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Abstract. The productivity of the world’s natural resources is
critically dependent on a variety of highly uncertain factors,
which obscure individual investors and governments that
seek to make long-term, sometimes irreversible, investments
in their exploration and utilization. These dynamic consider-
ations are poorly represented in disaggregated resource mod-
els, as incorporating uncertainty into large-dimensional prob-
lems presents a challenging computational task. In this pa-
per, we apply the SCEQ algorithm (Cai and Judd, 2023) to
solve a large-scale dynamic stochastic global land resource
use problem with stochastic crop yields due to adverse cli-
mate impacts and limits on further technological progress.
For the same model parameters and bounded shocks, the
range of land conversion is considerably smaller for the dy-
namic stochastic model than for deterministic scenario anal-
ysis.

1 Introduction

Understanding the future allocation of the world’s natural re-
sources is an important research problem for environmental
scientists and economists. This involves a thorough under-
standing of a complex interplay of different factors, includ-
ing, among others, continuing population increases, shift-
ing diets among the poorest populations in the world, in-
creasing production of renewable energy, including biofuels,
and growing demand for ecosystem services, including for-

est carbon sequestration (Foley et al., 2011). The problem is
further confounded by faster-than-expected climate change
which is altering the biophysical environment of agricul-
ture and forestry. Moreover, highly uncertain future produc-
tivities and valuations of ecosystem services, coupled with
medium- to long-term irreversibilities in the extraction of
nonrenewable or partially renewable resources, such as long-
growth natural forests, give rise to a challenging problem of
decision-making under uncertainty.

While there is a large body of research analyzing the prob-
lem of natural resource extraction and utilization under un-
certainty theoretically or using stylized computational mod-
els (see, e.g., Miranda and Fackler, 2004; Tsur and Zemel,
2014, and references therein), quantifying the effects of un-
certainty in the natural resource use in a more realistic set-
ting remains a challenging problem. This is because natu-
ral resource allocation problems, like environmental policy
problems in general, involve highly nonlinear structure and
damage functions, important irreversibilities, and long time
horizons (Pindyck, 2007). Computationally integrated mod-
els of economy and environment are the standard workhorse
mechanisms for modeling the long-term allocation of the
world’s natural resources, including particularly difficult land
use problems (see, e.g., Füssel, 2009; Schmitz et al., 2014;
Nikas et al., 2019, and references therein). These models
have the important advantage of detailed spatial and sectoral
(particularly in the energy and agricultural sector) coverage,
which allows them to capture a broad range of responses to
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changes in demand and supply factors affecting the utiliza-
tion of natural resources. However, given the high computa-
tional complexity of these models, they are typically either
static or based on myopic expectations, whereby decisions
about production, consumption, and resource extraction and
conversion are made only on the basis of information in the
period of the decision (Babiker et al., 2009). These mod-
els, therefore, have limited ability to address important in-
tertemporal questions such as, for example, a dynamic trade-
off between conservation, carbon sequestration, and renew-
able offsets for fossil fuels. Among the few forward-looking
dynamic economy and environment models, none explicitly
incorporates uncertainty into the determination of the opti-
mal path of natural resource use.1 This is because introduc-
ing uncertainty into these models is confined by an array of
computational obstacles that are very difficult (e.g., high di-
mensionality and kinks caused by occasionally binding con-
straints), if not impossible, to address using standard numer-
ical methods such as projection methods and value function
iteration (see, e.g., Judd, 1998; Miranda and Fackler, 2004;
Cai and Judd, 2014; Cai, 2019). To the extent that uncertainty
in these models is considered, this is only through paramet-
ric or probabilistic sensitivity analysis or the use of alterna-
tive scenarios. Therefore, the high-dimensional resource use
models have not effectively dealt with optimal extraction and
conversion decisions along the uncertain path of key drivers
affecting resource allocation in the face of costly reversal of
conversion decisions.

In this study, we seek to address this important limita-
tion of the economy–environment modeling of natural re-
source use. In doing so, we build on recent advances in
computational economic and operation research. Cai et al.
(2017) introduced a nonlinear certainty equivalent approx-
imation method (NLCEQ) for solving large-scale, infinite-
horizon stationary dynamic stochastic problems and demon-
strated how this method could be used to achieve an accurate
solution to a stylized stationary dynamic stochastic land use
problem. The original NLCEQ method, however, is ill-suited
for solving most environmental and resource economic prob-
lems. This is because stochastic problems of the utilization
of natural resources feature nonstationary stochastic trends,
such as climate or technological trajectories, and some never
converge to a stationary state. Building on the original NL-
CEQ work Cai and Judd (2023) introduced a simulated cer-
tainty equivalent approximation method (SCEQ), which ef-
ficiently solves nonstationary dynamic stochastic problems,
including those with high dimensionality and occasionally
binding constraints. Cai and Judd (2023) showed that the

1Several recent studies, e.g., Cai and Lontzek (2019), have
successfully integrated uncertainty about economic and climate
outcomes in a stochastic integrated assessment climate–economy
framework. For a review of this related literature, see Cai
(2019, 2021).

SCEQ method is highly accurate and achieves stable numer-
ical solutions for dynamic stochastic problems in economics.

We apply the SCEQ method to solve a large-scale dy-
namic stochastic model, focusing on the optimal global land
use allocation problem. This highly complicated resource use
problem features multiple cross-sectoral and dynamic trade-
offs. Specifically, we apply the method to a global land use
model nicknamed FABLE (Forest, Agriculture, and Biofu-
els in a Land use model with Environmental services) in the
face of uncertainty. FABLE is a dynamic, forward-looking,
global, multi-sectoral, and partial-equilibrium model de-
signed to analyze the evolution of global land use over the
coming century. Prior applications of that model (Steinbuks
and Hertel, 2013; Hertel et al., 2013, 2016; Steinbuks and
Hertel, 2016) analyze the competition for scarce global land
resources in light of the growing demand for food, energy,
forestry, and environmental services and evaluate key drivers
and policies affecting global land use allocation. All of these
applications, however, assume perfect foresight and treat un-
certainty in a parametric fashion, thus ignoring the impact of
future uncertainties in the optimal allocation of global land
use. To ensure consistency between theoretical and numeri-
cal model solutions, we assume the bounded solution space.
As we show below, this assumption is well justified for eco-
nomic models of large natural resource allocation problems,
including the FABLE model.

By way of illustration, we focus on uncertainty emanat-
ing from crop productivity over the next century. Along with
energy prices, regulatory policies, and technological change
in food, timber, and biofuels industries, this is one of four
core uncertainties affecting competition for global land use
(Steinbuks and Hertel, 2013). To quantify the uncertainty in
agricultural yields, we construct a stochastic crop produc-
tivity index that captures two key uncertainty sources: tech-
nological progress and global climate change (Lobell et al.,
2009; Licker et al., 2010; Foley et al., 2011).2 Following
Rosenzweig et al. (2014), we use projections from climate
and crop-simulation models under Representative Concen-
tration Pathways 6.0 W m−2 (RCP6) greenhouse gas (GHG)-
forcing scenario (Moss et al., 2008), as well as the survey of
recent agro-economic and biophysical studies to calibrate the
index.

We simulate the results of the model, where the global
planner optimally allocates land uses under the perfect fore-
sight of different realizations of the crop productivity in-
dex, focusing our attention on the current century. We then
compare and contrast them with the results of the dynamic

2Climate change will likely affect the productivity of other land
resources, such as forestland. Several recent modeling studies (see,
e.g., Tian et al., 2016, and references therein) have suggested that
climate change is likely to result in higher forest growth and greater
timber yields, as well as in more forest dieback, with the net effects
varying over time and space. Incorporating these effects is beyond
the scope of this study and is left for future research.
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stochastic model, where the global planner has rational ex-
pectations about crop yields subject to bounded autocorre-
lated climate shocks. When the uncertainty in crop produc-
tivity is incorporated into the model, we see an additional
redistribution of land resources to offset the impact of poten-
tially lower yields. Due to intertemporal substitution, some
of that redistribution occurs even in the absence of actual
changes in the states of climate or technology affecting crop
yields. Moreover, the range of these alternative optimal paths
of cropland is considerably smaller than the magnitude of
possible land conversion resulting from the scenario analysis
based on the deterministic model. This result indicates that
when the climate shocks are bounded, the scenario analy-
sis may significantly overstate the expected agricultural land
conversion magnitude under uncertain crop yields.

Our study contributes to the growing literature that ana-
lyzes the intertemporal allocation of land and other natural
resources under uncertainty and irreversibility constraints.
Most of the literature focuses on a particular type of resource
or sector in which intertemporal issues are significant and
cannot be ignored. One example of this literature is forestry
management in the context of uncertain fire risks and climate
mitigation policies (Sohngen and Mendelsohn, 2003, 2007;
Daigneault et al., 2010). Another example is natural land
conservation decisions under irreversible biodiversity losses
(Conrad, 1997, 2000; Bulte et al., 2002; Leroux et al., 2009).
While these models are undoubtedly helpful for understand-
ing the broad implications of uncertainty in the intertemporal
allocation of land resources, they are less effective in quan-
tifying the effect of uncertainty in the supply and demand
drivers in more complex settings, such as, e.g., the optimal
allocation of multiple competing land resources in the long
run.

Our study is perhaps most closely related to the recent
works of Lanz et al. (2017) and Zhao et al. (2021). Lanz
et al. (2017) developed a two-sector stochastic Schumpete-
rian growth model with the endogenous allocation of global
land use. As our paper does, they find that the optimal allo-
cation of global land use requires more cropland conversion
when the uncertainty in agricultural productivity is present.
Lanz et al. (2017), however, focused on endogenous popula-
tion dynamics, labor allocation, and technological progress,
whereas our paper is concerned with the endogenous al-
location of multiple types of land use and corresponding
land-based goods and services. Our paper also advances the
methodological grounds by applying a more advanced algo-
rithm that overcomes computational difficulties in solving
multidimensional stochastic land use models, which made
Lanz et al. (2017) significantly simplify their model by as-
suming that their binary shocks occur only in three time pe-
riods. Zhao et al. (2021) compare models with adaptative
expectations and perfect foresight assumptions for both the
price and yield for agricultural producers to make land al-
location and production decisions. Zhao et al. (2021) find
similar results that land use change variation becomes much

smaller than in the perfect foresight model, which allows for
faster land use adjustments while market price variations in-
crease. Unlike our paper, Zhao et al. (2021) do not explicitly
incorporate uncertainty in the model’s optimization stage.

2 Stochastic FABLE model

This section presents a modeling framework for analyz-
ing nonlinear dynamic stochastic models of natural resource
use with multiple sectors, in which preferences, produc-
tion technology, resource endowments, and other exogenous
state variables evolve stochastically over time according to
a Markov process with time-varying transition probabilities.
The constructed model belongs to the class of stochastic
growth models, with multiple sectors studied in Brock and
Majumdar (1978), Majumdar and Radner (1983), and Stokey
et al. (1989) among others. Similar to other models in this
class, the FABLE model has a bounded solution space, as
all these models are theoretically shown to have equilibrium
paths (Stokey et al., 1989). This assumption is important be-
cause it is often impossible to prove that in the presence of
unbounded solution space, the stochastic model has a finite
solution. For example, Weitzman’s dismal theorem (Weitz-
man, 2010) shows that a fat-tail damage function with an in-
finite upper bound leads to an infinite risk premium, but a
numerical truncation to finite support will always have a fi-
nite risk premium. So, assuming the bounded solution space
is necessary for avoiding the potential qualitative inconsis-
tencies between their theoretical and numerical results. We
further discuss the assumption of the bounded solution space
in the FABLE model in Sect. 5.

Specifically, we develop a stochastic version of a global
land use model nicknamed FABLE (Forest, Agriculture, and
Biofuels in a Land use model with Environmental services), a
dynamic multi-sectoral model for the world’s land resources
over the next century (Steinbuks and Hertel, 2012, 2016).
This model combines recent strands of agronomic, eco-
nomic, and biophysical literature into a single intertempo-
rally consistent analytical framework at the global scale. FA-
BLE is a discrete dynamic partial-equilibrium model where
the population, labor, physical and human capital, and other
variable inputs are assumed to be exogenous. Total fac-
tor productivity and technological progress in non-land-
intensive sectors are also predetermined. The model focuses
on the optimal allocation of scarce land across competing
uses across time and solves the dynamic paths of alternative
land uses, which together maximize global economic wel-
fare.

The FABLE model accommodates a complex dynamic in-
terplay between different types of global land use, whereby
the societal objective function places value on processed
crops and livestock, energy services, timber products,
ecosystem services, and other non-land goods and services
(Fig. 1). There are three accessible primary resources in this
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Figure 1. Structure of the FABLE Model. Note that state variables are shown as oval shapes. Decision variables are shown as rectangular
shapes. The utility function is shown as an octagonal shape. Stochastic model terms incorporating random processes are shown as dashed
shapes or arrows.

partial-equilibrium model of the global economy: land, liq-
uid fossil fuels, and other primary inputs, e.g., labor and cap-
ital (see the bottom part of Fig. 1). The supply of land is fixed
and faces competing uses that are determined endogenously
by the model. They include unmanaged forest lands which
are in an undisturbed state (e.g., parts of the Amazon tropi-
cal rainforest ecosystem), agricultural (or crop) land, pasture
land, and commercially managed forest land. As trees of dif-
ferent ages have different timber yields and different propen-
sities to sequester carbon, the model keeps track of vari-
ous tree vintages in managed forests, which introduces ad-
ditional numerical complexity for solving the model. We do
not keep track of vintages for natural lands and assume they
are primarily old-grown forests. We ignore other land use
types, such as savannah, grasslands, and shrublands, which
are largely unmanaged and often of limited productivity.3 We
also ignore residential, retail, and industrial uses of land in
this partial-equilibrium model of agriculture and forestry.

3This makes them difficult to incorporate into an economic
model of land use. Consequently, they have historically been ne-
glected in economic models of global land use change. More re-
cently, these natural lands have been incorporated via location-
specific supply curves depicting the potential for bringing these
lands into commercial production (e.g., in the REF MAG-
NET model, https://www.magnet-model.eu/model, last access:
18 April 2024). However, the ecosystem services provided by these
lands are not explicitly valued as they are in the FABLE model,
where they are explicitly included in the utility function.

The flow of liquid fossil fuels evolves endogenously along
an optimal extraction path, allowing exogenously specified
new discoveries of fossil fuel reserves. Other primary inputs
include variable inputs, such as labor, capital (both physical
and human), and intermediate materials. The endowment of
other primary inputs is exogenous and evolves along a pre-
specified global economic growth path.

There are six intermediate inputs used in the production of
land-based goods and services in FABLE: petroleum prod-
ucts, fertilizers, crops, liquid biofuels,4 live animals, and raw
timber (see the middle part of Fig. 1). Fossil fuels are refined
and converted to either petroleum products that are further
combusted or to fertilizers that are used to boost yields in the
agricultural sector. Cropland and fertilizers are combined to
grow crops that can be further converted into processed food
and biofuels or used as animal feed. Specifically, we assume
that agricultural land LA,c

t and fertilizers xn,ct are imperfect
substitutes in the production of food crops, xc

t , with specific
production technology given by the following constant elas-

4In FABLE, bioenergy does not include the potential use of
biomass in power generation. This limitation is acknowledged in
Steinbuks and Hertel (2016, p. 566): “A more serious limitation to
this study is our omission of the potential demand for biomass in
power generation. Under some scenarios, authors have shown this to
be an important source of feedstock demand by mid-century (Rose
et al., 2012). However absent a full representation of the electric
power sector, our framework is ill-suited to addressing this issue.”

