Articles | Volume 16, issue 19
https://doi.org/10.5194/gmd-16-5627-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-5627-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling sensitivities of thermally and hydraulically driven ice stream surge cycling
Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, A1B 3X7, Canada
Lev Tarasov
Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, A1B 3X7, Canada
Elisa Mantelli
Department of Earth and Environmental Sciences, Ludwig-Maximillians-Universitaet Munich, Theresienstr. 41, 80333 Munich, Germany
Alfred Wegener Institute for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany
Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point TAS 7004, Australia
Related authors
Kevin Hank, Robert J. Arthern, C. Rosie Williams, Alex M. Brisbourne, Andrew M. Smith, James A. Smith, Anna Wåhlin, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2025-764, https://doi.org/10.5194/egusphere-2025-764, 2025
Short summary
Short summary
The slipperiness beneath ice sheets is a key source of uncertainty in sea level rise projections. Using both observations and model output, we infer the most probable representation of basal slipperiness in ice sheet models, enabling more accurate projections. For Pine Island Glacier, our results provide support for a Coulomb-type sliding law and widespread low effective pressures, potentially increasing sliding velocities in prognostic simulations and, hence, sea level rise projections.
Lev Tarasov, Benoit S. Lecavalier, Kevin Hank, and David Pollard
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-175, https://doi.org/10.5194/gmd-2024-175, 2025
Preprint under review for GMD
Short summary
Short summary
We document the glacial system model (GSM), a 3D glaciological ice sheet systems model specifically designed for large ensemble modelling in glacial cycle contexts. The model is distinguished by the breadth of relevant processes represented for this context. This ranges from meltwater surface drainage with proglacial lake formation to state-of-the-art subglacial sediment production/transport/deposition. The other key distinguishing design feature is attention to addressing process uncertainties.
Kevin Hank and Lev Tarasov
Clim. Past, 20, 2499–2524, https://doi.org/10.5194/cp-20-2499-2024, https://doi.org/10.5194/cp-20-2499-2024, 2024
Short summary
Short summary
The ice-rafted debris signature of Heinrich events in marine sedimentary cores is usually attributed to massive ice discharge from the Laurentide Ice Sheet. However, the driving mechanism of this pulsed discharge remains unclear. We compare three previously proposed hypotheses and examine the role of relevant system processes. We find ice stream surge cycling is the most likely mechanism, but its character is sensitive to both the geothermal heat flux and the form of the basal drag law.
Kevin Hank, Robert J. Arthern, C. Rosie Williams, Alex M. Brisbourne, Andrew M. Smith, James A. Smith, Anna Wåhlin, and Sridhar Anandakrishnan
EGUsphere, https://doi.org/10.5194/egusphere-2025-764, https://doi.org/10.5194/egusphere-2025-764, 2025
Short summary
Short summary
The slipperiness beneath ice sheets is a key source of uncertainty in sea level rise projections. Using both observations and model output, we infer the most probable representation of basal slipperiness in ice sheet models, enabling more accurate projections. For Pine Island Glacier, our results provide support for a Coulomb-type sliding law and widespread low effective pressures, potentially increasing sliding velocities in prognostic simulations and, hence, sea level rise projections.
Benoit S. Lecavalier and Lev Tarasov
The Cryosphere, 19, 919–953, https://doi.org/10.5194/tc-19-919-2025, https://doi.org/10.5194/tc-19-919-2025, 2025
Short summary
Short summary
We present the evolution of the Antarctic Ice Sheet (AIS) over the last 200 kyr by means of a history-matching analysis where an updated observational database constrained ~ 10 000 model simulations. During peak glaciation at the Last Glacial Maximum (LGM), the best-fitting sub-ensemble of AIS simulations reached an excess grounded ice volume relative to the present of 9.2 to 26.5 m equivalent sea level relative to the present. The LGM AIS volume can help resolve the LGM missing-ice problem.
