Articles | Volume 17, issue 12
https://doi.org/10.5194/gmd-17-4791-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-4791-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing effects of climate and technology uncertainties in large natural resource allocation problems
Jevgenijs Steinbuks
CORRESPONDING AUTHOR
Office of the Chief Economist, Infrastructure Practice, The World Bank, Washington, D.C., USA
Yongyang Cai
Department of Agricultural, Environmental, and Development Economics, The Ohio State University, Columbus, OH, USA
Jonas Jaegermeyr
Department of Computer Science, University of Chicago, Chicago, IL, USA
NASA Goddard Institute for Space Studies, New York, NY, USA
Climate Impacts and Vulnerabilities, Potsdam Institute for Climate Impact Research, Potsdam, Germany
Thomas W. Hertel
Center for Global Trade Analysis, Purdue University, West Lafayette, IN, USA
Related authors
No articles found.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev., 16, 7203–7221, https://doi.org/10.5194/gmd-16-7203-2023, https://doi.org/10.5194/gmd-16-7203-2023, 2023
Short summary
Short summary
We develop a machine-learning-based crop model emulator with the inputs and outputs of multiple global gridded crop model ensemble simulations to capture the year-to-year variation of crop yield under future climate change. The emulator can reproduce the year-to-year variation of simulated yield given by the crop models under CO2, temperature, water, and nitrogen perturbations. Developing this emulator can provide a tool to project future climate change impact in a simple way.
Albert Nkwasa, Celray James Chawanda, Jonas Jägermeyr, and Ann van Griensven
Hydrol. Earth Syst. Sci., 26, 71–89, https://doi.org/10.5194/hess-26-71-2022, https://doi.org/10.5194/hess-26-71-2022, 2022
Short summary
Short summary
We present an approach on how to incorporate crop phenology in a regional hydrological model using decision tables and global datasets of rainfed and irrigated cropland with the associated cropping calendar and management practices. Results indicate improved temporal patterns of leaf area index (LAI) and evapotranspiration (ET) simulations in comparison with remote sensing data. In addition, the improvement of the cropping season also helps to improve soil erosion estimates in cultivated areas.
Iman Haqiqi, Danielle S. Grogan, Thomas W. Hertel, and Wolfram Schlenker
Hydrol. Earth Syst. Sci., 25, 551–564, https://doi.org/10.5194/hess-25-551-2021, https://doi.org/10.5194/hess-25-551-2021, 2021
Short summary
Short summary
This study combines a fine-scale weather product with outputs of a hydrological model to construct functional metrics of individual and compound hydroclimatic extremes for agriculture. Then, a yield response function is estimated with individual and compound metrics focusing on corn in the United States during the 1981–2015 period. The findings suggest that metrics of compound hydroclimatic extremes are better predictors of corn yield variations than metrics of individual extremes.
