, A., Azuma, N., Balslev-Clausen, D., Baumgartner, M., Berggren, A. M., Bigler, M., Binder, T., Blunier, T., Bourgeois, J. C., Brook, E. J., Buchardt, S. L., Buizert, C., Capron, E., Chappellaz, J., Chung, J., Clausen, H. B., Cvijanovic, I., Davies, S. M., Ditlevsen, P., Eicher, O., Fischer, H., Fisher, D. A., Fleet, L. G., Gfeller, G., Gkinis, V., Gogineni, S., Goto-Azuma, K., Grinsted, A., Gudlaugsdottir, H., Guillevic, M., Hansen, S. B., Hansson, M., Hirabayashi, M., Hong, S., Hur, S. D., Huybrechts, P., Hvidberg, C. S., Iizuka, Y., Jenk, T., Johnsen, S. J., Jones, T. R., Jouzel, J., Karlsson, N. B., Kawamura, K., Keegan, K., Kettner, E., Kipfstuhl, S., Kjær, H. A., Koutnik, M., Kuramoto, T., Köhler, P., Laepple, T., Landais, A., Langen, P. L., Larsen, L. B., Leuenberger, D., Leuenberger, M., Leuschen, C., Li, J., Lipenkov, V., Martinerie, P., Maselli, O. J., Masson-Delmotte, V., McConnell, J. R., Miller, H., Mini, O., Miyamoto, a., Montagnat-Rentier, M., Mulvaney, R., Muscheler, R., Orsi, A. J., Paden, J., Panton, C., Pattyn, F., Petit, J.-R., Pol, K., Popp, T., Possnert, G., Prié, F., Prokopiou, M., Quiquet, A., Rasmussen, S. O., Raynaud, D., Ren, J., Reutenauer, C., Ritz, C., Röckmann, T., Rosen, J. L., Rubino, M., Rybak, O., Samyn, D., Sapart, C. J., Schilt, A., Schmidt, a. M. Z., Schwander, J., Schüpbach, S., Seierstad, I., Severinghaus, J. P., Sheldon, S., Simonsen, S. B., Sjolte, J., Solgaard, A. M., Sowers, T., Sperlich, P., Steen-Larsen, H. C., Steffen, K., Steffensen, J. P., Steinhage, D., Stocker, T. F., Stowasser, C., Sturevik, A. S., Sturges, W. T., Sveinbjörnsdottir, A., Svensson, A., Tison, J.-L., Uetake, J., Vallelonga, P., van de Wal, R. S. W., van der Wel, G., Vaughn, B. H., Vinther, B., Waddington, E., Wegner, A., Weikusat, I., White, J. W. C., Wilhelms, F., Winstrup, M., Witrant, E., Wolff, E. W., Xiao, C., and Zheng, J.: Eemian interglacial reconstructed from a Greenland folded ice core, Nature, 493, 489–494, https://doi.org/10.1038/nature11789, 2013. a
EPICA Community Members: One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195–198, https://doi.org/10.1038/nature05301, 2006. a
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017. a
Goelles, T., Grosfeld, K., and Lohmann, G.: Semi-Lagrangian transport of oxygen isotopes in polythermal ice sheets: implementation and first results, Geosci. Model Dev., 7, 1395–1408, https://doi.org/10.5194/gmd-7-1395-2014, 2014. a
Greve, R. and Blatter, H.: Dynamics of ice sheets and glaciers, Springer Verlag, Berlin Heidelberg New York, https://doi.org/10.1007/978-3-642-03415-2, 2009. a
Joughin, I., Smith, B., and Howat, I.: A complete map of Greenland ice velocity derived from satellite data collected over 20 years, J. Glaciol., 64, 1–11, https://doi.org/10.1017/jog.2017.73, 2018. a, b
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021. a
Lhomme, N., Clarke, G. K. C., and Marshall, S. J.: Tracer transport in the Greenland Ice Sheet: constraints on ice cores and glacial history, Quaternary Sci. Rev., 24, 173–194, https://doi.org/10.1016/j.quascirev.2004.08.020, 2005. a
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Paden, J. D., Gogineni, S., Young, S. K., Rybarski, S. C., Mabrey, A. N., Wagman, B. M., and Morlighem, M.: Radiostratigraphy and age structure of the Greenland Ice Sheet, J. Geophys. Res., 120, 212–241, https://doi.org/10.1002/2014JF003215, 2015. a, b, c, d, e, f, g, h, i
MacGregor, J. A., Chu, W., Colgan, W. T., Fahnestock, M. A., Felikson, D., Karlsson, N. B., Nowicki, S. M. J., and Studinger, M.: GBaTSv2: a revised synthesis of the likely basal thermal state of the Greenland Ice Sheet, The Cryosphere, 16, 3033–3049, https://doi.org/10.5194/tc-16-3033-2022, 2022. a
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation, Geophys. Res. Lett., 44, 11051–11061, https://doi.org/10.1002/2017GL074954, 2017. a, b
Nishida, A.: Experience in Developing an Open Source Scalable Software Infrastructure in Japan. In: Computational Science and Its Applications – ICCSA 2010, edited by D. Taniar and O. Gervasi and B. Murgante and E. Pardede and B. O. Apduhan, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. a
North Greenland Ice Core Project members: High-resolution record of Norhtern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004. a
Rieckh, T.: Code and data for “Introducing ELSA v2.0: an isochronal model for ice-sheet layer tracing”, Zenodo [code and data set], https://doi.org/10.5281/zenodo.10590358, 2024. a
Robinson, A., Alvarez-Solas, J., Montoya, M., Goelzer, H., Greve, R., and Ritz, C.: Description and validation of the ice-sheet model Yelmo (version 1.0), Geosci. Model Dev., 13, 2805–2823, https://doi.org/10.5194/gmd-13-2805-2020, 2020. a, b
Rybak, O. and Huybrechts, P.: A comparison of Eulerian and Lagrangian methods for dating in numerical ice-sheet models, Ann. Glaciol., 37, 150–158, https://doi.org/10.3189/172756403781815393, 2003. a
Shapiro, N. M. and Ritzwoller, M. H.: Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica, Earth Planet. Sc. Lett., 223, 213–224, https://doi.org/10.1016/j.epsl.2004.04.011, 2004. a
Tabone, I., Blasco, J., Robinson, A., Alvarez-Solas, J., and Montoya, M.: The sensitivity of the Greenland Ice Sheet to glacial–interglacial oceanic forcing, Clim. Past, 14, 455–472, https://doi.org/10.5194/cp-14-455-2018, 2018. a
Vasskog, K., Langebroek, P. M., Andrews, J. T., Nilsen, J. E. Ø., and Nesje, A.: The Greenland Ice Sheet during the last glacial cycle: Current ice loss and contribution to sea-level rise from a palaeoclimatic perspective, Earth-Sci. Rev., 150, 45–67, https://doi.org/10.1016/j.earscirev.2015.07.006, 2015. a
Short summary
We present the open-source model ELSA, which simulates the internal age structure of large ice sheets. It creates layers of snow accumulation at fixed times during the simulation, which are used to model the internal stratification of the ice sheet. Together with reconstructed isochrones from radiostratigraphy data, ELSA can be used to assess ice sheet models and to improve their parameterization. ELSA can be used coupled to an ice sheet model or forced with its output.
We present the open-source model ELSA, which simulates the internal age structure of large ice...