Marilena Sophie Geng, Lev Tarasov, and April Sue Dalton
EGUsphere, https://doi.org/10.5194/egusphere-2025-495, https://doi.org/10.5194/egusphere-2025-495, 2025
Short summary
Short summary
We used a fully coupled ice-climate model to simulate the last two glacial inceptions, and compare the ensemble simulated ice sheet evolution to limited geological data. Our results show that Northern Hemisphere ice sheets grew rapidly, sometimes merging in ways not previously assumed and that capturing one glacial inception does not guarantee capturing another. These findings improve our understanding of ice-age dynamics and highlight challenges in predicting past and future climate evolution.
Lev Tarasov, Benoit S. Lecavalier, Kevin Hank, and David Pollard
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-175, https://doi.org/10.5194/gmd-2024-175, 2025
Preprint under review for GMD
Short summary
Short summary
We document the glacial system model (GSM), a 3D glaciological ice sheet systems model specifically designed for large ensemble modelling in glacial cycle contexts. The model is distinguished by the breadth of relevant processes represented for this context. This ranges from meltwater surface drainage with proglacial lake formation to state-of-the-art subglacial sediment production/transport/deposition. The other key distinguishing design feature is attention to addressing process uncertainties.
Benoit S. Lecavalier and Lev Tarasov
EGUsphere, https://doi.org/10.5194/egusphere-2024-3268, https://doi.org/10.5194/egusphere-2024-3268, 2024
Short summary
Short summary
To simulate the past evolution of the Antarctic ice sheet (AIS) during past warm and cold periods, a modelling analysis was performed that compared thousands of AIS simulations to a large collection of field observations. As the AIS changes, so does the surface load which leads to crustal deformation, gravitational and sea-level change. The present-day rate of bedrock deformation due to past AIS changes is used with satellite observations to infer AIS changes due to contemporary climate change.
Ryan Love, Glenn A. Milne, Parviz Ajourlou, Soran Parang, Lev Tarasov, and Konstantin Latychev
Geosci. Model Dev., 17, 8535–8551, https://doi.org/10.5194/gmd-17-8535-2024, https://doi.org/10.5194/gmd-17-8535-2024, 2024
Short summary
Short summary
A relatively recent advance in glacial isostatic adjustment modeling has been the development of models that include 3D Earth structure, as opposed to 1D structure. However, a major limitation is the computational expense. We have developed a method using artificial neural networks to emulate the influence of 3D Earth models to affordably constrain the viscosity parameter space. Our results indicate that the misfits are of a scale such that useful predictions of relative sea level can be made.
Kevin Hank and Lev Tarasov
Clim. Past, 20, 2499–2524, https://doi.org/10.5194/cp-20-2499-2024, https://doi.org/10.5194/cp-20-2499-2024, 2024
Short summary
Short summary
The ice-rafted debris signature of Heinrich events in marine sedimentary cores is usually attributed to massive ice discharge from the Laurentide Ice Sheet. However, the driving mechanism of this pulsed discharge remains unclear. We compare three previously proposed hypotheses and examine the role of relevant system processes. We find ice stream surge cycling is the most likely mechanism, but its character is sensitive to both the geothermal heat flux and the form of the basal drag law.
Daniel H. Richards, Elisa Mantelli, Samuel S. Pegler, and Sandra Piazolo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3067, https://doi.org/10.5194/egusphere-2024-3067, 2024
Short summary
Short summary
Ice behaves differently depending on its crystal orientation, but how this affects its flow is unclear. We combine a range of previous models into a common equation to better understand crystal alignment. We tested a range of previous models on ice streams and divides, discovering that the best fit to observations comes from a) assuming neighbouring crystals have the same stress, and b) through describing the effect of crystal orientation on the flow in a way that allows directional variation.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Matthew Drew and Lev Tarasov
EGUsphere, https://doi.org/10.5194/egusphere-2024-620, https://doi.org/10.5194/egusphere-2024-620, 2024
Preprint withdrawn
Short summary
Short summary
We model the sediment-ice-climate system over North America for the last 2.58 Myr showing that ice sheets are capable of excavating features the size of the Hudson bay. This work provides a basis for reconstructing past landscapes important to climate modelling efforts, helping us to understand past earth system change.