Cited articles
Alexander, P., Prestele, R., Verburg, P. H., Arneth, A., Baranzelli, C., Batista e Silva, F., Brown, C., Butler, A., Calvin, K., Dendoncker, N., Doelman, J., Dunford, R., Engström, K., Eitelberg, D., Fujimori, S., Harrison, P., Hasegawa, T., Havlik, P., Holzhauer, S., Humpenöder, F., Jacobs-Crisioni, C., Jain, A., Krisztin, T., Page, K., Lavalle, C., Lenton, T., Liu, J., Meiyappan, P., Popp, A., Powell, T., Sands, R., Schaldach, R., Stehfest, E., Steinbuks, J., Tabeau, A., van Meijl, H., Wise, M., and Rounsevell, M.: Assessing Uncertainties in Land Cover Projections, Glob. Change Biol., 23, 767–781, 2017. a
Alexandratos, N.: Critical Evaluation of Selected Projections, in: Economic Analysis of Land Use in Global Climate Change Policy, edited by: Conforti, P., Food and Agriculture Organization of the United Nations, Rome, 465–508, 2011. a
Alston, J. M. and Pardey, P. G.: Agricultural R&D, Food Prices, Poverty and Malnutrition Redux, Staff Paper P14-01, University of Minnesota, Department of Applied Economics, 2014. a
Arrow, K. J.: Aspects of the Theory of Risk-Bearing, Yrjö Jahnsson Foundation, Helsinki, ISBN 0841020019, 1965. a
Babiker, M., Gurgel, A., Paltsev, S., and Reilly, J.: Forward-looking versus Recursive-dynamic Modeling in Climate Policy Analysis: A Comparison, Econ. Model., 26, 1341–1354, 2009. a
Barbier, E. B., Burgess, J. C., Bishop, J., and Aylward, B.: The Economics of the Tropical Timber Trade, Earthscan, London (UK), ISBN 9780367369941, 1994. a
Barro, R. J. and Sala-i Martin, X.: Economic Growth, MIT Press, ISBN 0-262-02553-1, 2004. a
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013. a
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.: Modelling the Role of Agriculture for the 20th Century Global Terrestrial Carbon Balance, Glob. Change Biol., 13, 679–706, 2007. a
Brock, W. A. and Majumdar, M.: Global Asymptotic Stability Results for Multisector Models of Optimal Growth under Uncertainty when Future Utilities are Discounted, J. Econ. Theory, 18, 225–243, 1978. a
Bulte, E., van Soest, D., Van Kooten, G., and Schipper, R.: Forest Conservation in Costa Rica when Nonuse Benefits are Uncertain but Rising, Am. J. Agr. Econ., 84, 150–160, 2002. a
Burke, M. B. and Emerick, K.: Adaptation to Climate Change: Evidence from US Agriculture, Am. Econ. J., 8, 106–140, 2016. a
Cai, Y.: Computational methods in environmental and resource economics, Annu. Rev. Resour. Econ., 11, 59–82, https://doi.org/10.1146/annurev-resource-100518-093841, 2019. a, b, c, d
Cai, Y.: The Role of Uncertainty in Controlling Climate Change, Oxford Research Encyclopedia of Economics and Finance, https://doi.org/10.1093/acrefore/9780190625979.013.573, 2021. a
Cai, Y. and Judd, K.: Shape-preserving Dynamic Programming, Math. Method. Oper. Res., 77, 407–421, 2013. a
Cai, Y. and Lontzek, T.: The Social Cost of Carbon with Economic and Climate Risks, J. Polit. Econ., 127, 2684–2734, 2019. a
Cai, Y., Judd, K., Thain, G., and Wright, S.: Solving Dynamic Programming Problems on a Computational Grid, Comput. Econ., 45, 261–284, 2015. a
Cai, Y., Steinbuks, J., Judd, K. L., Jaegermeyr, J., and Hertel, T. W.: Modeling Uncertainty in Large Natural Resource Allocation Problems, Policy Research Working Paper 9159, The World Bank, 2020. a
Cassman, K. G.: Ecological Intensification of Cereal Production Systems: Yield Potential, Soil Quality, and Precision Agriculture, P. Natl. Acad. Sci. USA, 96, 5952–5959, 1999. a
Collins, W., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Hinton, T., Jones, C., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Totterdell, I., Woodward, S., T., R., and Kim, J.: Evaluation of the HadGEM2 Model, Hadley Center Tech. Note, 74, 2008. a
