Articles | Volume 16, issue 11
https://doi.org/10.5194/gmd-16-3275-2023
https://doi.org/10.5194/gmd-16-3275-2023
Development and technical paper
 | 
12 Jun 2023
Development and technical paper |  | 12 Jun 2023

Simulation of crop yield using the global hydrological model H08 (crp.v1)

Zhipin Ai and Naota Hanasaki

Related authors

Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020,https://doi.org/10.5194/gmd-13-6077-2020, 2020
Short summary
Enhancement and validation of a state-of-the-art global hydrological model H08 (v.bio1) to simulate second-generation herbaceous bioenergy crop yield
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-277,https://doi.org/10.5194/gmd-2019-277, 2019
Revised manuscript not accepted
Short summary

Related subject area

Hydrology
Generalised drought index: a novel multi-scale daily approach for drought assessment
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024,https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary

Cited articles

Abdullah, K.: Use of water and land for food security and environmental sustainability, Irrig. Drain., 55, 219–222, https://doi.org/10.1002/ird.254, 2006. 
Ai, Z. and Hanasaki, N.: H08 (crp.v1), Zenodo [code], https://doi.org/10.5281/zenodo.7344809, 2022. 
Ai, Z., Hanasaki, N., Heck, V., Hasegawa, T., and Fujimori, S.: Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1), Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020, 2020. 
Ai, Z., Hanasaki, N., Heck, V. Hasegawa, T., and Fujimori, S.: Global bioenergy with carbon capture and storage potential is largely constrained by sustainable irrigation, Nat. Sustain., 4, 884–891, https://doi.org/10.1038/s41893-021-00740-4, 2021. 
Arnold, J., Williams, J., Srinivasan, R., King, K., and Griggs, R.: SWAT, Soil and Water Assessment Tool, USDA, Agriculture Research Service, Grassland, Soil & Water Research Laboratory, 808 East Blackland Road, Temple, TX 76502, 1994. 
Download
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.