Geosci. Model Dev., 17, 4791–4819, 2024 https://doi.org/10.5194/gmd-17-4791-2024
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ticity of substitution (CES) function:
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where θc
t is stochastic crop technology index, and αn and ρn

are, respectively, the input share and substitution parameters.
Equation (1) captures three key responses within the model
to changes in crop technology index: (i) demand response
(change in consumption of food crops), (ii) adaptation on the
extensive margin (substitution of agricultural land for other
land resources), and (iii) adaptation on the intensive margin
(substitution of agricultural land for fertilizers).

Biofuels substitute imperfectly for liquid fossil fuels in fi-
nal energy demand. The food crops used as animal feed and
pasture land are combined to produce raw livestock. Harvest-
ing managed forests yields raw timber that is further used in
timber processing.

The land-based consumption goods and services take the
form of processed crops, livestock, and timber and are, re-
spectively, outcomes of food crops, raw livestock, and tim-
ber processing. The production of energy services combines
non-land energy inputs (i.e., liquid fossil fuels) with biofu-
els, and the resulting mix is further combusted. Finally, all
land types can contribute to other ecosystem services and a
public good to society, including recreation, biodiversity, and
other environmental goods and services. To close the demand
system, we also include other non-land goods and services
(e.g., manufacturing goods and retail, construction, financial,
and information services), which involve the “consumption”
of other primary inputs not spent on the production of land-
based goods and services. As the model focuses on the rep-
resentative agent’s behavior, the final consumption products
are all expressed in per capita terms.

A complete description of model equations, variables, and
parameter values is presented in the Appendix.

3 Modeling crop yield uncertainty

This section characterizes uncertainty in future agricultural
yields over the coming century, which is one of the core un-
certainties shown to affect land use in the long run (Steinbuks
and Hertel, 2013). Crop yields are subject to two types of
uncertainties: those related to the development and dissem-
ination of new technologies and those related to changes in
the climatic conditions under which the crops are grown. The
former type of uncertainty has until recently dominated the
pattern of the evolution of global crop yields, whereas the lat-
ter is becoming an increasingly important factor (Lobell and
Field, 2007; IPCC, 2014). While it is plausible to hypothesize
that accelerating climate impacts may, in turn, induce further
technological advances in an effort to facilitate adaptation to
climate change, this hypothesis is not supported by limited
empirical evidence (Burke and Emerick, 2016). Therefore,
in this paper, these two sources of uncertainty are treated

separately, although they are both characterized by the use
of combined climate and crop-simulation models run over a
global grid.

We characterize future uncertainty in yields by construct-
ing a stochastic crop productivity index, θc

t , which captures
the evolution of future crop yields under different realizations
of uncertainty in crop productivity based on the most recent
projections in the agronomic and environmental science stud-
ies. An important characteristic of staple grain yields is that
they tend to grow linearly, adding a constant amount of gain
(e.g., t ha−1) each year (Grassini et al., 2013). This suggests
that the proportional growth rate should fall gradually over
time. However, crop physiology dictates certain biophysical
limits to the rate at which sunlight and soil nutrients can be
converted to grain. And there is some recent agronomic evi-
dence (Cassman et al., 2010; Grassini et al., 2013) showing
that yields appear to be reaching a plateau in some of the
world’s most important cereal-producing countries. Cassman
(1999) suggests that average national yields can be expected
to plateau when they reach 70 %–80 % of the genetic yield
potential ceiling. Based on these observations from the agro-
nomic literature, we specify the following logistic function
determining the evolution of the crop productivity index over
time:

θc
t =

θc
T θ

c
0e
κct

θc
T + θ

c
0 (e

κct − 1)
, (2)

where θc
0 is the value of the crop productivity index in pe-

riod 0, which we calibrate to match observed weighted yields
in key staple crops (corn, rice, soybeans, and wheat). θc

T is
the crop yield potential at the end of the current century;
that is, “the yield an adapted crop cultivar can achieve when
crop management alleviates all abiotic and biotic stresses
through optimal crop and soil management” (Evans and Fis-
cher, 1999). κc is the logistic convergence rate to achieving
potential crop yields.

Though the initial value of the crop productivity index is
known with certainty, potential crop yields are highly uncer-
tain. We assume that potential crop yields are affected by a
two-dimensional stochastic process of climate and techno-
logical shocks, J1,t , and J2,t , respectively. For the techno-
logical shock, J2,t , we assume that there are three states of
technology: “bad” (indexed by J2,t = 1), “medium” (indexed
by J2,t = 2), and “good” (indexed by J2,t = 3). In the opti-
mistic (i.e., good) state of advances in crop technology, we
assume that yields will continue to grow linearly throughout
the coming century, eliminating the yield gap by 2100. In
the medium state of technology, rather than closing the yield
gap by 2100, average yields in 2100 are just three-quarters
of the yield potential at that point in time. In the bad state of
technology, there is no technological progress, and the crop
yields stay the same as at the beginning of the coming cen-
tury.

For the climate shock, J1,t , we assume it is a Markov chain
with five possible states at each time t . To construct these
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states, we use the results of Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP) fast-track crop-simulation
model comparison (Rosenzweig et al., 2014).5 Since FABLE
is a partial-equilibrium model without an embedded climate
module, we cannot directly capture all sources of GHG emis-
sions and endogenize their effect on global crop yields. In-
stead, to ensure the simulation results’ comparability with
the structural parameters (e.g., demographic and economic
growth and the rate of technological change) of the FABLE
model, we select four crop-simulation model runs under the
RCP6 GHG forcing scenario.6 We also consider alternative
assumptions on CO2 fertilization effects.

Based on these data, we construct five states corresponding
to quintiles of the distribution of different outcomes of four
global crop-simulation models and five global climate mod-
els, with and without CO2 fertilization effects for potential
crop yields by 2100. Under two optimistic states of the world,
we observe 2 % and 15 % increases in potential crop yields
relative to the model baseline (calibrated based on historical
trends over the reference period 1971 to 2004), respectively,
whereby significant CO2 fertilization effects offset the nega-
tive effects of climate change. For the next two states, we see
declines of 15 % and 19 % in potential crop yields relative
to the model baseline, whereby CO2 fertilization effects are
assumed to be either small or non-existent, and the negative
effects of climate change tend to prevail. Finally, under the
most pessimistic state of the world, drastic adverse effects of
climate change combined with the absence of any CO2 fertil-
ization effects result in a 36 % decline in potential crop yields
relative to the model baseline.

Further details of constructing climate and technological
states can be found in the Appendix.

The path of technological change in crop yields evolves by
reversible transitions across these states. The stochastic path
of the crop productivity index is then given by

At =
AT (J1,t ,J2,t )A0e

κct

AT (J1,t ,J2,t )+A0 (eκct − 1)
, (3)

where AT (i,j) represents the crop productivity index at the
terminal time T at the state J1,t = i and J2,t = j for i =
1,2, . . .,5 and j = 1,2,3. Thus, At is a Markov chain, which
takes 1 of 15 possible time-varying values at each time pe-
riod. This can be seen as a discretization of a mean-reverting
process with continuous values and a time trend, but a finer

5More recent projections using ensembles of latest-generation
crop and climate models find larger uncertainty in climate impacts
on major crop yields (Jägermeyr et al., 2021). Unfortunately, these
data were not available at the time of the research. Our results
should therefore be taken as conservative estimates of the impacts
of climate uncertainties in crop yields.

6FABLE model baseline assumes no climate regulations and
other GHG mitigation measures required to achieve RCP4.5 or
lower radiative forcing values, whereas the realism of RCP8.5 as
the “business-as-usual” scenario has been questioned by the litera-
ture (Hausfather and Peters, 2020).

Figure 2. Crop productivity index.

Markov chain with more values can only marginally change
our solution. As At is completely dependent on J1,t and J2,t ,
it is not a state variable, whereas J1,t and J2,t are both state
variables.

Having characterized the realizations of crop productiv-
ity under alternative states of agricultural technology and cli-
mate change impacts, we still need to calibrate the transi-
tion probabilities for the climate and technology shocks to
construct the stochastic crop productivity index. As regards
climate shock, the environmental and climate science litera-
ture acknowledges some degree of persistence but does not
provide much guidance on the transition dynamics between
alternative climate states affecting crop yields. In the absence
of reliable estimates for constructing the transition probabil-
ity matrix of J1,t , we assume simple transition dynamics,
where each state has a 50 % probability of retaining itself
next period and a 25 % probability of moving upwards and
downwards to an adjacent state (note that realizations can
only stay the same or move upwards from the lowest state,
e.g., J1,t = 1, and only stay the same or move downwards
from the highest state, e.g., J1,t = 5). As regards the technol-
ogy shock, since we do not have historical data on the evolu-
tion of agricultural technology, we assume that technological
advances in agriculture follow a similar trend to advances
in the rest of the economy and use the probability transition
matrix of J2,t estimated by Tsionas and Kumbhakar (2004)
for a comprehensive panel of 59 countries over the period of
1965–1990. These estimates correspond to a 20 % probabil-
ity of the bad technological state, 56 % of the medium state,
and 24 % of the good state. The transition probability matri-
ces of J1,t and J2,t are shown in the Appendix.

Figure 2 shows the deterministic-baseline path (the solid
line) used in the perfect foresight model and the range of
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the stochastic crop productivity index based on 1000 simula-
tion paths over the entire 21st century, with additional sum-
mary statistics presented in the Appendix. The simulations
start at the medium states of climate and technology in the
initial year. The deterministic-baseline path is calculated by
taking expectations of the stochastic crop productivity index
conditional on the initial medium states (Eq. 3). It also takes
the same values as the median path (the “o” line) of simula-
tions, whereby the climate and technological states are kept
at medium, while the average line (the “+” line) deviates a
bit after the year 2070. At every time t , there are 1000 real-
ized values of At , among which there are only 15 different
values. The 10 % and 90 % quantile lines (the dashed and
dash-dotted lines) represent the 10 % and 90 % quantiles of
these 1000 simulated values of At at time t , so they are not
the realized sample paths, but Fig. 2 also displays one real-
ized sample path of At , which is the dotted line.

4 Method of model solution: the SCEQ algorithm

In most resource use problems under uncertainty, including
the FABLE model, the social planner’s problem cannot be
solved analytically, although certain inferences about the po-
tential effects of uncertainty can be made from more styl-
ized models. Numerical dynamic programming with value
function iteration (see, e.g., Cai and Judd, 2014; Cai, 2019)
is a typical method to solve these dynamic stochastic prob-
lems. However, numerical dynamic programming faces chal-
lenging problems such as high dimensionality of state space,
shape-preservation of value functions (Cai and Judd, 2013),
and kinks caused by occasionally binding constraints. These
challenges are common in modeling natural resource use and
are hard to address, even with the most advanced methods
such as parallel dynamic programming (Cai et al., 2015).

For non-stationary problems, value function iteration in-
volves computing decision rules at each period t . However,
computing all these rules can be very time-consuming and
unnecessary if our primary goal is to obtain simulation paths
and their distributions until a time of interest, T ∗, even if it is
a long one (in environmental and climate change economics,
for example, we are often interested in solutions for the com-
ing century and set the time of interest to 100 years and the
problem horizon of more than 300 years to avoid a large im-
pact of terminal conditions). Instead of solving for optimal
decisions for all possible states at each time, we can approxi-
mately solve for optimal decisions for those simulated states
along simulated paths. This logic is embedded in the novel
SCEQ algorithm (Cai and Judd, 2023) used to solve for a
simulated range of land use trajectories in the stochastic FA-
BLE model.

Below we present the SCEQ algorithm version for solv-
ing the finite horizon nonstationary stochastic dynamic pro-
gramming problems that the FABLE model belongs to (for a
detailed description of other cases, see Cai and Judd, 2023).

Following the standard notation in the literature, let St be a
vector of state variables (here land cover types and stocks of
fossil fuels), and let at be a vector of decision variables (here
land conversion, resource extraction, transformation, and fi-
nal consumption of land-based goods and services) at each
time t . The transition law of the state vector S is

St+1 =Gt (St ,at ,εt ),

where εt is a serially uncorrelated random vector process,
and Gt is a vector of functions; its ith element, Gt,i , returns
the ith state variable at t + 1: St+1,i . For simplicity, we as-
sume the mean of εt is 0.7

The FABLE model equations (see Appendix) can be com-
pactly represented by the following social planner’s problem:

max
at

E

{
T−1∑
t=0

δtUt (St ,at )+ δT VT (ST )
}

s.t. St+1 =Gt (St ,at ,εt ), t = 0,1,2, . . .,T − 1,
Ft (St ,at )≥ 0, t = 0,1,2, . . .,T − 1, (4)

where Ut is a utility function, δ ∈ (0,1) is the discount fac-
tor, E is the expectation operator, T is the horizon (T =∞
if it is an infinite-horizon problem), VT (ST ) is a given ter-
minal value function depending on the terminal state ST
(it is zero everywhere for an infinite-horizon problem), and
Ft (St ,at )≥ 0 is a vector of feasibility constraints of actions
at at time t . And we assume that the initial state S0 is given,
as it can usually be observed or estimated.

Algorithm 1 obtains simulated pathways of optimal de-
cisions and states. Note that the inside loop across i can
be switched with the outside loop across time; that is, for
each i, we can obtain one simulation path by iteratively
solving Eq. (5) and simulating Sis+1 =Gt (S

i
s,a

i
s,ε

i
s) for s =

0,1,2, . . .,T ∗− 1.
The optimization step of Algorithm 1 applies the certainty

equivalent approximation idea of the NLCEQ method (Cai
et al., 2017); for a given state at time s, Sis , we replace all fu-
ture stochastic variables by their corresponding expectations
conditional on the current state Sis ,

8 and convert the dynamic
stochastic problem (4) into a deterministic finite-horizon dy-
namic problem (5).

7For notational simplicity, we keep the same mathematical rep-
resentation of a transition function, even if some of its elements are
redundant. For example, ifGt,i is deterministic, we still denote it as
St+1,i =Gt,i(St ,at ,εt ) even though St+1,i = G̃t,i(St ,at )+0 ·εt .
Similarly, if there are some unused elements of εt or some redun-
dant arguments in a functionGt,j , we can multiply them by zero in
Gt,j and thus still use St+1,j =Gt,j (St ,at ,εt ).

8As εt is a serially uncorrelated stochastic process, we can re-
place εt by its zero mean in the functions of Gt in Eq. (5) if all
transition laws are continuous. For problems with a discrete Markov
chain in transition laws, we can use the same technique as described
in Cai et al. (2017) for NLCEQ with a discrete stochastic state to
obtain the corresponding deterministic model (1). That is, given the
realization of the Markov chain at time s, we can compute expec-
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Algorithm 1 SCEQ for finite-horizon stochastic dynamic
programming problems with time-variant exogenous paths.