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Matthew Drew and Lev Tarasov
The Cryosphere, 17, 5391–5415, https://doi.org/10.5194/tc-17-5391-2023, https://doi.org/10.5194/tc-17-5391-2023, 2023
Short summary
Short summary
The interaction of fast-flowing regions of continental ice sheets with their beds governs how quickly they slide and therefore flow. The coupling of fast ice to its bed is controlled by the pressure of meltwater at its base. It is currently poorly understood how the physical details of these hydrologic systems affect ice speedup. Using numerical models we find, surprisingly, that they largely do not, except for the duration of the surge. This suggests that cheap models are sufficient.
Ryan Love, Lev Tarasov, Heather Andres, Alan Condron, Xu Zhang, and Gerrit Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2225, https://doi.org/10.5194/egusphere-2023-2225, 2023
Preprint archived
Short summary
Short summary
Freshwater injection into bands across the North Atlantic are a mainstay of climate modelling when investigating topics such as climate change or the role of glacial runoff in the glacial climate system. However, this approach is unrealistic and results in a systematic bias in the climate response to a given flux of freshwater. We evaluate the magnitude of this bias by comparison to two other approaches for introducing freshwater into a coupled climate model setup for glacial conditions.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Lev Tarasov and Michael Goldstein
EGUsphere, https://doi.org/10.5194/egusphere-2022-1410, https://doi.org/10.5194/egusphere-2022-1410, 2023
Preprint archived
Short summary
Short summary
This overview: 1. Illustrates how current climate and/or ice sheet model-based inferences about the past tend to have little interpretable value about the real world given inadequate accounting of uncertainties. 2. Explains Bayesian inference to a non-statistical community. 3. Sketches out some tractable inferential steps for computationally expensive models in a way that meaningfully accounts for uncertainties. 4. Lays out some steps for the community to move forward.
Lev Tarasov and Michael Goldstein
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-145, https://doi.org/10.5194/cp-2021-145, 2021
Revised manuscript not accepted
Short summary
Short summary
This review: 1. Illustrates how current climate and/or ice sheet model-based inferences about the past tend to have limited interpretable value about the real world given inadequate accounting of uncertainties. 2. Explains Bayesian inference to a non-statistical community. 3. Sketches out tractable Bayesian inference for computationally expensive models in a way that meaningfully accounts for uncertainties. 4. Lays out some steps for the community to move forward.
Ryan Love, Heather J. Andres, Alan Condron, and Lev Tarasov
Clim. Past, 17, 2327–2341, https://doi.org/10.5194/cp-17-2327-2021, https://doi.org/10.5194/cp-17-2327-2021, 2021
Short summary
Short summary
Freshwater, in the form of glacial runoff, is hypothesized to play a critical role in centennial- to millennial-scale climate variability and climate transitions. We track the routing of glaciologically constrained freshwater volumes in glacial ocean simulations. Our simulations capture important generally not well-represented small-scale features (boundary currents, eddies). We show that the dilution of freshwater as it is transported to key climate regions reduces the freshening to 20 %–60 %.
