
Geosci. Model Dev., 16, 3275–3290, 2023
https://doi.org/10.5194/gmd-16-3275-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Simulation of crop yield using the global hydrological
model H08 (crp.v1)
Zhipin Ai1,2,3 and Naota Hanasaki4
1Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences, Beijing, China
2Shandong Yucheng Agro-ecosystem National Observation and Research Station,
Ministry of Science and Technology, Yucheng, China
3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
4Center for Climate Change Adaptation, National Institute for Environmental Studies,
Tsukuba, Japan

Correspondence: Zhipin Ai (aizhipin@igsnrr.ac.cn)

Received: 25 November 2022 – Discussion started: 20 January 2023
Revised: 15 April 2023 – Accepted: 3 May 2023 – Published: 12 June 2023

Abstract. A better understanding of the food–water nexus
requires the development of an integrated model that can si-
multaneously simulate food production and the requirements
and availability of water resources. H08 is a global hydrolog-
ical model that considers human water use and management
(e.g., reservoir operation and crop irrigation). Although a
crop growth sub-model has been included in H08 to estimate
the global crop-specific calendar, its performance as a yield
simulator is poor, mainly because a globally uniform param-
eter set was used for each crop type. In addition, the effects
of CO2 fertilization and vapor pressure deficit on crop yield
were not considered. Here, through country-wise parameter
calibration and algorithm improvement, we enhanced H08 to
simulate the yields of four major staple crops: maize, wheat,
rice, and soybean. The simulated crop yield was compared
with the Food and Agriculture Organization (FAO) national
yield statistics and the global dataset of historical yield for
major crops (GDHY) gridded yield estimates with respect to
mean bias (across nations) and time series correlation (for
individual nations). Our results showed that the effects of
CO2 fertilization and vapor pressure deficit had opposite im-
pacts on crop yield. The simulated yield showed good con-
sistency with FAO national yield. The mean biases of the
major producer countries were considerably reduced to 2 %,
2 %, −2 %, and −1 % for maize, wheat, rice, and soybean,
respectively. The capacity of our model to capture the inter-
annual yield variability observed in FAO yield was limited,

although the performance of our model was comparable to
that of other mainstream global crop models. The grid-level
analysis showed that our model showed a similar spatial pat-
tern to that of the GDHY yield in terms of reproducing the
temporal variation over a wide area, although substantial dif-
ferences were observed in other places. Using the enhanced
model, we quantified the contributions of irrigation to global
food production and compared our results to an earlier study.
Overall, our improvements enabled H08 to estimate crop pro-
duction and hydrology in a single framework, which will be
beneficial for global food–water nexus studies in relation to
climate change.

1 Introduction

Food security has become an important global challenge be-
cause of the growing population and increasing competition
for crop usage (Ray et al., 2022). A key factor in food secu-
rity is crop production, which is largely affected by irrigation
water availability, particularly in regions with insufficient
precipitation (Chiarelli et al., 2022). Currently, for example,
approximately 40 % of global crop production relies on irri-
gation (Perrone, 2020). The use of water for this irrigation
causes approximately 65 % of global total water withdrawal
and 90 % of global water consumption (Shiklomanov, 2000;
Döll and Siebert, 2002). These high rates of withdrawal and
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consumption have negative consequences for both surface
water and groundwater systems, such as river fragmenta-
tion and groundwater table decline (McDermid et al., 2021;
Perrone, 2020). To minimize such negative consequences,
there is an increasing impetus toward sustainable water use
(McDermid et al., 2021; Perrone, 2020; Rosa et al., 2018,
2020; Okada et al., 2018; Ai et al., 2021). To more fully ad-
dress the complex interactions between crop production and
sustainable water management, accurate representations of
crop growth and water cycle with human activities should be
placed within a consistent model framework during the de-
velopment of an integrated model.