Step 1. Initialization step. Given the initial state S0 and a time of
interest T ∗, as well as a terminal value function VT (ST ), sim-
ulate a sequence of εt to get m paths, denoted εit for path i,
from t = 0 to T ∗−1. Let Si0 = S0 and iterate forward through
steps 2 and 3 for s = 0,1,2, . . .,T ∗− 1.

Step 2. Optimization step. Solve the following deterministic model
starting from time s and simulated node Sis :

max
at

T−1∑
t=s

δt−sUt (St ,at )+ δT−sVT (ST )

s.t. St+1 =Gt (St ,at ,0), t = s,s+ 1, . . .,T − 1,
Ft (St ,at )≥ 0, t = s,s+ 1, . . .,T − 1, (5)

where Ss is given by Sis , for each i = 1, . . .,m.

Step 3. Simulation step. Set Si
s+1 =Gt (S

i
s ,a

i
s ,ε

i
s), where ais is

the optimal decision at time s of problem (5) for each i =
1, . . .,m.

We implement the optimal control method (Cai, 2019)
to solve Eq. (5) numerically; that is, we view Eq. (5) as a
large-scale nonlinear constrained optimization problem with
{ait : t ≥ s} and {Sit : t ≥ s} as its variables and the transition
equations and feasibility restrictions as its constraints. The
problem can be directly solved with an appropriate nonlinear
optimization solver such as CONOPT (Drud, 1994).

Observe that we just need to save the solution of Eq. (5)
at time s, ais , for use in the next step. In step 3 of Algo-
rithm 1, we use the saved optimal decision ais to generate
the next-period state, Sis+1 =Gt (S

i
s,a

i
s,ε

i
s), given the real-

ization of shocks, εis . Once we reach the state Sis+1 at time
s+ 1, we come back to implement step 2 and then step 3.
In other words, Algorithm 1 uses an adaptive management
way; decisions are made for the current period in the face
of future uncertain shocks. Once the next-period shock is
observed, decisions for the next period are made with re-
optimization, given the observed shock and new state vari-
ables at the next period. Observe that the serial correlation
of random variables has been captured in their associated
transition laws. Repeating this process iteratively through T ∗

times, we compute a representative simulated pathway of op-
timal decisions, {ais}

T ∗−1
s=0 , and states, {Sis}

T ∗

s=0, which corre-
sponds to the realized path of shocks, {εis}

T ∗−1
s=0 . Repeating

over i, we compute m simulated paths of optimal states and
decisions and then obtain their distributions. This simulation
process can be naturally parallelized.

tations of the Markov chain at all times after s conditional on the
value at the time s and then replace the stochastic process by the
path of the conditional expectations in step 2 of Algorithm 1.

After we obtain the simulated solutions for our dynamic
stochastic land use problem, we also check the normalized
Euler errors and find that the L1 error in the solutions for the
first 100 years (the periods of interest) among 1000 simulated
paths is only 8.6× 10−4, and the corresponding L∞ error is
only 0.02. This is within range of acceptable accuracy for the
most dynamic stochastic problems (Cai and Judd, 2023).

5 Model results

Below, we describe the results of the impact of crop yield un-
certainty in the optimal path of global land use based on the
dynamic stochastic model simulations. We solve the model
over 400 years with 5-year time steps and present the re-
sults for the first 100 years to minimize the effect of termi-
nal period conditions on our analysis.9 We first present the
results of the perfect foresight model, wherein the optimal
land allocation decisions are made based on the values of the
crop productivity index in the absence of climate and tech-
nology shocks. This deterministic analysis is a useful ref-
erence point for further discussion when the uncertainty in
food crop yields is introduced. We then present the results
of the dynamic stochastic model, where the impact of the
intrinsic climate and technology uncertainty is brought into
the model optimization stage. Specifically, we generate 1000
sample paths of optimal global land use under different real-
izations of the stochastic crop productivity index.10 The re-
sults are presented as the difference between the stochastic
path and deterministic reference solution.

5.1 Optimal path of global land use under crop yield
uncertainty

Figure 3 depicts the optimal allocation of global land use
over the next century. The left-hand side of Fig. 3 shows
the deterministic paths of different types of land consid-
ered in this study, i.e., when the food crop yields are per-
fectly anticipated. Specifically, it shows three scenarios in
which the value of the crop technology index corresponds to
(i) expected values of the stochastic crop productivity index
(deterministic-baseline scenario), (ii) the most pessimistic
climate and bad technology states (deterministic–pessimistic
scenario), and (iii) the most optimistic climate and good tech-
nology states (deterministic–optimistic scenario). The right-
hand side of Fig. 3 shows the difference range between
the 1000 simulation paths based on different ex ante real-

9The model converges to its stationary state around 2150. The
differences in land use allocations between 2100 and 2150 are small
and, therefore, not reported.

10Since the SCEQ algorithm is based on simulation, additional
simulations could lead to a wider range, and our current solution
could underestimate the range in comparison with the range from
all possible simulation paths. The difference will, however, be small
and will not affect the economic significance of the main findings.
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izations of the stochastic crop productivity index and the
deterministic-baseline path. The 10 %, 50 %, and 90 % quan-
tile lines represent 10 %, 50 %, and 90 % quantiles of 1000
simulated values, respectively, at each time, and the average
line (the + line) represents the average of 1000 simulated
values, respectively, at each time.

The right-hand side of Fig. 3 also shows two extreme
cases of optimal land use paths conditional on period t real-
izations of crop productivity index states At (J1,t ,J2,t ). The
realized crop productivity index always takes the highest
possible value in a stochastic–optimistic case (the line of
upward-pointing triangles) and the lowest possible value in
a stochastic–pessimistic case (the line of downward-pointing
triangles). As future realizations of the stochastic crop pro-
ductivity index are uncertain, these extreme stochastic solu-
tions are not the same as the corresponding deterministic so-
lutions, where the values of the future crop productivity index
are known with certainty. In the stochastic–optimistic case,
for example, potentially lower realizations of future crop
productivity index result in larger current-period agricultural
land allocation compared to the deterministic–optimistic so-
lution. For other model variables, due to resource limits (e.g.,
the total land area is unchanged over time) and other con-
straints, the impact of uncertainty is theoretically difficult to
assess. Finally, to ensure consistent interpretation of deter-
ministic and stochastic solutions, the right-hand side of Fig. 3
also shows the difference range between the deterministic–
optimistic and deterministic–pessimistic cases relative to
their deterministic baselines (using the same markers as on
the left-hand side of Fig. 3).

We start a discussion of the left-hand side of Fig. 3, which
shows the optimal land use paths under perfect foresight.
Given the methodological scope of the paper, we will cover
these results briefly. Interested readers should refer to Stein-
buks and Hertel (2016) for a more detailed analysis of the
perfect foresight model.

Beginning with the description of the baseline scenario,
we see that, in the first half of the coming century, the
area dedicated to food crops increases, peaking around mid-
century and declining significantly thereafter (part 1, top
panel) as population growth declines while crop produc-
tion and food processing technologies improve. Consistent
with the literature on 2G biofuel deployment potential (Na-
tional Research Council, 2011), absent aggressive GHG reg-
ulations, and biofuel policies, land allocation for second-
generation biofuels remains close to zero until the second
half of the coming century (part 1, mid panel). It then be-
comes viable as fossil fuels become scarce and the costs of
producing second-generation biofuels decline. This results
in greater land requirements for second-generation biofuel
crops. As substitution of pasture land for animal feed in live-
stock production increases (Taheripour et al., 2013), global
pasture area declines while managed forest area increases
throughout the entire century (part 1, bottom panel, and part
2, top panel). Finally, unmanaged forest areas decline in re-

sponse to greater requirements for agricultural land (part 2,
mid panel), while protected forest areas will more than dou-
ble by the end of the coming century in light of strong growth
in the demand for ecosystem services (part 2, bottom panel).
The other two scenarios exhibit broadly similar dynamics.

We now turn to our main findings about the impacts of
uncertainty in the crop productivity index on the distribution
of global land resources depicted on the right-hand side of
Fig. 3. Compared to deterministic scenarios, this uncertainty
results in the additional redistribution of land resources to
offset the impact of potentially lower yields. The key reason
behind this finding is that social preferences exhibit relative
risk aversion (Arrow, 1965; Pratt, 1964) in this stochastic ap-
plication of the FABLE model. Owing to risk aversion and
high adjustment costs of future land conversion, some redis-
tribution takes place as a precautionary policy, even in the
absence of actual changes in the states of climate or technol-
ogy. This is a well-known theoretical result in environmen-
tal economics literature (Tsur and Zemel, 2014). Compared
to the deterministic baseline scenario, the median (i.e., the
50 % quantile) path of global land use that corresponds to
the medium state of climate (J1,t = 3) and the medium tech-
nological state (J2,t = 2) foresees a smaller use of land for
food crops (part 1, top panel) and greater use of land for 2G
biofuel crops (part 1, mid panel), managed forests (part 2, top
panel), and protected land resources (part 2, bottom panel).
The differences between stochastic and deterministic paths
are small and economically insignificant for all other land
resources. This is because land conversion costs of agricul-
tural land for other types of land become larger in the pres-
ence of uncertainty. These other types of land have higher ad-
justment costs of conversion associated with additional time
costs of regrowing lumber and livestock and irreversibili-
ties in accessing protected land areas. Land rotation between
food crops and 2G biofuel crops is less costly in the FABLE
model. This result is consistent with earlier studies that find
that closer integration with the energy sector offers greater
potential for food–energy substitution and thus also a greater
resilience against adverse climate conditions affecting food
crop yields (Diffenbaugh et al., 2012; Verma et al., 2014).

While the direction of the effect of the uncertainty in the
crop productivity on land conversion can be inferred from the
economic theory of environmental and natural resource man-
agement under uncertainty (see, e.g., Tsur and Zemel, 2014,
and references therein), the extent to which this uncertainty
propagates into land conversion depends critically on cho-
sen model structure and parameters. For example, Alexander
et al. (2017, p. 1) find that even in the absence of intrinsic
uncertainty, “systematic differences in land cover areas are
associated with the characteristics modeling approach are at
least as great as the differences attributed to scenario varia-
tions”. Depending on the assumptions on the substitution of
land for other resources, the size of technological progress,
and the responsiveness of demand for land-based goods and
services to changes in crop productivity, this magnitude can
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Figure 3. Optimal global land use paths. The solid lines represent the deterministic–baseline solutions. Squares represent the deterministic–
optimistic solutions or their distances to the deterministic-baseline solutions. Marks represent the deterministic–pessimistic solutions or
their distances to the deterministic-baseline solutions. The shaded areas are the ranges of the sample paths’ distances to the deterministic-
baseline solutions. Pluses represent the average paths, the dashed lines represent the 10 % quantile, circles represent the median paths, and
the dashed–dotted lines represent the 90 % quantile. Upward-pointing triangles and downward-pointing triangles represent the distances of
the stochastic–optimistic solutions and the stochastic–pessimistic solutions, respectively, to the deterministic-baseline solutions.

be substantially different from other land use models. How-
ever, as we see in Fig. 3, for the same model parameters,
the range of land conversion is considerably smaller for the
dynamic stochastic model compared to the deterministic sce-
nario analysis. Unlike deterministic analysis, where the solu-
tions paths always stay on a known good or bad trajectory,
stochastic analysis allows for future states not to stay in their
“best” or “worst” stage. Consequently, optimal land conver-
sion decisions in the stochastic application of the FABLE
model are less extreme.

Turning to a specific example, we see from Fig. 3a the
difference between the most extreme paths of the stochastic
crop productivity index is about 160 million ha by 2100 or
about 11 % of the total agricultural area dedicated to food
crops. Much of that variation can be attributed to the most
extreme (i.e., falling beyond 10th and above 90th percent
quantiles) realizations of crop productivity. In line with the
argument above, this is because the climate and technologi-
cal states affecting crop yields are reversible in the stochastic
model (that is, if the current state is bad (or good), it could
be good (or bad) in the future).

Compared with the deterministic model under the pes-
simistic (or optimistic) scenario, the social optimum in the
stochastic model requires a smaller (or greater) conversion
of other types of land to cropland. This is because when
the current state of the crop technology index is the worst
(best), its future states cannot be worse (better) and have a
nonzero probability of being better (worse). The expected fu-
ture yields will then be better (worse) than the deterministic–
pessimistic (optimistic) scenario. As the size of expected
crop yields affects the magnitude of the land conversion de-
cisions, the range of stochastic model solutions for agricul-
tural land will be smaller than the range between the most
extreme deterministic model solutions. Note this result may
not hold if the model solution space is unbounded. This con-
cern does not apply to the stochastic FABLE model because
(i) the model’s time horizon is finite, (ii) the crop technology
shocks are discrete and finite (hence bounded) based on sci-
entific projections used for the model’s calibration, (iii) all
of the model’s state variables (land and fossil fuel resources)
are bounded because the total land and the total fossil fuel
resources are finite, and (iv) we impose bounds on model de-
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cision variables based on the theory of economic dynamics
(Barro and Sala-i Martin, 2004), such as strictly positive and
finite consumption and output of land-based goods and ser-
vices; land conversion cannot exceed the total supply of land.
The solution space, therefore, must also be bounded because
the extent of movement of optimal land uses in any direction
is limited by the constraints mentioned above.

Thus, the agricultural land area in the deterministic pes-
simistic (or optimistic) scenario is larger (or smaller) than the
largest (or the smallest) path in the stochastic simulations.
For example, in 2100, under the deterministic–pessimistic
scenario, the cropland deviation from the deterministic-
baseline scenario is about 110 million ha, which is 30 %
larger than the largest deviation under the stochastic simu-
lations and more than half of the deviation above the 90 %
quantile of the stochastic crop technology index. This result
(along with similar results for other land types) demonstrates
that scenario analysis can significantly overstate the magni-
tude of expected agricultural land conversion under uncertain
crop yields.

5.2 Optimal path of land-based goods and services
under crop yield uncertainty

We now turn to the discussion of optimal paths of land-based
goods and services (Fig. 4), keeping the same presentation
structure as in the previous section. Deterministic model sce-
narios (shown on the left-hand side panels of Fig. 4) for land-
based goods and services largely mimic trajectories of asso-
ciated land resources. Specifically, we see steady increases
in the production of food crops (part 1, top panel), includ-
ing livestock and biofuel feedstock, peaking around mid-
century and moderating thereafter as consumers satiate their
food requirements and the technology of food marketing and
processing improves. By 2100, crop production for the live-
stock feed levels off and even begins to decline. Production
of both first- and second-generation biofuels grows as oil
becomes more scarce along the baseline path and agricul-
tural yields increase (part 1, mid and bottom panels). Along
that optimal path, first-generation biofuels never become a
large source of energy consumption, while the production
of second-generation biofuels takes off sharply and expands
rapidly after 2040 as they become cost-competitive relative
to increasingly costly fossil fuels. Production of livestock in-
creases throughout the coming century (part 2, top panel), re-
flecting shifting diets and the growing demand for processed
meat as population income increases (Foley et al., 2011).
Production of timber also expands with the growing demand
for timber products and further improvements in forest yields
(part 2, mid panel). Finally, the consumption of ecosystem
services increases throughout most of the coming century as
the demand for ecosystem services increases and more natu-
ral forest lands become institutionally protected (part 2, bot-
tom panel).