Taimaz Bahadory, Lev Tarasov, and Heather Andres
Clim. Past, 17, 397–418, https://doi.org/10.5194/cp-17-397-2021, https://doi.org/10.5194/cp-17-397-2021, 2021
Short summary
Short summary
We present an ensemble of last glacial inception simulations using a fully coupled ice–climate model for the Northern Hemisphere. The ensemble largely captures inferred ice volume changes within proxy uncertainties. Notable features include an ice bridge across Davis Strait and between Greenland and Iceland. Via an equilibrium climate response experiment, we also demonstrate the potential value of fully coupled ice–climate modelling of last glacial inception to constrain future climate change.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Cited articles
Andrews, J. T. and MacLean, B.: Hudson Strait ice streams: A review of
stratigraphy, chronology and links with North Atlantic Heinrich events,
Boreas, 32, 4–17, https://doi.org/10.1080/03009480310001010, 2003. a
Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical
Processes of the UCLA General Circulation Model, in: General Circulation
Models of the Atmosphere, edited by CHANG, J., vol. 17 of Methods in
Computational Physics: Advances in Research and Applications,
Elsevier, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4,
1977. a, b
Bahadory, T. and Tarasov, L.: LCice 1.0 – a generalized Ice Sheet System Model coupler for LOVECLIM version 1.3: description, sensitivities, and validation with the Glacial Systems Model (GSM version D2017.aug17), Geosci. Model Dev., 11, 3883–3902, https://doi.org/10.5194/gmd-11-3883-2018, 2018. a, b
Benn, D. I., Fowler, A. C., Hewitt, I., and Sevestre, H.: A general theory of
glacier surges, J. Glaciol., 65, 701–716,
https://doi.org/10.1017/jog.2019.62, 2019. a
Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding law” in a
thermodynamically coupled ice sheet model, J. Geophys. Res., 114, F03008,
https://doi.org/10.1029/2008JF001179, 2009. a, b, c
Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6, Geosci. Model Dev., 8, 1613–1635, https://doi.org/10.5194/gmd-8-1613-2015, 2015. a, b
Calov, R., Greve, R., Abe-Ouchi, A., Bueler, E., Huybrechts, P., Johnson,
J. V., Pattyn, F., Pollard, D., Ritz, C., Saito, F., and Tarasov, L.:
Results from the Ice-Sheet Model Intercomparison Project-Heinrich Event
INtercOmparison (ISMIP HEINO), J. Glaciol., 56, 371–383,
https://doi.org/10.3189/002214310792447789, 2010. a, b, c, d, e, f, g, h
Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen
Differenzengleichungen der mathematischen Physik, Math. Ann.,
100, 32–74, https://doi.org/10.1007/BF01448839, 1928. a
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers,
Butterworth-Heinemann/Elsevier, Burlington, MA, 4th Edn., ISBN 9780123694614, 2010. a
Cuffey, K. M., Conway, H., Hallet, B., Gades, A. M., and Raymond, C. F.:
Interfacial water in polar glaciers and glacier sliding at -17 °C,
Geophys. Res. Lett., 26, 751–754, https://doi.org/10.1029/1999GL900096, 1999. a
Drew, M. and Tarasov, L.: Surging of a Hudson Strait Scale Ice Stream: Subglacial hydrology matters but the process details don't, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2022-226, in review, 2022. a, b, c, d
Echelmeyer, K. and Zhongxiang, W.: Direct Observation of Basal Sliding and
Deformation of Basal Drift at Sub-Freezing Temperatures, J.
Glaciol., 33, 83–98, https://doi.org/10.3189/s0022143000005396, 1987. a
Flowers, G. E., Björnsson, H., and Pálsson, F.: New insights into
the subglacial and periglacial hydrology of Vatnajökull, Iceland, from
a distributed physical model, J. Glaciol., 49, 257–270,
https://doi.org/10.3189/172756503781830827, 2003. a
Fowler, A. C.: Sub-Temperate Basal Sliding, J. Glaciol., 32, 3–5,
https://doi.org/10.3189/S0022143000006808, 1986. a, b
Fowler, A. C. and Johnson, C.: Hydraulic run-away: a mechanism for thermally
regulated surges of ice sheets, J. Glaciol., 41, 554–561,
https://doi.org/10.3189/S002214300003478X, 1995. a
Fowler, A. C. and Schiavi, E.: A theory of ice-sheet surges, J.