Many models have successfully incorporated the crop
growth process and can simulate the global crop yield. These
include LPJmL (Bondeau et al., 2007; Fader et al., 2010),
GEPIC (Liu et al., 2007), PEGASUS (Deryng et al., 2011),
CLM-Crop (Drewniak et al., 2013), PRYSBI2 (Sakurai et al.,
2014), pAPSIM (Elliott et al., 2014), pDSSAT (Elliott et al.,
2014), CROVER (Okada et al., 2015), ORCHIDEE-crop
(Wu et al., 2016), PEPIC (Liu et al., 2016), MATCRO (Ma-
sutomi et al., 2016), SIMPLACE-LINTUL5 (Webber et al.,
2016), PROMET (Zabel et al., 2019; Degife et al., 2021), and
ACEA (Mialyk et al., 2022). However, only a few of these
models, such as LPJmL and CROVER, have globally imple-
mented schemes for irrigation constrained by detailed spa-
tiotemporal water availability (i.e., explicit consideration of
river routing and water withdrawal). The lack of inclusion of
such schemes severely limits the ability of these models to be
used in comprehensive investigations of global food–water
tradeoffs, particularly in terms of specifying the sources of
water withdrawal used for crop irrigation.

In this study, we developed a new crop–water global model
based on the H08 global hydrological model (Hanasaki et al.,
2008a, 2018). Although H08 has detailed functions for spec-
ifying water sources and estimating crop specific yield based
on the formulations of the SWAT model (Neitsch et al.,
2002), its performance as a crop yield simulator has been
poor in comparison with the Food and Agriculture Organiza-
tion (FAO) yield statistics and other gridded yield datasets.
This poor performance is mainly because of the adoption of
the global uniform parameters related to crop growth. These
default parameters are acquired from the SWIM model, a
variant of the SWAT model (Arnold et al., 1994), which
is mainly for use in Europe and temperate climate zones
(Krysanova et al., 2000). This leads to overestimation or un-
derestimation when it is used in other regions with different
crop management practices and climatic conditions. Addi-
tionally, the effects of CO2 fertilization (Stockle et al., 1992)
and changes in vapor pressure deficit (Stockle and Kiniry,
1990) on crop yield have not yet been considered. These two
factors are particularly important when analyzing the impacts
of climate change on crop yield (Jägermeyr et al., 2021; Yuan
et al., 2019).

Despite multiple attempts to optimize the parameters in-
volved, global crop yield simulation remains challenging.

For example, Fader et al. (2010) proposed the concept of
management intensity, which represents the degree and fre-
quency of field agronomy management (e.g., fertilizer, tech-
nology, and weed control). They adopted this concept in a
global vegetation model, LPJml, by adjusting a key param-
eter of maximum leaf area index at the country level, which
exhibited good agreement between the calibrated yield and
FAO yield statistics. This adjustment enabled LPJml to be
used in investigations of the crop–water relations by estimat-
ing crop water productivity and virtual water content (Fader
et al., 2010). Deryng et al. (2011) calibrated the light use ef-
ficiency coefficient based on spatially explicit crop yield data
reported by Monfreda et al. (2008). Iizumi et al. (2009) de-
veloped a large-scale crop model for paddy rice in Japan,
known as the PRYSBI model, whereby multiple parame-
ters were calibrated via the Markov chain Monte Carlo tech-
nique at the subnational level. The results showed that the
Markov chain Monte Carlo method is a powerful approach
for optimizing multiple parameters in a nonlinear and com-
plex model. Sakurai et al. (2014) used a similar method
globally and estimated eight parameters based on Free-Air
Carbon Dioxide Enrichment (FACE) data with hundreds of
thousands of calculation steps in the Markov chain Monte
Carlo process. Each of the above methods has its own advan-
tages and disadvantages. For example, the method of Fader
et al. (2010) was based on FAO national yield statistics,
whereas the methods in the other three studies require spa-
tially explicit yield data. Additionally, Fader et al. (2010) and
Deryng et al. (2011) mainly focused on a single parameter,
whereas Iizumi et al. (2009) and Sakurai et al. (2014) ad-
dressed multiple parameters.