The results of the dynamic stochastic model simulations
(shown on the right-hand side panels of Fig. 4) show that
uncertainty in the crop productivity index has a profound ef-
fect on the optimal consumption paths of food crops, biofu-
els, and livestock and a much smaller effect on consumption
paths of merchantable timber and ecosystem services. This
result is not very surprising, as crop productivity does not
directly affect the production of timber and ecosystem ser-
vices, whereas indirect land use change effects are relatively
small in this stochastic application of the FABLE model. Ob-
serve that, unlike land use paths, consumption of land-based
goods and services is a decision rather than a state variable,
and therefore, there are no significant differences between
deterministic and stochastic consumption paths.

Focusing on the larger impacts, we see that between the
most extreme paths of the stochastic crop productivity in-
dex, the production of food crops varies by about 5.3 bil-
lion t along both deterministic and stochastic policy paths.
This is a sizable change, which suggests a significant varia-
tion in levels of consumption in 2100 along different paths of
the stochastic crop productivity index. In the FABLE model,
much of the variation in the optimal path of food crops comes
on the demand side, with the crop productivity decline result-
ing primarily in the reduced consumption of processed crops
and livestock.11 As shown above, the uncertainty-induced
supply response is relatively small along the extensive mar-
gin in the dynamic stochastic model (i.e., land conversion). In
the Appendix (Fig. A2a), we show that the supply response
on the intensive margin is smaller, with the ratio of fertilizers
to cropland increasing by fewer than 6 kg ha−1 (or 8 %) under
extreme realizations of climate and technology uncertainties.
About half of that variation corresponds to the most extreme
(i.e., falling beyond 10th and above 90th percent quantiles)
realizations of crop productivity. This result indicates that
extreme uncertainty in crop productivity could have a signif-
icant impact on food consumption over the coming century.

Uncertainty in food crop yields has important implications
for the production of the first-generation biofuels that are di-
rectly affected by both climate and technology states of food
crop yields. The difference between the best and worst states
of the crop productivity index is about 31 million tonnes of
oil equivalent (Mtoe), which exceeds their expected baseline

11Demand for land-based goods and services in the FABLE
model is governed by the AIDADS (An Implicit, Directly Addi-
tive Demand System) designed to encompass consumption behav-
ior across a wide range of incomes (Rimmer and Powell, 1996).
This is essential for a dynamic model of the global economy. We
have estimated three key parameters for each commodity category
– the subsistence level of consumption, the marginal budget share
at very low (subsistence) income, and the marginal budget share at
very high levels of income. The former two are large for food prod-
ucts. In the FABLE model, baseline households become wealthier,
and the marginal budget share for food items and the subsistence
share becomes very small, approaching zero for very high incomes.
Consequently, households’ demand response becomes larger.
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Figure 4. Optimal paths of land-based goods and services. The solid lines represent the deterministic–baseline solutions. Squares represent
the deterministic–optimistic solutions or their distances to the deterministic-baseline solutions. Marks represent the deterministic–pessimistic
solutions or their distances to the deterministic-baseline solutions. The shaded areas are the ranges of the sample paths’ distances to the
deterministic-baseline solutions. Pluses represent the average paths, the dashed lines represent the 10 % quantile, circles represent the median
paths, and the dashed–dotted lines represent the 90 % quantile. Upward-pointing triangles and downward-pointing triangles represent the
distances of the stochastic–optimistic solutions and the stochastic–pessimistic solutions, respectively, to the deterministic-baseline solutions.

production in 2100. Although climate and technology states
of food crop yields do not directly affect yields of the second-
generation biofuel crops, production of second-generation
biofuels is nonetheless affected through indirect substitution
effects of food for energy in the FABLE demand system.
There is a sizable variation in the production of second-
generation biofuels between extreme paths of the stochas-
tic crop productivity index, which accounts for 450 Mtoe, or
about 30 %, of their total production in 2100.

Given the important contribution of livestock feed in the
production of livestock, we can see its production is smaller
in the pessimistic scenario and larger in the optimistic sce-
nario. The difference in livestock production between the op-
timistic and pessimistic scenarios accounts for about 550 mil-
lion t. As the significance of animal feed in livestock produc-
tion grows over time, the effect of uncertain crop yields be-
comes more pronounced. Similar to the result for food crops,
the most extreme paths of crop productivity account for about
a third of all variation in livestock production.

6 Conclusions

This paper shows the effects of uncertainties associated
with nonstationary biophysical processes and technological
change on the optimal allocation of natural resources in the
long run. In doing so, it applies SCEQ, a cutting-edge com-
putational method for solving nonstationary dynamic high-
dimensional stochastic problems, to FABLE, a multi-sectoral
dynamic model of global land use.

The study focuses on uncertainty in future crop yields, one
of the core uncertainties affecting the evolution of global land
use in the long run. Combining scenarios from global cli-
mate models and high-resolution output from spatial crop-
simulation models for four major crops, it comes up with a
plausible range of realizations of climate shocks and their
effect on future crop yields. These estimates are supple-
mented with an extensive survey of recent agro-economic
and biophysical studies assessing the potential for closing
yield gaps, as well as attaining further advances in potential
yields through plant breeding.

The paper’s key insight is to illustrate the magnitude of
optimal land conversion decisions in the context of different
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realizations of stochastic crop productivity. Consistent with
the economic theory of natural resource management under
uncertainty, the agricultural productivity shocks from either
adverse climate impacts or unexpected limits on further tech-
nological progress result in additional conversion of scarce
land resources to offset the impact of potentially lower yields.
Owing to intertemporal substitution, some of that conversion
takes place even in the absence of actual realization of the
climate shocks or technology outcomes. This expansion is
accompanied by changes in the consumption of processed
food, livestock, and biofuel- and land-based products most
affected by changes in crop productivity.

The chosen model (FABLE) seeks to balance computa-
tional complexity and economic tractability. Similar to other
dynamic economic models, it assumes a bounded solution
space, excluding unrealistic scenarios of infinitely low or
high crop productivity. It also ignores many features that
are standard in more advanced computational land and other
resource-use models. Future research should focus on inte-
grating economic decisions under uncertainty into large dy-
namic natural resource models that feature spatial disaggre-
gation at the regional or zonal level, a more extensive rep-
resentation of the energy sector, and different types of re-
sources and their production derivatives. Another promising
research direction would be to incorporate a more detailed
representation of uncertain states backed by an econometric
analysis that recovers underlying distributions of uncertain
natural resource drivers over time.

Appendix A: FABLE model description

This section describes key elements of the FABLE model, as
well as its equations, variables, and model parameters. For
a full description of the model, including details on model
baseline calibration and extensive sensitivity analysis, please
refer to Hertel et al. (2016) and Steinbuks and Hertel (2016)
and technical appendices therein.

A1 Primary resources

Primary resources comprise land, liquid fossil fuels, and
other primary inputs, e.g., labor and capital. The supply of
land is fixed and faces competing uses that are determined
endogenously by the model. The flow of liquid fossil fuels
evolves endogenously along their optimal path, accounting
for exogenous discoveries in new fossil fuel reserves. The
endowment of other primary inputs is exogenous and evolves
along the prespecified global economy growth path.

A1.1 Land

The total land endowment in the model, Ltotal, is fixed. It
belongs to a global planner, which fully redistributes land
rents back to consumers of land use goods and services. For
each period of time t there are four profiles of land in the

economy. They include unmanaged forest land, LN, agricul-
tural land, LA, pasture land, LP, and commercially managed
forest land, LC. The agricultural land area can be allocated
for the cultivation of food crops (denoted LA,c), and second-
generation biofuel feedstocks (denoted LA,b2). We assume
that the natural forest land consists of two types. Institution-
ally protected land, LR, includes natural parks, biodiversity
reserves, and other types of protected forests. This land is
used to produce ecosystem services for society and cannot
be converted to commercial land. Unmanaged natural land,
LN, can be accessed and either converted to managed land
or to protected natural land. Once the natural land is con-
verted to managed land, its potential to yield ecosystem ser-
vices is diminished. This potential can be partially restored
for managed forests with significant land rehabilitation costs
incurred. The use of managed land can be shifted between
cropland, forestland, and pasture land (see Fig. 1 for a graph-
ical representation of these transitions). We denote land tran-
sition flows from land type i to land type j as 1i,j (a nega-
tive value means a transition from land type j to land type i).
Equations describing the allocation of land across time and
different uses are as follows:

Ltotal
=

∑
i=A,P,C,N,R

Lit , (A1)

LA
= LA,c

+LA,b2, (A2)

LN
t+1 = L

N
t −1

N,A
t −1

N,R
t +1

C,N
t , (A3)

LA
t+1 = L

A
t +1

N,A
t −1

A,P
t +1

C,A
t , (A4)

LP
t+1 = L

P
t +1

A,P
t , (A5)

LR
t+1 = L

R
t +1

N,R
t . (A6)

Equations (A1) and (A2) define, respectively, the composi-
tion of total land and agricultural land in the economy. Equa-
tions (A3)–(A5) describe the transitions for unmanaged land,
agricultural land, and pasture land.12 Equation (A6) shows
the growth path of protected natural land.

Accessing the natural lands comes at a cost associated with
building roads and other infrastructure (Golub et al., 2009).
In addition, converting natural land to reserved land entails
additional costs associated with passing legislation to create
new natural parks. We denote the natural land access, reha-
bilitation, and protection costs as CN,A,R, CC,N, and CN,R,,
respectively. There are also costs of switching between the
cropland and the pasture land, denoted as CA,P. We assume
that all these costs are continuous, monotonically increasing,
and strictly convex functions of converted land. Since we are

12Equations (A2) and (A4) do not account for the transition
from forestry to pasture land. Throughout the past century, tropical
forests, particularly in the Latin America region, have been exten-
sively converted to pasture land (Barbier et al., 1994). However, in
the FABLE model, the conversion of forest land to pasture is never
optimal, as cropland has higher productivity for cattle breeding at
the same conversion (stumpage) cost.
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not aware of empirical studies estimating the magnitudes of
long-term adjustment costs in land conversion problems, we
choose to calibrate these parameters to match historical land
conversion patterns. There are no additional costs of natu-
ral land conversion to commercial land, as the revenues from
deforestation offset these costs.

Managed forests are characterized by vmax vintages of tree
species with vintage ages v = 1, . . .,vmax. At the end of pe-
riod t , each hectare of managed forest land, LC

v,t , has an av-
erage density of tree vintage age v, with the initial alloca-
tion given and denoted by LC

v,0. The forest rotation ages and
management are endogenously determined. Each period the
managed forest land can be either planted, harvested, or left
to mature. The newly planted trees occupy 1C,C hectares
of land and reach the average age of the first tree vintage
next period. The harvested area of tree vintage age v occu-
pies1C,H

v hectares of forest land. The difference between the
harvested area of all tree vintage ages and the newly planted
area is used for cropland, i.e.,

1
C,A
t =

∑
v

1
C,H
v,t −1

C,C
t .

The following equations describe land use of managed
forests:

LC
t =

vmax∑
v=1

LC
v,t , (A7)

LC
v+1,t+1 = L

C
v,t −1

C,H
v,t , v < vmax− 1, (A8)

LC
vmax,t+1 = L

C
vmax,t

−1
C,H
vmax,t −1

C,N
t

+LC
vmax−1,t −1

C,H
vmax−1,t , (A9)

LC
1,t+1 =1

C,C
t . (A10)

Equation (A7) describes the composition of managed forest
area across vintages. Equation (A8) illustrates the harvesting
dynamics of forest areas with the ages vmax− 1 and vmax.
Equation (A10) shows the transition from the planted area to
new forest vintage area.

The average harvesting and planting costs per hectare of
new forest planted, co,H and co,C, are invariant to scale and
are the same across all vintages. Harvesting managed forests
and conversion of harvested forest land to agricultural land
is subject to additional near-term adjustment costs, cH. The
specific functional forms of land conversion costs are shown
in Appendix C and Eqs. (C32)–(C37).

Thus, we have defined the vector of land state variables,

L=
(
LN,LA,LP,LR,LC

1 , . . .,L
C
vmax

)
,

and its associated transition laws.

A1.2 Fossil fuels

The initial stock of liquid fossil fuels, XF, is exogenous,
and each period of time t adds a new number of fossil fu-
els, 1F,D, which reflects exogenous technological progress

in fossil fuel exploration. This technological progress com-
prises of both discoveries on new exploitable oil and gas
fields, as well as development of new technologies for extrac-
tion of non-conventional fossil fuels. The economy extracts
fossil fuels, which have two competing uses in our partial-
equilibrium model of land use. A part of the extracted fossil
fuels, 1F,n

t , is converted to fertilizers that are further used in
the agricultural sector. The remaining number of fossil fuels,
1

F,E
t , is combusted to satisfy the demand for energy services.

The following equation describes supply of fossil fuels:

XF
t+1 =X

F
t −1

F,E
t −1

F,n
t +1

F,D
t . (A11)

The cost of fossil fuels, cF, reflects the expenditures for fossil
fuel extraction, refining, transportation, and distribution, as
well the costs associated with emissions control (e.g., Pigou-
vian taxes) in the non-land-based economy. We assume that
the cost of fossil fuels is a nonlinear quadratic function with
accelerating costs as the stock of fossil fuels depletes (Nord-
haus and Boyer, 2000):

cF
t = ξ

F
1

(
1

F,E
t +1

F,n
t

)2
(
XF

0 +1
F,D
t

XF
t +1

F,D
t

)
, (A12)

where the parameter ξF
1 captures the curvature of the liquid

fossil fuel cost function.

A1.3 Other primary resources

The initial endowment of all other primary resources in the
non-land-based economy, such as labor, physical and human
capital, and material inputs, XO, is exogenous in this model.
We assume that the growth rate of all other primary resources
is a weighted average of the population growth, which re-
flects demographic changes, and the physical capital growth,
κo,X. The following equation describes the supply of other
primary inputs:

XO
t =X

O
0

[
αo,l5t

50
+

(
1−αo,l

)(
1+ κo,X

)t]
, (A13)

where 5t is the economy’s population, and αo,l is the share
of population growth to the growth rate of all other primary
resources. Other primary inputs can be used for the produc-
tion of land-based goods and services or be converted to final
goods and services in the non-land economy. The production
costs incurred using these inputs are exogenous and have an
“iceberg” representation; i.e., they are subtracted from the
gross output of land-based goods and services. Thus, state
variables for resources other than land are defined as

X= (XF,XO).