Glaciol., 44, 104–118, https://doi.org/10.3189/s0022143000002409, 1998. a, b
Gandy, N., Gregoire, L. J., Ely, J. C., Cornford, S. L., Clark, C. D., and
Hodgson, D. M.: Exploring the ingredients required to successfully model the
placement, generation, and evolution of ice streams in the British-Irish Ice
Sheet, Quaternary Sci. Rev., 223, 105915,
https://doi.org/10.1016/j.quascirev.2019.105915, 2019. a
Hemming, S.: Heinrich events: Massive late Pleistocene detritus layers of the
North Atlantic and their global climate imprint, Rev. Geophys., 42, RG1005, https://doi.org/10.1029/2003RG000128, 2004. a
Joughin, I., Smith, B. E., Howat, I. M., Floricioiu, D., Alley, R. B., Truffer,
M., and Fahnestock, M.: Seasonal to decadal scale variations in the surface
velocity of Jakobshavn Isbrae, Greenland: Observation and model-based
analysis, J. Geophys. Res.-Earth, 117, 1–20,
https://doi.org/10.1029/2011JF002110, 2012. a
Joughin, I., Smith, B. E., Shean, D. E., and Floricioiu, D.: Brief Communication: Further summer speedup of Jakobshavn Isbræ, The Cryosphere, 8, 209–214, https://doi.org/10.5194/tc-8-209-2014, 2014. a
Khrulev, C., Bueler, E., Aschwanden, A., damaxwell, Albrecht, T., Brown, J.,
Seguinot, J., Mengel, M., Hinck, S., EnricoDeg, Ziemen, F., Blum, K.,
ronjareese, tkleiner, Bot, D., sschoell, and Kreuzer, M.: pism/pism: v2.0.2
bug fix release, Zenodo [code], https://doi.org/10.5281/zenodo.6001196, 2022. a
Kyrke-Smith, T. M., Katz, R. F., and Fowler, A. C.: Subglacial hydrology and
the formation of ice streams, P. Roy. Soc. A, 470, 20130494,
https://doi.org/10.1098/rspa.2013.0494, 2014. a
MacAyeal, D. R.: Binge/purge oscillations of the Laurentide Ice Sheet as a
cause of the North Atlantic's Heinrich events, Paleoceanography, 8, 775–784,
https://doi.org/10.1029/93PA02200, 1993. a
Mantelli, E., Bertagni, M. B., and Ridolfi, L.: Stochastic ice stream dynamics,
P. Natl. Acad. Sci. USA, 113, E4594–E4600,
https://doi.org/10.1073/pnas.1600362113, 2016. a, b
McCarthy, C., Savage, H., and Nettles, M.: Temperature dependence of
ice-on-rock friction at realistic glacier conditions, Philos.
T. Roy. Soc. A, 375, 20150348, https://doi.org/10.1098/rsta.2015.0348, 2017. a, b
Payne, A. J. and Dongelmans, P. W.: Self-organization in the thermomechanical
flow of ice sheets, J. Geophys. Res.-Sol. Ea., 102,
12219–12233, https://doi.org/10.1029/97jb00513, 1997. a
Payne, A. J., Huybrechts, P., Abe-Ouchi, A., Calov, R., Fastook, J. L., Greve,
R., Marshall, S. J., Marsiat, I., Ritz, C., Tarasov, L., and Thomassen,
M. P.: Results from the EISMINT model intercomparison: The effects of
thermomechanical coupling, J. Glaciol., 46, 227–238,
https://doi.org/10.3189/172756500781832891, 2000. a
PISM 2.0.6 documentation: PETSc options for PISM users,
https://www.pism.io/docs/manual/practical-usage/petsc-options.html (last access: 23 August 2023),
2023. a
Pollard, D. and DeConto, R. M.: A Coupled Ice-Sheet/Ice-Shelf/Sediment Model
Applied to a Marine-Margin Flowline: Forced and Unforced Variations, Glacial
Sedimentary Processes and Products, edited by: Montanez, I., Hambrey, M. J., Christoffersen, P., Glasser, N. F., and Hubbard, B., 37–52,
https://doi.org/10.1002/9781444304435.ch4, 2007. a
Pollard, D. and DeConto, R. M.: Description of a hybrid ice sheet-shelf model, and application to Antarctica, Geosci. Model Dev., 5, 1273–1295, https://doi.org/10.5194/gmd-5-1273-2012, 2012. a, b
Robel, A. A., Degiuli, E., Schoof, C., and Tziperman, E.: Dynamics of ice
stream temporal variability: Modes, scales, and hysteresis, J.
Geophys. Res.-Earth, 118, 925–936, https://doi.org/10.1002/jgrf.20072,
2013. a
Roberts, W. H. G., Payne, A. J., and Valdes, P. J.: The role of basal hydrology in the surging of the Laurentide Ice Sheet, Clim. Past, 12, 1601–1617, https://doi.org/10.5194/cp-12-1601-2016, 2016. a, b
Sayag, R. and Tziperman, E.: Interaction and variability of ice streams under
a triple-valued sliding law and non-Newtonian rheology, J.