To enhance the capacity of H08 to simulate the yields of
four major staple crops (i.e., maize, wheat, rice, and soy-
bean), we first added two new functions to the H08 crop
sub-model by considering the effects of CO2 fertilization
and vapor pressure deficit change on crop yield. Then, we
adopted the method of Fader et al. (2010) for parameter cal-
ibration because of its robust performance, minimal com-
putation costs, and simplicity of implementation, as well as
because the method requires only national yield data which
are easily accessible and generally reliable. Next, we evalu-
ated model performance with respect to mean bias, time se-
ries variation, and time series correlation in accordance with
the general framework proposed by Müller et al. (2017) us-
ing FAO statistical national data and recently published grid-
level data. We sought to determine how crop yield responds
to changes in CO2 concentration and vapor pressure deficit
to determine whether the enhanced H08 model could repro-
duce the mean historical yield at the national scale and to
determine whether the model could also capture interannual
variation in historical yield times series; we also aimed to
compare spatial time series correlations with other spatially
explicit data. Finally, we investigated the contributions of ir-
rigation to the global production of maize, wheat, rice, and
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soybean using the enhanced model as a case study for its ap-
plication.

2 Materials and methods

2.1 H08 overview

H08 is a global hydrological model that includes natural
and anthropogenic hydrological processes at a spatial reso-
lution of 0.5◦ and a temporal resolution of 1 d. It was devel-
oped with six sub-models: land surface hydrology, river rout-
ing, crop growth, reservoir operation, environmental flow re-
quirements, and anthropogenic water withdrawal (Hanasaki
et al., 2008a). It has been updated with several new schemes
including groundwater recharge and abstraction, aqueduct
water transfer, local reservoirs, seawater desalination, and re-
turn flow and delivery loss (Hanasaki et al., 2018). With these
newly added functions, H08 is one of the most detailed global
hydrological models available for the estimation of sector-
wise and water-source-wise water withdrawal and availabil-
ity. In the agriculture sector, H08 can estimate irrigation wa-
ter demand and supply on a daily and grid-cell basis with sev-
eral unique features. First, it can estimate the irrigation water
withdrawal from both renewable and non-renewable ground-
water sources. Second, it considers the effects of irrigation
water withdrawal in the upper stream. Third, it includes the
influence of reservoir operation on irrigation water availabil-
ity. H08 was fully described in multiple studies (Hanasaki
et al., 2008a, b, 2018).

2.2 Crop sub-model

2.2.1 Overview

The crop growth sub-model accumulates plant biomass at
a daily interval until physiological maturity; it also simu-
lates phenological development. The daily increase in poten-
tial biomass (1B) (kgha−1) is estimated based on radiation
use efficiency and photosynthetic active radiation using the
method of Monteith et al. (1977) (Eq. 1). Crop phenological
development is based on daily heat unit accumulation theory,
whereby physiological maturity is reached when the accu-
mulated daily heat unit value is equal to the potential heat
unit value. The harvest index is used to partition the total
aboveground biomass with respect to grain yield. Regulat-
ing factors, including water and air temperature, are used to
adjust the yield variation. A schematic figure that shows the
basic biophysical processes of the crop sub-model is shown
in Fig. 1b in Ai et al. (2020). Although the algorithm is based
on SWAT and SWIM, and a detailed description was previ-
ously provided (Hanasaki et al., 2008a; Ai et al., 2020), the
main formulation is briefly described below because it is an
important foundation for the forthcoming discussion on pa-
rameter calibration.