As XO is exogenous and deterministic, it is a degenerated
state variable and not counted as a state variable for model
solution purposes.
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A2 Intermediate inputs

We analyze six intermediate inputs used in the production of
land-based goods and services: petroleum products, fertiliz-
ers, crops, biofuels, and raw timber. Fossil fuels are refined
and converted to either petroleum products, xp, that are fur-
ther combusted or to fertilizers, xn, that are used to boost
yields in the agricultural sector. Agricultural land and fer-
tilizers are combined to grow food crops, xc or 2G biofuel
crops, xc,b2. Food crops can be further converted into pro-
cessed food and 1G biofuels, xb1, or used as an animal feed,
xc,l. 2G biofuel crops can only be converted into 2G biofu-
els, xb2. 1G biofuels substitute imperfectly for liquid fossil
fuels in final energy demand, whereas 2G biofuels and liquid
fossil fuels are the perfect substitutes The food crops used as
animal feed and pasture land are combined to produce raw
livestock, xl. Harvesting managed forests yields raw timber,
xw, that is further used in timber processing. The production
functions for intermediate inputs can be illustrated by the fol-
lowing equations

x
j
t = g

j

(
1

F,{E,n}
t ,L

{A,P}
t ,

∑
v

1
C,H
v,t ,x

c,{l,b}

)
,

j = p,n,c,b, l,w, (A14)

where 1F,{E,n}
t represents that either 1F,E

t or 1F,n
t is an ar-

gument of gj , similarly for L{A,P}t and xc,{l,b}. The specific
functional forms of gj (·) are shown in Appendix C and
Eqs. (C13)–(C21).

A3 Final goods and services

We consider five per capita land-based services that are con-
sumed in the final demand: services from processed crops, yf,
livestock, yl, energy, ye, timber, yw, and ecosystem services,
yr. Processed crops, livestock, and timber are, respectively,
products of food crops, raw livestock, and timber process-
ing. The production of energy services combines liquid fos-
sil fuels with biofuels, and the resulting mix is further com-
busted. The ecosystem services are the public good to soci-
ety, which captures recreation, biodiversity, and other envi-
ronmental goods and services. To close the demand system,
we also include other goods and services, yo, which com-
prise the consumption of other primary inputs not spent on
the production of land-based goods and services. We have
defined all state variables for the deterministic model:

S := (L,X),

and the vector of decision variables

at : = (1
N,A
t ,1

N,R
t ,1

C,N
t ,1

A,P
t ,1

C,A
t ,1

C,H
1,t , . . .,

1
C,H
vmax,t ,1

C,C
t ,1

F,E
t ,1

F,n
t ,L

A,F
t ,L

A,B
t ,xt ,yt ),

where xt ≡ [x
p
t ,x

n
t ,x

c
t ,x

b
t ,x

l
t ,x

w
t ,x

c,l
t ,x

c,b
t ] and

yt =
(
yf
t ,y

l
t ,y

e
t ,y

w
t ,y

r
t ,y

o
t

)
. The production functions

for final per capita land-based goods and services can be
illustrated by the following equation:

yit = Y it (St ,at ) , i = f, l,e,w,r, (A15)

where some arguments in Y it (·) could be redundant. It fol-
lows from Eq. (A15) that the production of final goods and
services involves the combination of land resources and in-
termediate inputs. The specific functional forms of Y it (·) are
shown in Appendix C and Eqs. (C22)–(C27), which are func-
tions of L and {xj }. All these equations constitute a part of
the feasibility constraint at ∈Dt (St ).

The production of intermediate inputs or final land-based
goods and services i incurs costs, co,i , that are subtracted
from other available primary resources. The remaining num-
ber of other primary resources is converted into other goods
and services, which are subsequently consumed in the final
demand. As the focus of this model is on the utilization of
land-based resources, we introduce the other goods and ser-
vices, yo, in a very simplified manner. We introduce no addi-
tional cost of producing other goods and services, assuming
that it is reflected in the size of the endowment of other pri-
mary inputs. The specific functional form for yo is shown in
Appendix C, Eq. (C26).

A4 Preferences

The economy’s per capita utility, u, is derived from the per
capita consumption of processed crops, livestock, timber, en-
ergy and ecosystem services, and other goods and services.
Following the macroeconomic literature, we assume constant
relative risk-aversion utility,

u(y)=
C(y)1−γ

1− γ
, (A16)

where y is the per capita consumption bundle of goods and
services, C(y) is a nonlinear aggregator over y, and γ is
the coefficient of relative risk aversion, which captures the
economy’s attitude to uncertain events. We choose a non-
homothetic AIDADS preference (Rimmer and Powell, 1996)
to compute C(y) implicitly:

log(C(y))=
∑

q=f,l,e,w,r,o

(
αq +βqC(y)

1+ C(y)

)
log

(
yq − yq

)
, (A17)

where α, β, and yq are positive parameters with
∑
qαq =∑

qβq = 1. These preferences place greater value on ecosys-
tem services and smaller value on additional consumption of
food, energy, and timber products as society becomes wealth-
ier. When γ = 1, our utility function is equivalent to the
AIDADS utility.
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A5 Welfare

We denote the transition laws of land, in Eqs. (A3)–(A6) and
Eqs. (A8)–(A10), as

Lt+1 =G
L
t (St ,at ), (A18)

and the transition laws for other resources, in Eqs. (A11)–
(A13), as

Xt+1 =G
X
t (St ,at ). (A19)

Combining Eqs. (A18) and (A19), we have

St+1 =Gt (St ,at ) (A20)

for the deterministic model in the notations of Sect. 2.
The objective of the planner is to maximize the total ex-

pected welfare, which is the cumulative expected utility (i.e.,
a sum of utilities in each state weighted by the probability of
each state in a given period) of the population’s consumption
of final goods and services, y, discounted at the constant rate
δ > 0. The planner allocates managed agricultural, pasture,
and forest lands for crop, livestock, and timber production,
the scarce fossil fuels, and protected natural forests to solve
the following problem:

max
a

∞∑
t=0

δtU(St ,at ), (A21)

subject to the transition laws (A20) and the feasibility con-
straints,

Ft (St ,at ),≥ 0

which include Eqs. (A15), (C22)–(C27), (C26), and (A17)
and nonnegativity constraints for the variables. Here,

U(St ,at )= u(yt )5t (A22)

is the utility function in the notations of Sect. 4.

Appendix B: Quantifying the uncertainty in crop yields

B1 Uncertainty in agricultural technology

Advances in crop technology are very difficult to predict due
to four interconnected factors (Fischer et al., 2011). First,
there is significant uncertainty about the potential for exploit-
ing large and economically significant yield gaps (i.e., the
differences between observed and potential crop yields) in
developing countries, especially those in sub-Saharan Africa.
A second and closely related point is that it is unclear how
fast available yield-enhancing technologies can be adopted at
a global scale. Third, there is a significant variation in devel-
oping countries’ institutions and policies that make markets

work better and provide a conducive environment for agricul-
tural technology adoption. Finally, while plant breeders con-
tinue to make steady gains in further advancing crop yields,
progress depends on the level of funding provided for agri-
cultural research. This has proven to be somewhat volatile,
with per capita funding falling in the decades leading up to
the recent food crisis (Alston and Pardey, 2014). Food prices
have risen since 2007, which has stimulated new investments.
However, whether this interest will be sustained remains to
be seen. Overall, progress from conventional breeding is
becoming more difficult. Transgenic (genetic modification)
technologies have a proven record of more than a decade of
safe and environmentally sound use and thus offer huge po-
tential to address critical biotic and abiotic stresses in the de-
veloping world. However, expected yield gains, costs of fur-
ther developing these technologies, and the political accep-
tance of genetically modified foods are all highly uncertain.

To quantify the extent to which the advances in crop tech-
nology can further boost agricultural yields over the next
century, we first need to assess the magnitude of existing
yield gaps at the global scale. In a comprehensive study, Lo-
bell et al. (2009) report a significant variation in the ratios
of actual to potential yields for major food crops across the
world, ranging from 0.16 for tropical lowland maize in sub-
Saharan Africa to 0.95 for wheat in Haryana, India. For the
purposes of this study, we employ the results of Licker et al.
(2010), who conduct comprehensive yield gap analysis us-
ing a global crop dataset of harvested areas and yields for
175 crops on a 0.5° geographic grid of the planet for the
year 2000. Using these estimates, we calculate the global
yield gap as the grid-level output-weighted yield gap of the
four most important food crops (wheat, maize, soybeans, and
rice). The resulting estimate suggests that average yields are
53 % of potential yields, which is close to the median esti-
mates by Lobell et al. (2009). As a further robustness check,
we employ the Decision Support System for Agrotechnol-
ogy Transfer (DSSAT) crop-simulation model (Jones et al.,
2003), run globally on a 0.5° grid in the parallel System
for Integrating Impacts Models and Sectors (pSIMS; Elliott
et al., 2014b) to simulate yields of the same four major food
crops under the best agricultural management conditions and
compare simulated yields to their observed yields. The re-
sulting yield gap estimates were not substantially different.

In the optimistic (i.e., good) state of advances in crop tech-
nology, we assume that yields will continue to grow lin-
early throughout the coming century, eliminating the yield
gap by 2100. This high-yield scenario rests on the assump-
tion of continued strong growth in investment in agricultural
research and development, widespread acceptance of geneti-
cally modified crops, continuing institutional reforms in de-
veloping countries, and public and private investments in the
dissemination of new technologies. The erosion of any one
of these component assumptions will likely result in a slow-
ing of crop technology improvements. And there are some
grounds for pessimism. In a comprehensive statistical analy-
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sis of historical crop production trends, Grassini et al. (2013)
note that

despite the increase in investment in agricultural
R&D and education . . . the relative rate of yield
gain for the major food crops has decreased over
time together with evidence of upper yield plateaus
in some of the most productive domains. For ex-
ample, investment in R&D in agriculture in China
has increased threefold from 1981 to 2000. How-
ever, rates of increase in crop yields in China have
remained constant in wheat, decreased by 64 % in
maize as a relative rate and are negligible in rice.
Likewise, despite a 58 % increase in investment in
agricultural R&D in the United States from 1981 to
2000 (sum of public and private sectors), the rate
of maize yield gain has remained strongly linear.

To capture the possibility of much slower technological
improvement in the coming century, we specify two more
pessimistic scenarios. In the medium state of technology,
rather than closing the yield gap by 2100, average yields in
2100 are just three-quarters of yield potential at that point in
time. In the bad state of technology, there is no technological
progress, and the crop yields stay the same as at the begin-
ning of the coming century. This is the path on which we
begin the simulation in 2004. As previously noted, we then
specify probabilities with which the crop technology index
evolves across the different states of technology.

B2 Uncertainty in climate change impacts

In addition to crop technology uncertainty, there is great un-
certainty about the physical environment in which this tech-
nology will be deployed. In particular, long-run changes in
temperature and precipitation are likely to have an important
impact on land productivity in agriculture (IPCC, 2014) and,
therefore, the global pattern of land use. Quantification of
the impact of climate change on agricultural yields requires
coming to grips with three interconnected factors (Alexan-
dratos, 2011). First, there is significant uncertainty in fu-
ture GHG concentrations along the long-run growth path of
the global economy. Second, the general circulation models
(GCMs) developed by climate scientists to translate these un-
certain GHG concentrations into climate outcomes disagree
about the spatially disaggregated deviations of temperature
and precipitation from baseline levels. Finally, there is sig-
nificant uncertainty in the biophysical models used to deter-
mine how changes in temperature and precipitation will af-
fect plant growth and the productivity of agriculture in differ-
ent agroecological conditions. The impact of climate change
on food crop yields depends critically on their phenologi-
cal development, which, in turn, depends on the accumu-
lation of heat units, typically measured as growing degree
days (GDDs). More rapid accumulation of GDDs due to cli-
mate change speeds up phenological development, thereby

shortening key growth stages, such as the grain-filling stage,
hence reducing potential yields (Long, 1991). However, ris-
ing concentrations of CO2 in the atmosphere result in an
increase in potential yields due to improved water use ef-
ficiency, often dubbed the “CO2 fertilization effect” (Long
et al., 2006). Sorting out the relative importance of these ef-
fects and achieving greater confidence in evaluations of cli-
mate impacts on agricultural yields remains an important re-
search question in the agronomic literature (Cassman et al.,
2010; Rosenzweig et al., 2014).

To quantify the uncertainty in climate impacts on agricul-
tural yields, we use ISIMIP fast-track crop-simulation model
data (Rosenzweig et al., 2014). Specifically, we obtain re-
sults of four crop-simulation models: GEPIC (Liu et al.,
2007), LPJmL (Bondeau et al., 2007), pDSSAT (Jones et al.,
2003), and PEGASUS (Deryng et al., 2011). All models are
run globally on a 0.5° grid over the period between 1971
and 2099 and weighted by the output of four major food
crops (maize, soybeans, wheat, and rice). Since the FABLE
model is not spatially explicit, we further aggregate gridded
crop yields at a global scale using weights of the size of
the aggregate crop output per grid cell. To ensure the sim-
ulation results’ comparability with the structural parameters
of the FABLE model, all models are run under the Repre-
sentative Concentration Pathway 6.0 W m−2 (RCP6) GHG
forcing scenario (Moss et al., 2008). We also consider al-
ternative assumptions on CO2 fertilization effects. Observe
that our results are based on four crop-simulation mod-
els, though Rosenzweig et al. (2014) consider seven crop-
simulation models. The remaining three models have fewer
crops and/or temporal frames for model baseline and are thus
omitted. Rosenzweig et al. (2014) find that five models, in-
cluding GEPIC, LPJmL, and pDSSAT models considered in
this analysis, yield broadly similar predictions. One model
(LPJ–GUESS) not covered here has much higher variation in
predicted crop yields under different climate scenarios. Our
results may, therefore, understate the range of uncertainty in
the climate change impacts on potential crop yields.

To quantify uncertainty in temperature increases due
to climate change, we employ outputs for five global
climate models (GCMs): GFDL-ESM2M (Dunne et al.,
2013), HadGEM2-ES (Collins et al., 2008), IPSL-CM5A-
LR (Dufresne et al., 2013), MIROC-ESM-CHEM (Watan-
abe et al., 2011), and NorESM1-M (Bentsen et al., 2013).
For each of the simulations, we fit a linear trend to parsimo-
niously characterize the evolution of crop yields in the face
of climate change over the coming century.

Figure C1 summarizes simulation results for four crop-
simulation models and five climate models (with and with-
out fertilization effects) in 2100, normalized relative to as-
sumed yield potential in the absence of climate change. There
is significant heterogeneity in terms of both direction and
magnitude of climate impacts on agricultural yields across
global climate models when the CO2 fertilization effect is
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considered.13 Regardless of the chosen climate model, for
the scenario with fertilization effects, two out of four crop-
simulation models (LPJmL and pDSSAT) predict a moderate
increase in potential yields (5 %–15 %), whereas the PEGA-
SUS model predicts a large decline in potential yields (20 %–
30 %). The GEPIC model predicts that on average crop yields
will be little changed, showing a small increase in crop yields
for some climate models and a small decline for other mod-
els. The predictions of LPJmL and pDSSAT models are re-
versed when CO2 fertilization effects are removed, showing
a decline of about 10 %–15 % in potential yields. The PEGA-
SUS model predicts an even larger decline in potential yields
(30 %–35 %), whereas the predictions of GEPIC model show
a moderate decline of about 5 %–10 % in potential yields.