Geophys. Res.-Earth, 116, F01009, https://doi.org/10.1029/2010JF001839, 2011. a
Schannwell, C., Mikolajewicz, U., Ziemen, F., and Kapsch, M.-L.: Sensitivity of Heinrich-type ice-sheet surge characteristics to boundary forcing perturbations, Clim. Past, 19, 179–198, https://doi.org/10.5194/cp-19-179-2023, 2023. a
Shreve, R. L.: Glacier sliding at subfreezing temperatures, J.
Glaciol., 30, 341–347, https://doi.org/10.1017/S0022143000006195, 1984. a
Takahama, R.: Heinrich Event Intercomparison with the ice-sheet model
SICOPOLIS, Master's thesis,
http://hdl.handle.net/2115/28749 (last access: 9 August 2022), 2006. a
Tarasov, L. and Peltier, W. R.: A high-resolution model of the 100 ka ice-age
cycle, Ann. Glaciol., 25, 58–65, https://doi.org/10.3189/s026030550001380x,
1997. a
Tarasov, L., Dyke, A. S., Neal, R. M., and Peltier, W. R.: A data-calibrated
distribution of deglacial chronologies for the North American ice complex
from glaciological modeling, Earth Planet. Sc. Lett., 315–316,
30–40, https://doi.org/10.1016/j.epsl.2011.09.010, 2012. a
Tarasov, L., Hank, K., and Lecavalier, B. S.: GSMv01.31.2023 code archive for
LISsq experiments, Zenodo [code], https://doi.org/10.5281/zenodo.7668472, 2023. a, b, c
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of Ice
Stream B, west Antarctica: 2. Undrained plastic bed model, J.
Geophys. Res.-Sol. Ea., 105, 483–494,
https://doi.org/10.1029/1999JB900328, 2000a. a
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of Ice
Stream B, West Antarctica 1. Till mechanics, J.
Geophys. Res.-Sol. Ea., 105, 463–481, https://doi.org/10.1029/1999jb900329,
2000b.
a
Van Pelt, W. J. and Oerlemans, J.: Numerical simulations of cyclic behaviour
in the Parallel Ice Sheet Model (PISM, J. Glaciol., 58, 347–360,
https://doi.org/10.3189/2012JoG11J217, 2012. a, b
Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E.: Modeling
channelized and distributed subglacial drainage in two dimensions, J.
Geophys. Res.-Earth, 118, 2140–2158,
https://doi.org/10.1002/jgrf.20146, 2013. a
Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description, The Cryosphere, 5, 715–726, https://doi.org/10.5194/tc-5-715-2011, 2011. a, b
Winsborrow, M. C., Clark, C. D., and Stokes, C. R.: What controls the location
of ice streams?, Earth-Sci. Rev., 103, 45–59,
https://doi.org/10.1016/j.earscirev.2010.07.003, 2010. a
Ziemen, F. A., Rodehacke, C. B., and Mikolajewicz, U.: Coupled ice sheet–climate modeling under glacial and pre-industrial boundary conditions, Clim. Past, 10, 1817–1836, https://doi.org/10.5194/cp-10-1817-2014, 2014. a
Ziemen, F. A., Kapsch, M.-L., Klockmann, M., and Mikolajewicz, U.: Heinrich events show two-stage climate response in transient glacial simulations, Clim. Past, 15, 153–168, https://doi.org/10.5194/cp-15-153-2019, 2019. a, b, c
Short summary
Physically meaningful modeling of geophysical system instabilities is numerically challenging, given the potential effects of purely numerical artifacts. Here we explore the sensitivity of ice stream surge activation to numerical and physical model aspects. We find that surge characteristics exhibit a resolution dependency but converge at higher horizontal grid resolutions and are significantly affected by the incorporation of bed thermal and sub-glacial hydrology models.
Physically meaningful modeling of geophysical system instabilities is numerically challenging,...