2.2.2 Basic algorithms

1B is calculated as follows:

1B = be ·PAR ·REGF, (1)

where be is a crop-specific parameter of radiation use ef-
ficiency, PAR is photosynthetically active radiation, and
REGF is the crop regulating factor. PAR is calculated using
shortwave radiation (Rs) (Wm−2) and leaf area index (LAI)
as follows:

PAR= 0.02092 ·Rs · [1− exp(−0.65 ·LAI)]. (2)

LAI is calculated according to the growth stage indicated
by the heat unit index (Ihun), which is calculated as the ratio
of accumulated daily heat units

∑
Huna(t) and the potential

heat unit (Hun):

Ihun =

∑
Huna(t)

Hun
. (3)

The daily heat units Huna(t) are based on the difference
between the daily mean air temperature (Ta) and the crop’s
specific base temperature (Tb; provided as a crop-specific pa-
rameter):

Huna(t)= Ta− Tb, (4)

if Ihun < bdpl1c · 0.01,

LAI=
(dpl1−bdpl1c) · Ihun

bdpl1c · 0.01
· blai, (5)

if bdpl1c · 0.01≤ Ihun < bdpl2c · 0.01,

LAI=
{
(dpl1−bdpl1c)

+

[
(dpl2−bdpl2c)− (dpl1−bdpl1c)

]
×(Ihun−bdpl1c · 0.01)

bdpl2c · 0.01−bdpl1c · 0.01

}
· blai,

(6)

if bdpl2c · 0.01≤ Ihun < dlai,

LAI=
{
(dpl2−bdpl2c)

+

[
1− (dpl2−bdpl2c)

]
×(Ihun−bdpl2c · 0.01)

dlai−bdpl2c · 0.01

}
· blai, (7)

if dlai < Ihun,

LAI= 16 · blai(1− Ihun)
2, (8)

where dlai is the fraction of growing season when growth de-
clines, dpl1 and dpl2 are shape parameters of the LAI growth
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Figure 1. Comparison of the mean yield from 1986 to 2015 of different simulations and FAO statistics. (a) Maize, (b) wheat, (c) rice, and
(d) soybean. Further details on the five utilized simulations (D, C, V, CV, and CVC) are listed in Table 1.
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Table 1. Simulation settings.

Simulation ID CO2 effect VPD effect Calibration

D No No No
C Yes No No
V No Yes No
CV Yes Yes No
CVC Yes Yes Yes

curve (see the definition in Table 1 in Ai et al., 2020), and
blai is the maximum leaf area index.

REGF is calculated as

REGF=min(Ts,Ws,Ns,Ps), (9)

where Ts, Ws, Ns, and Ps are the stress factors for tempera-
ture, water, nitrogen, and phosphorous, respectively. The de-
tails of water and temperature stress are provided in the work
of Ai et al. (2020). Nitrogen and phosphorous stress were not
considered in the original model (Hanasaki et al., 2008a) and
were indirectly represented in the calibration simulation in
the present study.

The aboveground biomass (Bag) (kgha−1) is estimated
with the accumulated biomass (

∑
1B) as

Bag = [1− (0.4− 0.2 · Ihun)]
∑

1B. (10)

The crop yield (Yld) (kgha−1) is finally estimated from
the aboveground biomass (Bag) using the crop-specific har-
vest index (Harvest) on the date of the harvest:

Yld= Harvest ·
WSF

WSF+ exp(6.117− 0.086 ·WSF)
·Bag, (11)

where WSF is the ratio of SWU (accumulated actual plant
evapotranspiration in the second half of the growing season)
to SWP (accumulated potential evapotranspiration in the sec-
ond half of the growing season):

WSF=
SWU
SWP

· 100. (12)

Differences in crop type are expressed by the differences
in crop parameters (e.g., be, blai, and Tb). Currently, the crop
sub-model can simulate the yield for 18 food crops. The
globally uniform default parameters for the food crops were
collected from the default parameters of the SWIM model
(Krysanova et al., 2000).