Conrad, J.: On the Option Value of Old-growth Forest, Ecol. Econ., 22, 97–102, 1997. a
Conrad, J.: Wilderness: Options to Preserve, Extract, or Develop, Resour. Energy Econ., 22, 205–219, 2000. a
Daigneault, A. J., Miranda, M. J., and Sohngen, B.: Optimal Forest Management with Carbon Sequestration Credits and Endogenous Fire Risk, Land Econ., 86, 155–172, 2010. a
Deryng, D., Sacks, W., Barford, C., and Ramankutty, N.: Simulating the Effects of Climate and Agricultural Management Practices on Global Crop Yield, Global Biogeochem. Cy., 25, https://doi.org/10.1029/2009GB003765, 2011. a
Deryng, D., Elliott, J., Folberth, C., Müller, C., Pugh, T. A., Boote, K. J., Conway, D., Ruane, A. C., Gerten, D., Jones, J. W., Khabarov, N., Olin, S., Schaphoff, S., Schmid, E., Yang, H., and Rosenzweig, C.: Regional Disparities in the Beneficial Effects of Rising CO2 Concentrations on Crop Water Productivity, Nat. Clim. Change, 6, 786, https://doi.org/10.1038/nclimate2995, 2016. a
Diffenbaugh, N. S., Hertel, T. W., Scherer, M., and Verma, M.: Response of Corn Markets to Climate Volatility under Alternative Energy Futures, Nat. Clim. Change, 2, 514, https://doi.org/10.1038/nclimate1491, 2012. a
Drud, A. S.: CONOPT – A Large-Scale GRG Code, ORSA J. Comput., 6, 207–216, https://doi.org/10.1287/ijoc.6.2.207, 1994. a
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate Change Projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165 https://doi.org/10.1007/s00382-012-1636-1, 2013. a
Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Sentman, L. T., Adcroft, A. J., Cooke, W., Dunne, K. A., Griffies, S. M., Hallberg, R. W., Harrison, M. J., Levy, H., Wittenberg, A. T., Phillips, P. J., and Zadeh, N.: GFDL's ESM2 Global Coupled Climate?Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics. Climate, 26, 2247–2267, 2013. a
Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A. C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., and Wisser, D.: Constraints and Potentials of Future Irrigation Water Availability on Agricultural Production Under Climate Change, P. Natl. Acad. Sci. USA, 111, 3239–3244, 2014a. a
Elliott, J., Kelly, D., Chryssanthacopoulos, J., Glotter, M., Jhunjhnuwala, K., Best, N., Wilde, M., and Foster, I.: The Parallel System for Integrating Impact Models and Sectors (pSIMS), Environ. Modell. Softw., 62, 509–516, https://doi.org/10.1016/j.envsoft.2014.04.008, 2014b. a
Evans, L. and Fischer, R.: Yield Potential: its Definition, Measurement, and Significance, Crop Sci., 39, 1544–1551, 1999. a
Fischer, T., Byerlee, D., and Edmeades, G.: Can Technology Deliver on the Yield Challenge to 2050?, in: Economic Analysis of Land Use in Global Climate Change Policy, edited by: Conforti, P., Food and Agriculture Organization of the United Nations, Rome, 389–462, 2011. a
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P. M.: Solutions for a Cultivated Planet, Nature, 478, 337–342, 2011. a, b, c
Füssel, H.-M.: An Updated Assessment of the Risks from Climate Change Based on Research Published since the IPCC Fourth Assessment Report, Climatic change, 97, 469, https://doi.org/10.1007/s10584-009-9648-5, 2009. a
Golub, A., Hertel, T., and Sohngen, B.: Land Use Modeling in Recursively-Dynamic GTAP Framework, in: Economic Analysis of Land Use in Global Climate Change Policy, edited by: Hertel, T., Rose, S., and Tol, R., Routledge, 235–278, ISBN 9780415847223, 2009. a