Given a large variation in model predictions, we construct
five states for potential crop yields under uncertain climate
change. These states correspond to quintiles of the distribu-
tion of different model outcomes for potential crop yields by
2100. Under two optimistic states of the world, we observe a
2 % and 15 % increases in potential crop yields relative to the
model baseline, whereby significant CO2 fertilization effects
offset the negative effects of climate change. For the next two
states, we see 15 % and 19 % declines in potential crop yields
relative to model baseline, whereby CO2 fertilization effects
are either small or nonexistent, and the negative effects of
climate change tend to prevail. Finally, under the most pes-
simistic states of the world, drastic adverse effects of climate
change combined with the absence of any CO2 fertilization
effects result in a 36 % decline in potential crop yields rela-
tive to the model baseline.

B3 Transition probabilities

The five possible values of the climate state J1,t are J1,1 =

0.64, J1,2 = 0.85, J1,3 = 0.89, J1,4 = 1.02, and J1,5 =

1.15, and its probability transition matrix is

P1 =


0.5 0.25
0.5 0.5 0.25

0.25 0.5 0.25
0.25 0.5 0.5

0.25 0.5

 ,
where P1,i,j represents the probability from the j th value of
J1,t to the ith value for 1≤ i,j ≤ 5. The three possible values

13Field trials show that higher atmospheric CO2 concentrations
enhance photosynthesis and reduce crop water stress (Deryng et al.,
2016). This fertilization effect interacts with other factors such as
nutrient availability, and current-generation crop models are char-
acterized by large uncertainties regarding net CO2 fertilization po-
tentials at larger spatial scales. In line with previous studies (Rosen-
zweig et al., 2014; Elliott et al., 2014a; Jägermeyr et al., 2016), we
use a constant CO2 case as a pessimistic assumption regarding cli-
mate change effects and a transient CO2 case according to the Rep-
resentative Concentration Pathways (RCPs) to reflect a more opti-
mistic case.

of the technological state J2,t are J2,1 = 1.45, J2,2 = 1.675,
and J2,3 = 1.9, and its probability transition matrix is

P2 =

 0.4423 0.1416 0.1311
0.4139 0.669 0.4367
0.1438 0.1894 0.4322

 ,
where P2,i,j represents the probability from the j th value of
J2,t to the ith value for 1≤ i,j ≤ 3. We assume that J2,t is
independent of J1,t .

B4 Model

After we add the risks, the state vector becomes

S := (L,X,J),

where Jt = (J1,t ,J2,t ). And J is a Markov chain, so it can
be represented as Jt+1 =G

J
t (Jt ,εt ), where εt is a vector of

shocks with zero means. The problem is

max
a

E

{
∞∑
t=0

δtU(St ,at )
}
, (B1)

subject to

Lt+1 =G
L
t (St ,at ),

Xt+1 =G
X
t (St ,at ),

Jt+1 =G
J
t (Jt ,εt ),

and at ∈Dt (St ) representing the feasibility constraints, that
is, inequality constraints and the equations other than the
above transition laws. The above transition laws are just a
special case of

St+1 =Gt (St ,at ,εt )

in the notations of Sect. A2 of this Appendix, so we can im-
plement the SCEQ method to solve the dynamic stochastic
programming problem. Since our time of interest is T ∗ =
100 years, we change the problem (B1) to have a finite hori-
zon with T = 400 years, as a larger T has little impact on our
solution in the first 100 years.

In the step 2 of Algorithm 1 for the solution at time s, we
replace εt by its zero mean to have St+1 =Gt (St ,at ,0); that
is, Jt+1 =G

J
t (Jt ,0). But this Jt+1 =G

J
t (Jt ,0) is only for

simplicity in notations. In fact, since J is a Markov chain, we
replace Jt by its mean conditional on the realized value of Js
(i.e., its certainty equivalent approximation):[
J1π1,t,s, J2π2,t,s

]
for all t ≥ s, where J1 = (J1,1, . . .,J1,5), J2 =

(J2,1,J2,2,J2,3), π1,t,s , and π2,t,s are two-column
vectors representing probability distributions of J1,t and
J2,t conditional on the realized values of J1,s and J2,s ,
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respectively. If the realized values of J1,s and J2,s are J1,i
and J2,j , respectively, then we have π1,t,s = P

t−s
1 π1,s,s

and π2,t,s = P
t−s
2 π2,s,s , where π1,s,s is a length 5 column

vector, with 1 at the ith element and 0 everywhere else, and
π2,s,s is a length 3 column vector, with 1 at the j th element
and 0 everywhere else.

Appendix C: Model equations, variables and
parameters

C1 Equations

C1.1 Land use

L=
∑

i=A,P,C,N,R
Lit (C1)

LN
t+1 = L

N
t −1

N,A
t −1

N,R
t +1

C,N
t (C2)

LA
t = L

A,c
t +L

A,b2
t (C3)

LA
t+1 = L

A
t +1

N,A
t −1

A,P
t +1

C,A
t (C4)

LP
t+1 = L

P
t +1

A,P
t (C5)

LR
t+1 = L

R
t +1

N,R
t (C6)

LC
t =

vmax∑
v=1

LC
v,t , (C7)

LC
v+1,t+1 = L

C
v,t −1

C,H
v,t , v < vmax− 1 (C8)

LC
vmax,t+1 = L

C
vmax,t

−1
C,H
vmax,t −1

C,N
t

+LC
vmax−1,t −1

C,H
vmax−1,t , (C9)

LC
1,t+1 =1

C,C
t (C10)

1
C,H
v,t ≤ L

C
v,t , v < vmax

1
C,H
vmax,t +1

C,N
t ≤ LC

vmax,t

1
C,A
t =

vmax∑
v=1

1
C,H
v,t −1

C,C
t

C1.2 Fossil fuels

XF
t+1 =X

F
t −1

F,E
t −1

F,n
t +1

F,D
t (C11)

C1.3 Other primary resources

XO
t =X

O
0

[
αo,l5t

50
+

(
1−αo,l

)
(1+ κo,2)t

]
(C12)

C1.4 Intermediate products

x
p
t = θ

p
t 1

F,E
t (C13)

xnt = θ
n1

F,n
t (C14)

xnt = x
n,c
t + x

n,b2
t (C15)

xc
t = θ

c
t

(
αn
(
L

A,c
t

)ρn
+
(
1−αn

)(
x
n,c
t

)ρn) 1
ρn (C16)

x
c,b2
t = θ

c,b2
t

(
αn
(
L

A,b2
t

)ρn
+
(
1−αn

)(
x
n,b2
t

)ρn) 1
ρn (C17)

xb1
t = θ

b1x
c,b
t (C18)

xb2
t = θ

b2((
αb2

)θb2,K
t

(K)ρb2 +

(
1−αb2

)(
x

c,b2
t

)ρb2

) 1
ρb2

(C19)

xl
t = θ

P
(
αl(LP

t

)ρl
+

(
1−αl

)(
x

c,l
t

)ρl
) 1
ρl (C20)

xw
t =

vmax∑
v=1

θw
v,t1

C,H
v,t (C21)

C1.5 Final goods and services

Y e
t = θ

e
t

(
αe
(
xb1
t

)ρe
+
(
1−αe)(xpt + xb2

t

)ρe) 1
ρe (C22)

Y l
t = θ

l
tx

l
t , (C23)

Yw
t = θ

yw
t x

w
t (C24)

Y r
t = θ

r

[ ∑
i=A,P,C

αi,r
(
Lit

)ρr

+

(
1−

∑
i=A,P,C

αi,r

)(
LN
t + θ

RLR
t

)ρr] 1
ρr

(C25)

Y o
t = θ

o,1
t

XO
t −

1
θo

0
[co,c xc

t

At
+ co,cb x

c,b2
t

θ
c,b2
t

+ co,f Y f
t

θ f
t

+ co,px
p
t + c

o,nxnt + c
o,bxb1

t

+co,b2xb2
t + c

o,lxl
t + c

o,yl θ
l
0Y

l
t

θ l
t

+ c
o,w
t 1

C,H
t + co,ywxw

t

+co,rLR
t + c

p1
C,C
t +C

N
t +C

R
t +C

F
t +C

H
t +C

P
t +C

C,N
t ]

 (C26)

yt =
(
yf
t ,y

l
t ,y

e
t ,y

w
t ,y

r
t ,y

o
t

)
=

(
Y f
t ,Y

l
t ,Y

e
t ,Y

w
t ,Y

r
t ,Y

o
t

)
/5t (C27)
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C1.6 Technology (deterministic)

At =
ATA0e

κct

AT +A0 (eκct − 1)
(C28)

θw
v,t ={
0.00001 if v ≤ v
θ

w
v (1+ κ

w
v t) if v > v

,θ
w
v = exp

(
ψa −

ψb

(v− v)

)
(C29)

θ it = θ
i
0(1+ κ

i)t , i = f,e, l,yw,o (C30)

C1.7 Technology (stochastic)

At =
AT (J1,t ,J2,t )A0e

κct

AT (J1,t ,J2,t )+A0 (eκct − 1)
(C31)

C1.8 Costs

C
N,A,R
t = ξn0

(
1

N,A
t +1

N,R
t

)
+ ξn1

(
1

N,A
t +1

N,R
t

)2
(C32)

C
N,R
t = ξR

0 1
N,R
t + ξR

1

(
1

N,R
t

)2
(C33)

CFt = ξ
F
1

(
1

F,E
t +1

F,n
t

)2
(
XF0 +1

F,D

XFt +1
F,D

)
(C34)

CHt = ξ
H
0

(
1

C,H
t −1

C,C
t

)2
+

∑
v

ξH1

LC
v,t+1+ ξ

H
2

(C35)

C
A,P
t = ξP

1

(
1

A,P
t

)2
(C36)

C
C,N
t = ξ

C,N
0 1

C,N
t + ξ

C,N
1

(
1
C,N
t

)2
(C37)

C1.9 Preferences

u(y)=
C(y)1−γ

1− γ
(C38)

log(C(y))=∑
q=f,l,e,w,r,o

(
αq +βqC(y)

1+ C(y)

)
log

(
y
q
t − y

q
)

(C39)

C1.10 Population

5t =
5T50e

κπ t

5T +50
(
eκ

π t − 1
) (C40)

C1.11 Welfare

�= E

{
∞∑
t=0

δtU(St ,at )
}
. (C41)

with U(St ,at )= u(yt )5t , S := (L,X,J), and

at = (1
N,A
t ,1

N,R
t ,1

C,N
t ,1

A,P
t ,1

C,A
t ,1

C,H
1,t ,

. . .,1
C,H
vmax,t ,1

C,C
t ,1

F,E
t ,1

F,n
t ,L

A,F
t ,L

A,B
t ,xt ,yt ).

Table C1. Model exogenous variables.

Parameter Description Units

Exogenous variables

1
F,D
t Flow of newly discovered fossil fuels trillion toe

XO
t Other primary goods trillion USD

At Crop technology index
θ

c,b2
t 2G biofuel crop technology index
θ

b2,K
t 2G biofuel fixed factor decay index
θw
v,t Logging productivity index
θ f
t Food processing productivity index
θe
t Energy efficiency index
θ l
t Livestock processing productivity index

θ
yw

t Wood processing productivity index
θo
t Total factor productivity index
CF
t Fossil fuel extraction cost share of XO

t

CN
t Natural land access cost share of XO

t

CR
t Natural land protection cost share of XO

t

CH
t Managed forest conversion cost share of XO

t

CP
t Pasture land conversion cost share of XO

t

C
C,N
t Natural land restoration cost share of XO

t
5t Population billion people
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Figure C1. Changes in potential crop yields under Representative Concentration Pathway (RCP) 6 scenario in 2100.

Figure C2. Consumption of fertilizers and biofuels. The solid lines represent the deterministic–baseline solutions. Squares represent the
deterministic–optimistic solutions or their distances to the deterministic-baseline solutions. Marks represent the deterministic–pessimistic
solutions or their distances to the deterministic-baseline solutions. The shaded areas are the ranges of the sample paths’ distances to the
deterministic-baseline solutions. Pluses represent the average paths, the dashed lines represent the 10 % quantile, circles represent the median
paths, and the dashed–dotted lines represent the 90 % quantile. Upward-pointing triangles and downward-pointing triangles represent the
distances of the stochastic–optimistic solutions and the stochastic–pessimistic solutions, respectively, to the deterministic-baseline solutions.

https://doi.org/10.5194/gmd-17-4791-2024 Geosci. Model Dev., 17, 4791–4819, 2024



4812 J. Steinbuks et al.: Assessing effects of climate and technology uncertainties

Table C2. Model endogenous variables.

Parameter Description Units

LA
t Agricultural land area Gha
L

A,c
t Agricultural land area, food crops Gha
L

A,b2
t Agricultural land area, 2G biofuel crops Gha
LP
t Pasture land area Gha
LC
t Commercial forest land area Gha
LN
t Unmanaged natural land area Gha
LR
t Protected natural land area Gha
1

N,A
t Flow of deforested natural land Gha

1
N,R
t Flow of protected natural land Gha

1
C,N
t Flow of restored natural land Gha

1
C,A
t Managed forest land converted to agriculture Gha

1
C,C
t Replanted forest land area Gha

1
C,H
v,t Harvested forest land area of vintage v Gha

1
A,P
t Agricultural land converted to pasture Gha

XF
t Stock of fossil fuels Ttoe

1
F,E
t Flow of fossil fuels converted to petroleum Ttoe

1
F,n
t Flow of fossil fuels converted to fertilizers Ttoe

x
p
t Petroleum products Gtoe
xnt Fertilizers Gton
xc
t Food crops Gton
x

c,b2
t 2G biofuel crops Gton
xb1
t 1G biofuels Gtoe
xb2
t 2G biofuels Gtoe
xl
t Livestock Gtoe
xw
t Raw timber Gton
Y f
t Services from processed food billion USD
Y e
t Energy services billion USD
Y l
t Services from processed livestock billion USD
Yw
t Services from processed timber billion USD
Y r
t Ecosystem services billion USD
Y o
t Other goods and services trillion USD
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Table C3. Baseline parameters.

Parameter Description Units Value

Population

50 Population in 2004 billion people 6.39
5T Population in time T billion people 10.1
κπ Population convergence rate 0.042

Land use

L Total land area billion ha 8.56
LA

0 Area of agricultural land in 2004 billion ha 1.53
LP

0 Area of pasture land in 2004 billion ha 2.73
LC

0 Area of commercial forest land in 2004 billion ha 1.62
LN

0 Area of unmanaged natural land in 2004 billion ha 2.47
LR

0 Area of protected natural land in 2004 billion ha 0.207
ξn0 Access cost function parameter 0.6
ξn1 Access cost function parameter 105
ξR

0 Protection cost function parameter 4.5
ξR

1 Protection cost function parameter 400
ξP

1 Pasture conversion cost function parameter 170
ξH

0 Forest conversion cost function parameter 80
ξH

1 Forest conversion cost function parameter 0.004
ξ

C,N
0 Natural land restoration cost parameter 0.8
ξ

C,N
1 Natural land restoration cost parameter 400

Fossil fuels

XF
0 Endowment of fossil fuels in 2004 trillion toe 0.343

1F,D Flow of newly discovered fossil fuels trillion toe 0.008
ξF

1 Fuel extraction cost function parameter 2000

Other primary goods

XO
0 Endowment of other primary goods in 2004 USD × 1013 3.16

κo,X Growth rate of physical capital 0.0035
αo,l Share of demographic factors in growth of XO

t 0.39

Intermediate products

θp Petroleum conversion factor per toe of 1F,E
t 0.5

co,p Petroleum conversion cost share of XO
t 0.0157
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Table C3. Continued.