2.3 Algorithm improvement

Here, the crop sub-model was improved as follows. First, the
effects of CO2 fertilization and vapor pressure deficit change
on radiation use efficiency were added to the H08 crop sub-
model using the equations and parameters adopted in SWAT
(Neitsch et al., 2011; Arnold et al., 2013). Specifically, the

radiation use efficiency (be) is adjusted according to the con-
centration of CO2 as

be=
100 ·CO2

CO2+ exp(r1− r2 ·CO2)
, (13)

where be is the radiation use efficiency, CO2 is the CO2 con-
centration in the atmosphere (ppmv), and r1 and r2 are shape
coefficients defined as follows:

r1 = ln
⌊

CO2amb

0.01 · beamb
−CO2amb

⌋
+ r2 ·CO2amb, (14)

r2 =
ln
⌊

CO2amb
0.01∗beamb

−CO2amb

⌋
− ln

⌊
CO2hi

0.01·behi
−CO2hi

⌋
CO2hi−CO2amb

, (15)

where CO2amb is the ambient atmospheric CO2 concentration
(ppmv), CO2hi is an elevated atmospheric CO2 concentration
(ppmv), beamb is the be of the crop at CO2amb, and behi is the
be of the crop at CO2hi.

Additionally, the be is adjusted with the vapor pressure
deficit (vpd) (kPa) as

be= bevpd=1−1bedcl

× (vpd− vpdthr) if vpd > vpdthr, (16)
be= bevpd=1 if vpd≤ vpdthr, (17)

where bevpd=1 is the be for the plant at a vpd of 1 kPa, 1bedcl
is the rate of be decline per unit increase in vpd, and vpdthr
is the threshold vpd above which a plant will exhibit re-
duced radiation use efficiency. The vpdthr value is assumed
to be 1 kPa.

2.4 Parameter calibration

Next, we calibrated the key parameter of maximum leaf area
index (blai) and adjusted the harvest index (Harvest) accord-
ingly by adopting the concept of management intensity in
accordance with the method of Fader et al. (2010). For many
countries in the world, the historical annual crop yield from
FAO data shows an increasing trend. Hence, the common
method of splitting data into two periods, one for calibration
and one for validation, was not applicable here. Therefore,
we used the mean of even years for calibration and the mean
of odd years for confirmation. Specifically, we calibrated the
maximum leaf area index by iterating the values from 0.5
to 7.1, with an interval of 0.3, under both rainfed and irri-
gation conditions in the even years from 1986 to 2015. The
crop-specific best maximum leaf area index in each coun-
try was then determined as the value that can minimize the
bias between the mean simulated yield and mean FAO sta-
tistical yield. When FAO statistical yield or simulated yield
data were missing for a country, we used the original crop-
specific default values. Then, we adjusted the harvest index
with the calibrated blai (see Table S1 in the Supplement). The
calibration and confirmation results showed good agreement
with the FAO statistics (Fig. S1 in the Supplement).
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2.5 Meteorological data

The ISIMIP3a GSWP3-W5E5 global meteorological data
(available at https://data.isimip.org/search/tree/ISIMIP3a/
InputData/climate/atmosphere/gswp3-w5e5/, last access:
9 May 2022) from 1980 to 2015 were used in all simulations
in this study. The spatial resolution of the GSWP3-W5E5
data was 0.5◦. Eight daily meteorological variables (down-
ward shortwave radiation, downward longwave radiation,
specific humidity, rainfall, snowfall, air pressure, wind
speed, and air temperature) were used to run H08.

2.6 Reference yield data

To calibrate and validate the simulated crop yield, sev-
eral yield datasets with different spatial resolutions
were collected. The country-level yield data from
FAO (available at https://www.fao.org/faostat/en/#data,
last access: 9 May 2022) and grid-level (0.5◦) yield
data from the Global Dataset of Historical Yield
(GDHYv1.2+v1.3) (Iizumi and Sakai, 2020) (available
at https://doi.org/10.1594/PANGAEA.909132, Iizumi,
2019) for the period of 1986 to 2015 were used to evaluate
model performance. FAO statistical yield was reported as
fresh matter, whereas the model-simulated yield denotes dry
matter. For consistency in the comparisons, as reported by
Fader et al. (2010) and Müller et al. (2017), the FAO statis-
tical yield was converted to dry matter with a crop-specific
factor (e.g., 0.88, 0.88, 0.87, and 0.91 for maize, wheat, rice,
and soybean, respectively) in accordance with Wirsenius
(2000). The global dataset of historical yield for major
crops (GDHY) is a spatially explicit dataset that converts
the FAO annual national statistical yield to grid-level yield
based on gridded net primary production estimated from
several satellite products (Iizumi, 2020). The FAO statistical
yield and GDHY yield provide valuable information for the
evaluation of crop model performances at country and grid
levels, respectively (Müller et al., 2017; Iizumi, 2020).

