Articles | Volume 16, issue 14
https://doi.org/10.5194/gmd-16-4063-2023
https://doi.org/10.5194/gmd-16-4063-2023
Model description paper
 | 
19 Jul 2023
Model description paper |  | 19 Jul 2023

An empirical model to calculate snow depth from daily snow water equivalent: SWE2HS 1.0

Johannes Aschauer, Adrien Michel, Tobias Jonas, and Christoph Marty

Related authors

SnowQM 1.0: a fast R package for bias-correcting spatial fields of snow water equivalent using quantile mapping
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev., 17, 8969–8988, https://doi.org/10.5194/gmd-17-8969-2024,https://doi.org/10.5194/gmd-17-8969-2024, 2024
Short summary
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022,https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Evaluating methods for reconstructing large gaps in historic snow depth time series
Johannes Aschauer and Christoph Marty
Geosci. Instrum. Method. Data Syst., 10, 297–312, https://doi.org/10.5194/gi-10-297-2021,https://doi.org/10.5194/gi-10-297-2021, 2021
Short summary

Related subject area

Cryosphere
The Utrecht Finite Volume Ice-Sheet Model (UFEMISM) version 2.0 – Part 1: Description and idealised experiments
Constantijn J. Berends, Victor Azizi, Jorge A. Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 3635–3659, https://doi.org/10.5194/gmd-18-3635-2025,https://doi.org/10.5194/gmd-18-3635-2025, 2025
Short summary
A Flexible Snow Model (FSM 2.1.1) including a forest canopy
Richard Essery, Giulia Mazzotti, Sarah Barr, Tobias Jonas, Tristan Quaife, and Nick Rutter
Geosci. Model Dev., 18, 3583–3605, https://doi.org/10.5194/gmd-18-3583-2025,https://doi.org/10.5194/gmd-18-3583-2025, 2025
Short summary
CMIP6 models overestimate sea ice melt, growth and conduction relative to ice mass balance buoy estimates
Alex E. West and Edward W. Blockley
Geosci. Model Dev., 18, 3041–3064, https://doi.org/10.5194/gmd-18-3041-2025,https://doi.org/10.5194/gmd-18-3041-2025, 2025
Short summary
Coupling framework (1.0) for the Úa (2023b) ice sheet model and the FESOM-1.4 z-coordinate ocean model in an Antarctic domain
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
Geosci. Model Dev., 18, 2945–2960, https://doi.org/10.5194/gmd-18-2945-2025,https://doi.org/10.5194/gmd-18-2945-2025, 2025
Short summary
A gradient-boosted tree framework to model the ice thickness of the world's glaciers (IceBoost v1.1)
Niccolò Maffezzoli, Eric Rignot, Carlo Barbante, Troels Petersen, and Sebastiano Vascon
Geosci. Model Dev., 18, 2545–2568, https://doi.org/10.5194/gmd-18-2545-2025,https://doi.org/10.5194/gmd-18-2545-2025, 2025
Short summary

Cited articles

Aili, T., Soncini, A., Bianchi, A., Diolaiuti, G., D'Agata, C., and Bocchiola, D.: Assessing water resources under climate change in high-altitude catchments: a methodology and an application in the Italian Alps, Theor. Appl. Climatol., 135, 135–156, https://doi.org/10.1007/s00704-017-2366-4, 2019. a
Akaike, H.: Information Theory and an Extension of the Maximum Likelihood Principle, Springer New York, New York, NY, https://doi.org/10.1007/978-1-4612-1694-0_15, 199–213, 1998. a
Anderson, E. A.: A point energy and mass balance model of a snow cover, NOAA Technical Report NWS 19, Office of Hydrology, National Weather Service, Silver Spring, Maryland, 1976. a, b, c, d
Aschauer, J.: swe2hs Python package, Zenodo [code], https://doi.org/10.5281/zenodo.7228066, 2022. a, b
Aschauer, J.: Code to recreate figures in Aschauer, J., Michel, A., Jonas, T., and Marty, C. (2023), Zenodo [code], https://doi.org/10.5281/zenodo.8002941, 2023a. a
Download
Short summary
Snow water equivalent is the mass of water stored in a snowpack. Based on exponential settling functions, the empirical snow density model SWE2HS is presented to convert time series of daily snow water equivalent into snow depth. The model has been calibrated with data from Switzerland and validated with independent data from the European Alps. A reference implementation of SWE2HS is available as a Python package.
Share