Parameter Description Units Value

θn Fertilizer conversion factor Tton/Ttoe 1.071
co,n Fertilizer conversion cost share of XO

t 0.0021
θb1 1G biofuel conversion rate toe/tonne 0.283
θb2 2G biofuel conversion rate toe/tonne 0.467
K 2G biofuel fixed factor index 0.005
co,b1 1G biofuel conversion cost share of XO

t 0.00025
co,b2 2G biofuel conversion cost share of XO

t 0.00033
an Share of agricultural land in CES function 0.55
ρn CES parameter for agricultural land and fertilizers 0.123
A0 Crop technology index in 2004 13.89
κc Logistic growth rate of crop technology index 0.025
co,c Food crop production cost share of XO

t 0.016
θ

c,b2
0 2G biofuel crop technology index in 2004 14.89
κb2 2G biofuel fixed factor decay rate 0.05
αb2 Fixed factor cost share in 2G biofuels production 0.6
ρb2 CES parameter for fixed factor and agr. land −1.5
co,c 2G biofuel crop production cost share of XO

t 0.022
θP Livestock technology index in 2004 0.69
al Share of pasture land in CES function 0.35
ρl CES parameter for pasture land and feed −0.33
co,l Livestock production cost share of XO

t 0.0055
ψa Merchantable timber yield parameter 1 5.62
ψb Merchantable timber yield parameter 2 76.5
v Minimum age for merchantable timber Years 11
κw
v Timber yield gains of vintage v Share of Yield 0 0.011
cp Forest planting cost share of XO

t 0.0001
co,w Forest harvesting cost share of XO

t 0.0021

Final goods and services

θ f
0 Food processing technology index in 2004 1.5
κf Food processing technology index growth rate 0.0225
co,f Food processing cost share of XO

t 0.015
θ l

0 Livestock processing technology index in 2004 1.7
κ l Livestock processing technology growth rate 0.0025
co,yl Livestock processing cost share of XO

t 0.0068
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Table C3. Continued.

Parameter Description Units Value

θe
0 Energy technology index in 2004 1.195
κe Energy technology index growth rate 0.0225
ρe CES parameter for petroleum and biofuels 0.5
αe Share of biofuels in CES function 0.09
θ
yw
0 Timber processing technology index in 2004 1.52
κyw Timber processing technology growth rate 0.0225
co,yw Timber processing cost share of XO

t 0.0224
θ r Ecosystem services technology index 0.71
αA,r Share of agricultural land in CES function 0.02
αP,r Share of pasture land in CES function 0.14
αC,r Share of managed forest lands in CES function 0.26
ρr CES parameter for ecosystem services 0.123
θR Effectiveness index of protected lands 10
co,r Cost of recreation services 0.0296
θo

0 Total factor productivity index in 2004 1.854
κo Total factor index growth rate 0.0225

Preferences and welfare

αf AIDADS marginal budget share at subsistence income for services from processed food 0.189
αl AIDADS marginal budget share at subsistence income for services from processed livestock 0.035
αe AIDADS marginal budget share at subsistence income for energy services 0.112
αw AIDADS marginal budget share at subsistence income for services from processed timber 0.036
αr AIDADS marginal budget share at subsistence income for ecosystem services 0.049
αo AIDADS marginal budget share at subsistence income for other goods and services 0.579

Table C3. Continued.

Parameter Description Units Value

βf AIDADS marginal budget share at high income for services from processed food 0.028
βl AIDADS marginal budget share at high income for services from processed livestock 0.011
βe AIDADS marginal budget share at high income for energy services 0.049
βw AIDADS marginal budget share at high income for services from processed timber 0.032
βr AIDADS marginal budget share at high income for ecosystem services 0.104
βo AIDADS marginal budget share at high income for other goods and services 0.776
γ f AIDADS subsistence parameter for processed food 0.45
γ l AIDADS subsistence parameter for processed livestock 0.003
γ e AIDADS subsistence parameter for energy services 0.026
γw AIDADS subsistence parameter for processed timber products 0.027
γ r AIDADS subsistence parameter for ecosystem services 0.028
γ o AIDADS subsistence parameter for other goods and services 0.346
γ Risk-aversion parameter 2
δ Social discount rate 0.95
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Code and data availability. Numerical implementation of the
FABLE model and the SCEQ method in the GAMS modeling lan-
guage is available at https://github.com/jsteinbuks/stfable (last ac-
cess: 18 April 2024) and https://doi.org/10.5281/zenodo.10014997
(Steinbuks, 2023). The FABLE model is calibrated based on the
Global Trade Analysis Project (GTAP) land use database and
publicly available data sources. Calibration details are available in
the Appendix. The uncertainty in climate impacts on agricultural
yields is estimated based on the results of Rosenzweig et al. (2014).
Calibration details are available in the Appendix.

Author contributions. JS and YC were the lead contributors to the
paper. JS and TWH developed and calibrated the FABLE model.
YC developed the SCEQ algorithm and numerically implemented
it to assess uncertainty in climate and technology impacts quanti-
tatively. JJ and JS estimated the uncertainty in climate impacts on
global crop yields.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Yongyang Cai would like to thank the Becker
Friedman Institute at the University of Chicago and Hoover Institu-
tion at Stanford University for their support. This paper originates
from Cai et al. (2020), which has been separated into this paper and
another methodological paper describing the SCEQ computational
algorithm.

Financial support. This research has been supported by the Na-
tional Science Foundation (grant nos. SES-0951576 and SES-
1463644) and the U.S. Department of Agriculture (grant no. 2015-
67023-22905).

Review statement. This paper was edited by Gunnar Luderer and
reviewed by Xin Zhao and one anonymous referee.

References

Alexander, P., Prestele, R., Verburg, P. H., Arneth, A., Baranzelli,
C., Batista e Silva, F., Brown, C., Butler, A., Calvin, K., Dendon-
cker, N., Doelman, J., Dunford, R., Engström, K., Eitelberg, D.,
Fujimori, S., Harrison, P., Hasegawa, T., Havlik, P., Holzhauer,
S., Humpenöder, F., Jacobs-Crisioni, C., Jain, A., Krisztin, T.,
Page, K., Lavalle, C., Lenton, T., Liu, J., Meiyappan, P., Popp,

A., Powell, T., Sands, R., Schaldach, R., Stehfest, E., Steinbuks,
J., Tabeau, A., van Meijl, H., Wise, M., and Rounsevell, M.: As-
sessing Uncertainties in Land Cover Projections, Glob. Change
Biol., 23, 767–781, 2017.

Alexandratos, N.: Critical Evaluation of Selected Projections, in:
Economic Analysis of Land Use in Global Climate Change Pol-
icy, edited by: Conforti, P., Food and Agriculture Organization of
the United Nations, Rome, 465–508, 2011.

Alston, J. M. and Pardey, P. G.: Agricultural R&D, Food Prices,
Poverty and Malnutrition Redux, Staff Paper P14-01, University
of Minnesota, Department of Applied Economics, 2014.

Arrow, K. J.: Aspects of the Theory of Risk-Bearing, Yrjö Jahnsson
Foundation, Helsinki, ISBN 0841020019, 1965.

Babiker, M., Gurgel, A., Paltsev, S., and Reilly, J.: Forward-looking
versus Recursive-dynamic Modeling in Climate Policy Analysis:
A Comparison, Econ. Model., 26, 1341–1354, 2009.

Barbier, E. B., Burgess, J. C., Bishop, J., and Aylward, B.: The Eco-
nomics of the Tropical Timber Trade, Earthscan, London (UK),
ISBN 9780367369941, 1994.

Barro, R. J. and Sala-i Martin, X.: Economic Growth, MIT Press,
ISBN 0-262-02553-1, 2004.

Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg,
A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A.,
Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth Sys-
tem Model, NorESM1-M – Part 1: Description and basic evalu-
ation of the physical climate, Geosci. Model Dev., 6, 687–720,
https://doi.org/10.5194/gmd-6-687-2013, 2013.

Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W.,
Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reich-
stein, M., and Smith, B.: Modelling the Role of Agriculture
for the 20th Century Global Terrestrial Carbon Balance, Glob.
Change Biol., 13, 679–706, 2007.

Brock, W. A. and Majumdar, M.: Global Asymptotic Stability Re-
sults for Multisector Models of Optimal Growth under Uncer-
tainty when Future Utilities are Discounted, J. Econ. Theory, 18,
225–243, 1978.

Bulte, E., van Soest, D., Van Kooten, G., and Schipper, R.: Forest
Conservation in Costa Rica when Nonuse Benefits are Uncertain
but Rising, Am. J. Agr. Econ., 84, 150–160, 2002.

Burke, M. B. and Emerick, K.: Adaptation to Climate Change: Ev-
idence from US Agriculture, Am. Econ. J., 8, 106–140, 2016.

Cai, Y.: Computational methods in environmental and re-
source economics, Annu. Rev. Resour. Econ., 11, 59–82,
https://doi.org/10.1146/annurev-resource-100518-093841, 2019.

Cai, Y.: The Role of Uncertainty in Controlling Climate Change,
Oxford Research Encyclopedia of Economics and Finance,
https://doi.org/10.1093/acrefore/9780190625979.013.573, 2021.

Cai, Y. and Judd, K.: Shape-preserving Dynamic Programming,
Math. Method. Oper. Res., 77, 407–421, 2013.

Cai, Y. and Judd, K.: Advances in Numerical Dynamic Program-
ming and New Applications, in: Handbook of Computational
Economics, edited by: Judd, K. L. and Schmedders, K., Elsevier,
ISBN 0444512535, 2014.

Cai, Y. and Judd, K.: A Simple but Powerful Simulated Cer-
tainty Equivalent Approximation Method for Dynamic Stochas-
tic Problems, Quant. Econ., 14, 651–687, 2023.

Cai, Y. and Lontzek, T.: The Social Cost of Carbon with Economic
and Climate Risks, J. Polit. Econ., 127, 2684–2734, 2019.

Geosci. Model Dev., 17, 4791–4819, 2024 https://doi.org/10.5194/gmd-17-4791-2024

https://github.com/jsteinbuks/stfable
https://doi.org/10.5281/zenodo.10014997
https://doi.org/10.5194/gmd-6-687-2013
https://doi.org/10.1146/annurev-resource-100518-093841
https://doi.org/10.1093/acrefore/9780190625979.013.573


J. Steinbuks et al.: Assessing effects of climate and technology uncertainties 4817

Cai, Y., Judd, K., Thain, G., and Wright, S.: Solving Dynamic Pro-
gramming Problems on a Computational Grid, Comput. Econ.,
45, 261–284, 2015.

Cai, Y., Judd, K., and Steinbuks, J.: A Nonlinear Certainty Equiv-
alent Approximation Method for Dynamic Stochastic Problems,
Quant. Econ., 8, 117–147, 2017.

Cai, Y., Steinbuks, J., Judd, K. L., Jaegermeyr, J., and Hertel,
T. W.: Modeling Uncertainty in Large Natural Resource Alloca-
tion Problems, Policy Research Working Paper 9159, The World
Bank, 2020.

Cassman, K., Grassini, P., and van Wart, J.: Crop Yield Potential,
Yield Trends, and Global Food Security in a Changing Climate,
in: Handbook of Climate Change and Agroecosystems, edited
by: Hillel, D. and Rosenzweig, C., Imperial College Press, 37–
51, ISBN 9781848169838, 2010.

Cassman, K. G.: Ecological Intensification of Cereal Production
Systems: Yield Potential, Soil Quality, and Precision Agriculture,
P. Natl. Acad. Sci. USA, 96, 5952–5959, 1999.

Collins, W., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Hin-
ton, T., Jones, C., Liddicoat, S., Martin, G., O’Connor, F., Rae,
J., Senior, C., Totterdell, I., Woodward, S., T., R., and Kim, J.:
Evaluation of the HadGEM2 Model, Hadley Center Tech. Note,
74, 2008.

Conrad, J.: On the Option Value of Old-growth Forest, Ecol. Econ.,
22, 97–102, 1997.

Conrad, J.: Wilderness: Options to Preserve, Extract, or Develop,
Resour. Energy Econ., 22, 205–219, 2000.

Daigneault, A. J., Miranda, M. J., and Sohngen, B.: Optimal For-
est Management with Carbon Sequestration Credits and Endoge-
nous Fire Risk, Land Econ., 86, 155–172, 2010.

Deryng, D., Sacks, W., Barford, C., and Ramankutty, N.: Sim-
ulating the Effects of Climate and Agricultural Management
Practices on Global Crop Yield, Global Biogeochem. Cy., 25,
https://doi.org/10.1029/2009GB003765, 2011.

Deryng, D., Elliott, J., Folberth, C., Müller, C., Pugh, T. A., Boote,
K. J., Conway, D., Ruane, A. C., Gerten, D., Jones, J. W.,
Khabarov, N., Olin, S., Schaphoff, S., Schmid, E., Yang, H., and
Rosenzweig, C.: Regional Disparities in the Beneficial Effects
of Rising CO2 Concentrations on Crop Water Productivity, Nat.
Clim. Change, 6, 786, https://doi.org/10.1038/nclimate2995,
2016.

Diffenbaugh, N. S., Hertel, T. W., Scherer, M., and Verma,
M.: Response of Corn Markets to Climate Volatility un-
der Alternative Energy Futures, Nat. Clim. Change, 2, 514,
https://doi.org/10.1038/nclimate1491, 2012.

Drud, A. S.: CONOPT – A Large-Scale GRG Code, ORSA J. Com-
put., 6, 207–216, https://doi.org/10.1287/ijoc.6.2.207, 1994.

Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O.,
Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila,
R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule,
P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet,
N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni,
S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E.,
Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Jous-
saume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahel-
lec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd,
J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S.,
Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio,
C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray,

P., Viovy, N., and Vuichard, N.: Climate Change Projections us-
ing the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5,
Clim. Dynam., 40, 2123–2165 https://doi.org/10.1007/s00382-
012-1636-1, 2013.

Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krast-
ing, J. P., Malyshev, S. L., Milly, P. C. D., Sentman, L. T., Ad-
croft, A. J., Cooke, W., Dunne, K. A., Griffies, S. M., Hallberg,
R. W., Harrison, M. J., Levy, H., Wittenberg, A. T., Phillips, P. J.,
and Zadeh, N.: GFDL’s ESM2 Global Coupled Climate?Carbon
Earth System Models. Part II: Carbon System Formulation and
Baseline Simulation Characteristics. Climate, 26, 2247–2267,
2013.

Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M.,
Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S.,
Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland,
I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., Rosenzweig,
C., Ruane, A. C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., and
Wisser, D.: Constraints and Potentials of Future Irrigation Water
Availability on Agricultural Production Under Climate Change,
P. Natl. Acad. Sci. USA, 111, 3239–3244, 2014a.