2.7 Simulation settings and yield processing

Individual simulations for maize, wheat, rice, and soybean
were run under both rainfed and irrigation conditions from
1986 to 2015 on a daily scale. Details on simulation settings
are listed in Table 1. The simulation was performed under the
assumption that the four crops were planted and harvested
in a hypothetical cropland of each grid cell. Under rainfed
conditions, the crop growth was subjected to water stress;
under irrigation conditions, there was no effect of water stress
on crop growth. The yield processing was as follows.

First, the gridded yield (Yld) was aggregated from the sim-
ulated yield as follows:

Yld=
Yldrain×Arearain+Yldirri×Areairri

Arearain+Areairri
, (18)

where Yldrain and Yldirri are the simulated yield under
rainfed and irrigation conditions, respectively. Arearain and
Areairri are the rainfed and irrigated harvest area per crop in a
grid cell, respectively. The rainfed and irrigated harvest areas
per crop were obtained from the MIRCA2000 dataset (Port-
mann et al., 2010) (available at https://www.uni-frankfurt.
de/45218031/Data_download_center_for_MIRCA2000, last
access: 9 May 2022).

Then, the national yield was aggregated from the gridded
yield and weighted according to the crop-specific total har-
vest area. Because reference yield data have limited quality
for marginal and small areas (Müller et al., 2017), we consid-
ered grid cells with a harvest area > 10 ha (Jägermeyr et al.,
2021).

Finally, to ensure that the simulated data and reference
data received similar treatment, we used the detrended yield
when comparing time series variations in simulated yield and
reference yields (Müller et al., 2017). In accordance with the
methods of previous studies (Müller et al., 2017; Iizumi et al.,
2013, 2014a), the moving average method was used to re-
move the trends. Specifically, similar to Müller et al. (2017),
the anomaly yield was calculated by subtracting the moving
average of a 5-year window.

3 Results and discussion

3.1 Effects of CO2 fertilization and vapor pressure
deficit

When only considering the CO2 fertilization effect (simula-
tion C), there was a positive impact on crop yield compared
to default simulations (simulation D) (Fig. 1). In addition,
similar to previous studies (e.g., Deryng et al., 2016), the
CO2 fertilization effect is larger for C3 crops (wheat, rice,
and soybean) than for C4 crops (maize). In contrast, when
only considering the vapor pressure deficit effect (simula-
tion V), there was a negative impact on crop yield in compari-
son with default simulations. When considering the effects of
both CO2 fertilization and vapor pressure deficit, there was
a positive impact on crop yield for the majority of the top
20 largest producer countries, while a negative impact was
found for some countries (e.g., India and Egypt for maize).
These impacts were also reflected in crop water productiv-
ity (CWP, defined as the ratio of crop yield to evapotranspi-
ration). The averaged change in CWP in the top 20 largest
producer countries was 4.8 %, −2.3 %, and 2.5 % for maize
under simulations C, V, and CV, compared to simulation D
(Fig. S2). The corresponding values were 6.4 %,−1.1 %, and
5.3 %; 5.8 %, −3.4 %, and 2.3 %; and 7.1 %, −3.6 %, and
3.4 % for wheat, rice, and soybean, respectively.

