Articles | Volume 16, issue 2
https://doi.org/10.5194/gmd-16-659-2023
https://doi.org/10.5194/gmd-16-659-2023
Development and technical paper
 | 
27 Jan 2023
Development and technical paper |  | 27 Jan 2023

A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)

Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias

Related authors

On the optimal level of complexity for the representation of groundwater-dependent wetland systems in land surface models
Mennatullah T. Elrashidy, Andrew M. Ireson, and Saman Razavi
Hydrol. Earth Syst. Sci., 27, 4595–4608, https://doi.org/10.5194/hess-27-4595-2023,https://doi.org/10.5194/hess-27-4595-2023, 2023
Short summary
OpenWQ v.1: A multi-chemistry modelling framework to enable flexible, transparent, interoperable, and reproducible water quality simulations in existing hydro-models
Diogo Costa, Kyle Klenk, Wouter Knoben, Andrew Ireson, Raymond J. Spiteri, and Martyn Clark
EGUsphere, https://doi.org/10.5194/egusphere-2023-2787,https://doi.org/10.5194/egusphere-2023-2787, 2023
Preprint archived
Short summary
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021,https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Modeling groundwater responses to climate change in the Prairie Pothole Region
Zhe Zhang, Yanping Li, Michael Barlage, Fei Chen, Gonzalo Miguez-Macho, Andrew Ireson, and Zhenhua Li
Hydrol. Earth Syst. Sci., 24, 655–672, https://doi.org/10.5194/hess-24-655-2020,https://doi.org/10.5194/hess-24-655-2020, 2020
Short summary
Meteorological, soil moisture, surface water, and groundwater data from the St. Denis National Wildlife Area, Saskatchewan, Canada
Edward K. P. Bam, Rosa Brannen, Sujata Budhathoki, Andrew M. Ireson, Chris Spence, and Garth van der Kamp
Earth Syst. Sci. Data, 11, 553–563, https://doi.org/10.5194/essd-11-553-2019,https://doi.org/10.5194/essd-11-553-2019, 2019
Short summary

Related subject area

Hydrology
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024,https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024,https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary

Cited articles

Bear, J. and Cheng, A. H. D.: Modeling groundwater flow and contaminant transport, Vol. 23, in: Theory and Applications of Transport in Porous Media, Springer, Dordrecht, 834, https://doi.org/10.1007/978-1-4020-6682-5, 2010. 
Beven, K., and Germann, P.: Macropores and water flow in soils revisited, Water Resour. Res., 49, 3071–3092, https://doi.org/10.1002/wrcr.20156, 2013. 
Brown, P. N., Hindmarsh, A. C., and Byrne, G. D.: VODE. Variable Coefficient ODE Solver, SIAM J. Sci. Stat. Comp., 10, 1038–1051, https://doi.org/10.1137/0910062, 1989. 
Celia, M. A., Bouloutas, E. T., and Zarba, R. L.: A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26, 1483–1496, https://doi.org/10.1029/WR026i007p01483, 1990. 
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., and Maxwell, R. M.: Improving the representation of hydrologic processes in Earth System Models, Water Resour. Res., 51, 5929–5956, 2015. 
Download
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.