Grassini, P., Eskridge, K. M., and Cassman, K. G.: Distinguishing between Yield Advances and Yield Plateaus in Historical Crop Production Trends, Nat. Commun., 4, https://doi.org/10.1038/ncomms3918, 2013. a, b, c
Hausfather, Z. and Peters, G. P.: Emissions–the “Business as Usual” Story is Misleading, Nature, 577, 618–620, 2020. a
Hertel, T. W., Steinbuks, J., and Baldos, U.: Competition for Land in the Global Bioeconomy, Agr. Econ., 44, 129–138, 2013. a
Jägermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W., and Rockström, J.: Integrated Crop Water Management Might Sustainably Halve the Global Food Gap, Environ. Res. Lett., 11, 025002, https://doi.org/10.1088/1748-9326/11/2/025002, 2016. a
Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly, D., Khabarov, N., Lange, S., Lin, T.-S., Liu, W., Mialyk, O., Minoli, S., Moyer, E. J., Okada, M., Phillips, M., Porter, C., Rabin, S. S., Scheer, C., Schneider, J. M., Schyns, J. F., Skalsky, R., Smerald, A., Stella, T., Stephens, H., Webber, H., Zabel, F., and Rosenzweig, C.: Climate Impacts on Global Agriculture Emerge Earlier in New Generation of Climate and Crop Models, Nature Food, 2, 873–885, 2021. a
Judd, K. L.: Numerical Methods in Economics, The MIT press, ISBN 9780262547741, 1998. a
Leroux, A., Martin, V., and Goeschl, T.: Optimal Conservation, Extinction Debt, and the Augmented Quasi-option Value, J. Environ. Econ. Manage., 58, 43–57, 2009. a
Liu, J., Williams, J. R., Zehnder, A. J., and Yang, H.: GEPIC–Modelling Wheat Yield and Crop Water Productivity with High Resolution on a Global Scale, Agr. Syst., 94, 478–493, 2007. a
Lobell, D. B. and Field, C. B.: Global Scale Climate – Crop Yield Relationships and the Impacts of Recent Warming, Environ. Res. Lett., 2, 014002, https://doi.org/10.1088/1748-9326/2/1/014002, 2007. a
Lobell, D. B., Cassman, K. G., and Field, C. B.: Crop Yield Gaps: their Importance, Magnitudes, and Causes, Annu. Rev. Environ. Resour., 34, 179, https://doi.org/10.1146/annurev.environ.041008.093740, 2009. a, b, c
Long, S.: Modification of the Response of Photosynthetic Productivity to Rising Temperature by Atmospheric CO2 Concentrations: Has its Importance been Underestimated?, Plant Cell Environ., 14, 729–739, 1991. a
Long, S. P., Ainsworth, E. A., Leakey, A. D., Nösberger, J., and Ort, D. R.: Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations, Science, 312, 1918–1921, 2006. a
Majumdar, M. and Radner, R.: Stationary Optimal Policies with Discounting in a Stochastic Activity Analysis Model, Econometrica, 51, 1821–1837, 1983. a
Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Lin, E., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J.-F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., and Zurek, M.: Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies, Tech. Rep. PNNL-SA-63186, Pacific Northwest National Laboratory (PNNL), Richland, WA (US), 2008. a, b
National Research Council: Renewable Fuel Standard: Potential Economic and Environmental Effects of U.S. Biofuel Policy, National Academies Press, ISBN 978-0-309-18751-0, 2011. a
Nikas, A., Doukas, H., and Papandreou, A.: A Detailed Overview and Consistent Classification of Climate-Economy Models, in: Understanding Risks and Uncertainties in Energy and Climate Policy, Springer, 1–54, 2019. a
Nordhaus, W. D. and Boyer, J.: Warming the World: Economic Models of Global Warming, MIT press, ISBN 9780262280747, 2000. a
Pindyck, R. S.: Uncertainty in Environmental Economics, Rev. Env. Econ. Policy, 1, 45–65, 2007. a
Pratt, J. W.: Risk Aversion in the Small and in the Large, Econometrica, 32, 122–136, 1964. a