3.2 Model calibration

As shown in Figs. 1 and 2, the calibrated model (simulation
CVC) showed better agreement with the FAO statistics of
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Figure 2. Comparison of mean simulated yield and mean FAO yield for the top 20 largest producer countries from 1986 to 2015. Dashed
green and yellow lines indicate ± 10 % and ± 20 % differences, respectively. SIM denotes simulated yield, and FAO denotes reported yield
from FAO. (a) Maize, (b) wheat, (c) rice, and (d) soybean.
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Figure 3. Time series of detrended maize yield anomalies from simulation CVC (red), simulation D (blue), and FAO (green) for the top
20 largest producer countries. Y, yield; R, correlation coefficient; RMSE, root mean square error.

the mean national yield for the top 20 largest producer coun-
tries per crop (explaining approximately 88 %, 86 %, 93 %,
and 99 % of global maize, wheat, rice, and soybean produc-
tion, respectively). First, the mean bias (difference between
mean national yield of simulation and mean national yield of
FAO) of the 20 largest producer countries was considerably
reduced to 2 %, 2 %,−2 %, and−1 % for maize, wheat, rice,
and soybean, respectively. Second, the corresponding coeffi-
cient of determination (R2) values of the mean national yield
of simulation and the mean national yield of FAO increased
from 0.01 to 0.93, 0.21 to 1.00, 0.06 to 0.99, and 0.14 to
0.96 for maize, wheat, rice, and soybean, respectively. Third,
the corresponding root mean square error (RMSE) decreased
from 7.1 to 1.8, 2.2 to 0.3, 2.7 to 0.4, and 2.3 to 0.4 tha−1

for maize, wheat, rice, and soybean, respectively. These re-
sults suggested that the calibrated simulation could reliably

reproduce the long-term averaged historical yield for the four
major crops at the national level.

To investigate the capacity to reproduce the temporal vari-
ability in crop yield, time series of detrended yield anomalies
in simulation data and FAO data for the top 20 largest pro-
ducer countries per crop are presented in Fig. 3 for maize
and Figs. S3–S5 for wheat, rice, and soybean, respectively.
With regard to the ability to capture interannual variation in
FAO yield, the model showed better performances for maize,
wheat, and soybean than for rice. For example, positive cor-
relations were found in 18, 16, 11, and 16 of the top 20 largest
producer countries, with mean correlation coefficient (R)
values of 0.48, 0.40, 0.31, and 0.37 for maize, wheat, rice,
and soybean, respectively. The calibrated model showed bet-
ter performance (increased R and decreased RMSE) than the
default model in the majority of the 20 countries. Note that
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Figure 4. Comparison of R and RMSE values of time series of detrended yield anomalies between this study (SIM denotes simulation CVC)
and Jägermeyr et al. (2021) (J21). Yellow bar denotes ensemble mean of different crop models used in the work of Jägermeyr et al. (2021).
Error bars indicate maximum and minimum values among different crop models.

the calibrated model showed a similar performance to that of
the default model in some countries (e.g., in USA, France,
Ukraine, and Canada for maize) because the default simula-
tions were already comparable to yield reported by the FAO,
meaning that the calibration resulted in limited improvement
(see Figs. 1a and 2a).

The R and RMSE values of time series of detrended yield
anomalies between simulated yield and FAO yield for the top
five largest producer countries per crop are summarized in
Fig. 4. These countries were selected to make the data com-
parable with the latest global crop model intercomparison
study by Jägermeyr et al. (2021), which includes 11 crop
models for the period 1980–2010 (Fig. S10 in Jägermeyr
et al., 2021). Overall, the R and RMSE values of our simula-
tions were within the range of current mainstream crop mod-
els reported by Jägermeyr et al. (2021). For maize, wheat,
and soybean, the R and RMSE values of our simulation were
comparable with the ensemble means of different crop mod-
els reported by Jägermeyr et al. (2021); for rice, our sim-
ulation showed higher R values (except in Bangladesh and
China) and lower RMSE values. However, the metric scores
of our calibrated model and the other crop models in the work
of Jägermeyr et al. (2021) remained low (e.g., few countries
had R values > 0.5). This finding suggested that current crop
models continue to experience difficulty in fully capturing

the interannual variation in the historical yield because crop
models only reflect the interannual climate signals in the sim-
ulated yields (Jägermeyr et al., 2021). This also indirectly im-
plied that climate variation might not be the main driver of
interannual yield variation for the major producer countries.