Elliott, J., Kelly, D., Chryssanthacopoulos, J., Glotter, M.,
Jhunjhnuwala, K., Best, N., Wilde, M., and Foster, I.:
The Parallel System for Integrating Impact Models and
Sectors (pSIMS), Environ. Modell. Softw., 62, 509–516,
https://doi.org/10.1016/j.envsoft.2014.04.008, 2014b.

Evans, L. and Fischer, R.: Yield Potential: its Definition, Measure-
ment, and Significance, Crop Sci., 39, 1544–1551, 1999.

Fischer, T., Byerlee, D., and Edmeades, G.: Can Technology Deliver
on the Yield Challenge to 2050?, in: Economic Analysis of Land
Use in Global Climate Change Policy, edited by: Conforti, P.,
Food and Agriculture Organization of the United Nations, Rome,
389–462, 2011.

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Ger-
ber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray,
D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R.,
Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J.,
Siebert, S., Tilman, D., and Zaks, D. P. M.: Solutions for a Culti-
vated Planet, Nature, 478, 337–342, 2011.

Füssel, H.-M.: An Updated Assessment of the Risks from
Climate Change Based on Research Published since the
IPCC Fourth Assessment Report, Climatic change, 97, 469,
https://doi.org/10.1007/s10584-009-9648-5, 2009.

Golub, A., Hertel, T., and Sohngen, B.: Land Use Modeling in
Recursively-Dynamic GTAP Framework, in: Economic Analy-
sis of Land Use in Global Climate Change Policy, edited by:
Hertel, T., Rose, S., and Tol, R., Routledge, 235–278, ISBN
9780415847223, 2009.

Grassini, P., Eskridge, K. M., and Cassman, K. G.: Dis-
tinguishing between Yield Advances and Yield Plateaus
in Historical Crop Production Trends, Nat. Commun., 4,
https://doi.org/10.1038/ncomms3918, 2013.

Hausfather, Z. and Peters, G. P.: Emissions–the “Business as Usual”
Story is Misleading, Nature, 577, 618–620, 2020.

Hertel, T., Steinbuks, J., and Tyner, W.: What is the Social Value of
Second Generation Biofuels?, Appl. Econ. Perspect. P., 38, 599–
617, 2016.

Hertel, T. W., Steinbuks, J., and Baldos, U.: Competition for Land
in the Global Bioeconomy, Agr. Econ., 44, 129–138, 2013.

https://doi.org/10.5194/gmd-17-4791-2024 Geosci. Model Dev., 17, 4791–4819, 2024

https://doi.org/10.1029/2009GB003765
https://doi.org/10.1038/nclimate2995
https://doi.org/10.1038/nclimate1491
https://doi.org/10.1287/ijoc.6.2.207
https://doi.org/10.1007/s00382-012-1636-1
https://doi.org/10.1007/s00382-012-1636-1
https://doi.org/10.1016/j.envsoft.2014.04.008
https://doi.org/10.1007/s10584-009-9648-5
https://doi.org/10.1038/ncomms3918


4818 J. Steinbuks et al.: Assessing effects of climate and technology uncertainties

IPCC: Climate Change 2014: Impacts, Adaptation and Vulnerabil-
ity: Contribution of Working Group II to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, Cam-
bridge University Press, ISBN 1107058163, 2014.

Jägermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W., and
Rockström, J.: Integrated Crop Water Management Might Sus-
tainably Halve the Global Food Gap, Environ. Res. Lett., 11,
025002, https://doi.org/10.1088/1748-9326/11/2/025002, 2016.

Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J.,
Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A.,
Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T.,
Jain, A. K., Kelly, D., Khabarov, N., Lange, S., Lin, T.-S., Liu,
W., Mialyk, O., Minoli, S., Moyer, E. J., Okada, M., Phillips,
M., Porter, C., Rabin, S. S., Scheer, C., Schneider, J. M., Schyns,
J. F., Skalsky, R., Smerald, A., Stella, T., Stephens, H., Webber,
H., Zabel, F., and Rosenzweig, C.: Climate Impacts on Global
Agriculture Emerge Earlier in New Generation of Climate and
Crop Models, Nature Food, 2, 873–885, 2021.

Jones, J. W., Hoogenboom, G., Porter, C., Boote, K., Batchelor, W.,
Hunt, L., Wilkens, P., Singh, U., Gijsman, A., and Ritchie, J.:
The DSSAT Cropping System Model, Eur. J. Agron., 18, 235–
265, 2003.

Judd, K. L.: Numerical Methods in Economics, The MIT press,
ISBN 9780262547741, 1998.

Lanz, B., Dietz, S., and Swanson, T.: Global Economic Growth and
Agricultural Land Conversion under Uncertain Productivity Im-
provements in Agriculture, Am. J. Agr. Econ., 100, 545–569,
2017.

Leroux, A., Martin, V., and Goeschl, T.: Optimal Conservation, Ex-
tinction Debt, and the Augmented Quasi-option Value, J. Envi-
ron. Econ. Manage., 58, 43–57, 2009.

Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J.,
Monfreda, C., and Ramankutty, N.: Mind the Gap: How do Cli-
mate and Agricultural Management Explain the “Yield Gap” of
Croplands around the World?, Global Ecol. Biogeogr., 19, 769–
782, 2010.

Liu, J., Williams, J. R., Zehnder, A. J., and Yang, H.: GEPIC–
Modelling Wheat Yield and Crop Water Productivity with High
Resolution on a Global Scale, Agr. Syst., 94, 478–493, 2007.

Lobell, D. B. and Field, C. B.: Global Scale Climate – Crop Yield
Relationships and the Impacts of Recent Warming, Environ. Res.
Lett., 2, 014002, https://doi.org/10.1088/1748-9326/2/1/014002,
2007.

Lobell, D. B., Cassman, K. G., and Field, C. B.:
Crop Yield Gaps: their Importance, Magnitudes,
and Causes, Annu. Rev. Environ. Resour., 34, 179,
https://doi.org/10.1146/annurev.environ.041008.093740, 2009.

Long, S.: Modification of the Response of Photosynthetic Produc-
tivity to Rising Temperature by Atmospheric CO2 Concentra-
tions: Has its Importance been Underestimated?, Plant Cell Env-
iron., 14, 729–739, 1991.

Long, S. P., Ainsworth, E. A., Leakey, A. D., Nösberger, J., and
Ort, D. R.: Food for Thought: Lower-Than-Expected Crop Yield
Stimulation with Rising CO2 Concentrations, Science, 312,
1918–1921, 2006.

Majumdar, M. and Radner, R.: Stationary Optimal Policies with
Discounting in a Stochastic Activity Analysis Model, Economet-
rica, 51, 1821–1837, 1983.

Miranda, M. J. and Fackler, P. L.: Applied Computational Eco-
nomics and Finance, MIT press, ISBN 9780262633093, 2004.

Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Ed-
monds, J., Elgizouli, I., Emori, S., Lin, E., Hibbard, K., Jones,
R., Kainuma, M., Kelleher, J., Lamarque, J.-F., Manning, M.,
Matthews, B., Meehl, J., Meyer, L., Mitchell, J., and Zurek,
M.: Towards New Scenarios for Analysis of Emissions, Climate
Change, Impacts, and Response Strategies, Tech. Rep. PNNL-
SA-63186, Pacific Northwest National Laboratory (PNNL),
Richland, WA (US), 2008.

National Research Council: Renewable Fuel Standard: Potential
Economic and Environmental Effects of U.S. Biofuel Policy, Na-
tional Academies Press, ISBN 978-0-309-18751-0, 2011.

Nikas, A., Doukas, H., and Papandreou, A.: A Detailed Overview
and Consistent Classification of Climate-Economy Models, in:
Understanding Risks and Uncertainties in Energy and Climate
Policy, Springer, 1–54, 2019.

Nordhaus, W. D. and Boyer, J.: Warming the World: Economic
Models of Global Warming, MIT press, ISBN 9780262280747,
2000.

Pindyck, R. S.: Uncertainty in Environmental Economics, Rev. Env.
Econ. Policy, 1, 45–65, 2007.

Pratt, J. W.: Risk Aversion in the Small and in the Large, Economet-
rica, 32, 122–136, 1964.

Rimmer, M. and Powell, A.: An Implicitly Additive Demand Sys-
tem, Appl. Econ., 28, 1613–1622, 1996.

Rose, S. K., Ahammad, H., Eickhout, B., Fisher, B., Kurosawa, A.,
Rao, S., Riahi, K., and van Vuuren, D. P.: Land-based mitiga-
tion in climate stabilization, Energy Economics, 34, 365–380,
https://doi.org/10.1016/j.eneco.2011.06.004, 2012.

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A., Arneth, A.,
Bootef, K., Folberth, C., Glotter, M., Khabarov, N., Müller, C.,
Neumann, K., Piontek, F., Pugh, T., Schmid, E., Stehfest, E., and
Jones, J.: Assessing Agricultural Risks of Climate Change in the
21st Century in a Global Gridded Crop Model Intercomparison,
P. Natl. Acad. Sci. USA, 111, 3268–3273, 2014.

Schmitz, C., van Meijl, H., Kyle, P., Nelson, G. C., Fujimori, S.,
Gurgel, A., Havlik, P., Heyhoe, E., d’Croz, D. M., Popp, A.,
Sands, R., Tabeau, A., van der Mensbrugghe, D., von Lampe,
M., Wise, M., Blanc, E., Hasegawa, T., Kavallari, A., and Valin,
H.: Land-Use Change Trajectories Up to 2050: Insights from a
Global Agro-Economic Model Comparison, Agr. Econ., 45, 69–
84, 2014.

Sohngen, B. and Mendelsohn, R.: An Optimal Control Model of
Forest Carbon Sequestration, Am. J. Agr. Econ., 85, 448–457,
2003.

Sohngen, B. and Mendelsohn, R.: A Sensitivity Analysis of Forest
Carbon Sequestration, in: Human-Induced Climate Change: An
Interdisciplinary Assessment, edited by: Schlesinger, M., Cam-
bridge University Press, 227–237, 2007.

Steinbuks, J.: Stochastic Implementation of the FABLE model, Zen-
odo [code], https://doi.org/10.5281/zenodo.10014997, 2023.

Steinbuks, J. and Hertel, T.: Forest, Agriculture, and Biofuels in a
Land use model with Environmental services (FABLE), GTAP
Working Paper 71, Center for Global Trade Analysis, Depart-
ment of Agricultural Economics, Purdue University, 2012.

Steinbuks, J. and Hertel, T.: Confronting the Food-Energy-
Environment Trilemma: Global Land Use in the Long Run, Env-
iron. Resour. Econ., 63, 545–570, 2016.

Geosci. Model Dev., 17, 4791–4819, 2024 https://doi.org/10.5194/gmd-17-4791-2024

https://doi.org/10.1088/1748-9326/11/2/025002
https://doi.org/10.1088/1748-9326/2/1/014002
https://doi.org/10.1146/annurev.environ.041008.093740
https://doi.org/10.1016/j.eneco.2011.06.004
https://doi.org/10.5281/zenodo.10014997


J. Steinbuks et al.: Assessing effects of climate and technology uncertainties 4819

Steinbuks, J. and Hertel, T. W.: Energy Prices Will Play
an Important Role in Determining Global Land Use in
the Twenty First Century, Environ. Res. Lett., 8, 014014,
https://doi.org/10.1088/1748-9326/8/1/014014, 2013.

Stokey, N. L., Lucas, R. E., and Prescott, E. C.: Recursive Methods
in Economic Dynamics, Harvard University Press, ISBN 978-
0674750968, 1989.

Taheripour, F., Hurt, C., and Tyner, W. E.: Livestock Industry in
Transition: Economic, Demographic, and Biofuel Drivers, Ani-
mal Frontiers, 3, 38–46, 2013.

Tian, X., Sohngen, B., Kim, J. B., Ohrel, S., and Cole, J.:
Global Climate Change Impacts on Forests and Markets, En-
viron. Res. Lett., 11, 035011, https://doi.org/10.1088/1748-
9326/11/3/035011, 2016.

Tsionas, E. G. and Kumbhakar, S. C.: Markov Switching Stochastic
Frontier Model, Econ. J., 7, 398–425, 2004.

Tsur, Y. and Zemel, A.: Dynamic and Stochastic Analysis of En-
vironmental and Natural Resources, in: Handbook of Regional
Science, edited by: Fischer, M. and Nijkamp, P., Springer-Verlag
Berlin Heidelberg, 929–949, ISBN 978-3-642-23429-3, 2014.

Verma, M., Hertel, T., and Diffenbaugh, N.: Market-Oriented
Ethanol and Corn-Trade Policies can Reduce Climate-Induced
US Corn Price Volatility, Environ. Rese. Lett., 9, 064028,
https://doi.org/10.1088/1748-9326/9/6/064028, 2014.

Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T.,
Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T.,
Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya,
M.: MIROC-ESM 2010: model description and basic results of
CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872,
https://doi.org/10.5194/gmd-4-845-2011, 2011.

Weitzman, M. L.: What Is The “Damages Function” For Global
Warming – And What Difference Might It Make?, Climate
Change Economics, 1, 57–69, 2010.

Zhao, X., Calvin, K. V., Wise, M. A., Patel, P. L., Sny-
der, A. C., Waldhoff, S. T., Hejazi, M. I., and Edmonds,
J. A.: Global Agricultural Responses to Interannual Climate
and Biophysical Variability, Environ. Res. Lette., 16, 104037,
https://doi.org/10.1088/1748-9326/ac2965, 2021.

https://doi.org/10.5194/gmd-17-4791-2024 Geosci. Model Dev., 17, 4791–4819, 2024

https://doi.org/10.1088/1748-9326/8/1/014014
https://doi.org/10.1088/1748-9326/11/3/035011
https://doi.org/10.1088/1748-9326/11/3/035011
https://doi.org/10.1088/1748-9326/9/6/064028
https://doi.org/10.5194/gmd-4-845-2011
https://doi.org/10.1088/1748-9326/ac2965

	Abstract
	Introduction
	Stochastic FABLE model 
	Modeling crop yield uncertainty
	Method of model solution: the SCEQ algorithm
	Model results
	Optimal path of global land use under crop yield uncertainty
	Optimal path of land-based goods and services under crop yield uncertainty

	Conclusions
	Appendix A: FABLE model description
	Appendix A1: Primary resources
	Appendix A1.1: Land
	Appendix A1.2: Fossil fuels
	Appendix A1.3: Other primary resources

	Appendix A2: Intermediate inputs
	Appendix A3: Final goods and services
	Appendix A4: Preferences
	Appendix A5: Welfare

	Appendix B: Quantifying the uncertainty in crop yields
	Appendix B1: Uncertainty in agricultural technology
	Appendix B2: Uncertainty in climate change impacts
	Appendix B3: Transition probabilities
	Appendix B4: Model

	Appendix C: Model equations, variables and parameters
	Appendix C1: Equations
	Appendix C1.1: Land use
	Appendix C1.2: Fossil fuels
	Appendix C1.3: Other primary resources
	Appendix C1.4: Intermediate products
	Appendix C1.5: Final goods and services
	Appendix C1.6: Technology (deterministic)
	Appendix C1.7: Technology (stochastic)
	Appendix C1.8: Costs
	Appendix C1.9: Preferences
	Appendix C1.10: Population
	Appendix C1.11: Welfare


	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