Rose, S. K., Ahammad, H., Eickhout, B., Fisher, B., Kurosawa, A., Rao, S., Riahi, K., and van Vuuren, D. P.: Land-based mitigation in climate stabilization, Energy Economics, 34, 365–380, https://doi.org/10.1016/j.eneco.2011.06.004, 2012. a
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A., Arneth, A., Bootef, K., Folberth, C., Glotter, M., Khabarov, N., Müller, C., Neumann, K., Piontek, F., Pugh, T., Schmid, E., Stehfest, E., and Jones, J.: Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison, P. Natl. Acad. Sci. USA, 111, 3268–3273, 2014. a, b, c, d, e, f, g, h
Schmitz, C., van Meijl, H., Kyle, P., Nelson, G. C., Fujimori, S., Gurgel, A., Havlik, P., Heyhoe, E., d’Croz, D. M., Popp, A., Sands, R., Tabeau, A., van der Mensbrugghe, D., von Lampe, M., Wise, M., Blanc, E., Hasegawa, T., Kavallari, A., and Valin, H.: Land-Use Change Trajectories Up to 2050: Insights from a Global Agro-Economic Model Comparison, Agr. Econ., 45, 69–84, 2014. a
Sohngen, B. and Mendelsohn, R.: An Optimal Control Model of Forest Carbon Sequestration, Am. J. Agr. Econ., 85, 448–457, 2003. a
Sohngen, B. and Mendelsohn, R.: A Sensitivity Analysis of Forest Carbon Sequestration, in: Human-Induced Climate Change: An Interdisciplinary Assessment, edited by: Schlesinger, M., Cambridge University Press, 227–237, 2007. a
Steinbuks, J.: Stochastic Implementation of the FABLE model, Zenodo [code], https://doi.org/10.5281/zenodo.10014997, 2023. a
Steinbuks, J. and Hertel, T.: Forest, Agriculture, and Biofuels in a Land use model with Environmental services (FABLE), GTAP Working Paper 71, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, 2012. a
Steinbuks, J. and Hertel, T. W.: Energy Prices Will Play an Important Role in Determining Global Land Use in the Twenty First Century, Environ. Res. Lett., 8, 014014, https://doi.org/10.1088/1748-9326/8/1/014014, 2013. a, b, c
Taheripour, F., Hurt, C., and Tyner, W. E.: Livestock Industry in Transition: Economic, Demographic, and Biofuel Drivers, Animal Frontiers, 3, 38–46, 2013. a
Tian, X., Sohngen, B., Kim, J. B., Ohrel, S., and Cole, J.: Global Climate Change Impacts on Forests and Markets, Environ. Res. Lett., 11, 035011, https://doi.org/10.1088/1748-9326/11/3/035011, 2016. a
Tsionas, E. G. and Kumbhakar, S. C.: Markov Switching Stochastic Frontier Model, Econ. J., 7, 398–425, 2004. a
Verma, M., Hertel, T., and Diffenbaugh, N.: Market-Oriented Ethanol and Corn-Trade Policies can Reduce Climate-Induced US Corn Price Volatility, Environ. Rese. Lett., 9, 064028, https://doi.org/10.1088/1748-9326/9/6/064028, 2014. a
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011. a
Weitzman, M. L.: What Is The “Damages Function” For Global Warming – And What Difference Might It Make?, Climate Change Economics, 1, 57–69, 2010. a
Zhao, X., Calvin, K. V., Wise, M. A., Patel, P. L., Snyder, A. C., Waldhoff, S. T., Hejazi, M. I., and Edmonds, J. A.: Global Agricultural Responses to Interannual Climate and Biophysical Variability, Environ. Res. Lette., 16, 104037, https://doi.org/10.1088/1748-9326/ac2965, 2021. a, b, c, d
Short summary
This paper applies a cutting-edge numerical method, SCEQ, to show how uncertain climate change and technological progress affect the future utilization of the world's scarce land resources. The paper's key insight is to illustrate how much global cropland will expand when future crop yields are unknown. The study finds the range of outcomes for land use change to be smaller when using this novel method compared to existing deterministic models.
This paper applies a cutting-edge numerical method, SCEQ, to show how uncertain climate change...