To validate further the above assumption, we investigated
the impacts of climate variables (i.e., precipitation and air
temperature) on interannual yield variation by analyzing the
correlations of total precipitation and mean air temperature
in the growing season with the annual yield per crop. Using
maize as an example (Fig. 5), there were no statistically sig-
nificant relationships (p > 0.05) between precipitation and
FAO statistical yield for most of the top 20 largest producer
countries (17/20). Significant positive correlations between
precipitation and the FAO statistical yield (p < 0.05) were
found in only three countries: Romania, Hungary, and Ser-
bia. The crop yield estimation relies on water availability;
therefore, the variation in yield simulation largely reflects
variation in precipitation. Accordingly, we observed good
simulation performance in those three countries (Fig. 2a)
with a clear correlation between FAO yield and precipitation
(Fig. 5). Also, there were no statistically significant relation-
ships between air temperature and FAO statistical yield for
most of the top 20 largest producer countries (13/20) (Fig. 6).
Similarly, there were no statistically significant correlations
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Figure 5. Relationship between maize yield (red: simulation CVC; blue: FAO) and total precipitation in the growing season from 1986 to
2015 for the top 20 largest producer countries. Y , yield; P , precipitation; R, correlation coefficient.
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Figure 6. Relationship between maize yield (red: simulation CVC; blue: FAO) and mean air temperature in the growing season from 1986
to 2015 for the top 20 largest producer countries. Y , yield; T , air temperature; R, correlation coefficient.
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Figure 7. Spatial distribution of the mean (1986–2015) simu-
lated yield of maize. (a) Simulation D; (b) simulation CVC; and
(c) GDHY yield. Units in the legend are tonnes per hectare (t ha−1).

between precipitation and air temperature and FAO statisti-
cal yield in most countries for wheat, rice, and soybean (see
Figs. S6–S11).

3.3 Comparison with GDHY gridded yield

Spatially explicit yield data enabled us to more fully evaluate
the spatial distribution of model simulations. We compared
the spatial distribution between simulated crop yield (simula-
tions D and CVC) and the GDHY yield dataset. Using maize
as an example, an apparent overestimation was detected in
many parts of the world (e.g., China, Argentina, Brazil, India,
Indonesia, Thailand, Mexico, and most countries in Africa)
in the default simulations (Fig. 7a). In contrast, the calibrated
simulation (Fig. 7b) showed a spatial pattern similar to the
GDHY yield data (Fig. 7c). For the yields of wheat, rice,
and soybean, the spatial distribution after improvement also
showed a pattern similar to the GDHY yield data (Figs. S12–
S14).

In accordance with the method of Müller et al. (2017), we
conducted a grid-level time series analysis of the correla-
tions of the detrended yield between simulated and GDHY
data (Fig. 8) to identify further the differences in the two

yield datasets. Using maize as an example (Fig. 8a), statis-
tically significant correlations (p < 0.1) were observed in a
wide range of regions (e.g., northeastern USA, southern Eu-
rope, northeastern China, southern Brazil, eastern Argentina,
southern Africa, and eastern Australia) (Fig. 8a), correspond-
ing to 31 % of the total grid cells. Notably, there were also
substantial differences in a considerable number of locations
without statistically significant correlations (p > 0.1) (e.g.,
southeastern USA, western and central Asia, Brazil, and cen-
tral Africa), corresponding to 69 % of the total grid cells
(Fig. 8a). Similar characteristics were found for wheat, rice,
and soybean (Fig. 8b–d).

Such similarities or discrepancies between two yield
datasets have been observed previously (see Fig. 9 in Müller
et al., 2017). For example, there were statistically significant
correlations (p < 0.1) and no statistically significant correla-
tions (p > 0.1) between two datasets developed by Iizumi et
al. (2014b; an earlier version of GDHY used in this study)
and Ray et al. (2012) in a wide range of regions. Such
comparisons can help in identifying considerable disagree-
ments in global estimates of the spatial distribution of crop
yield (Kim et al., 2021). Because it is difficult to determine
whether one of these estimates is better than the others, the
disagreement between our simulation and the GDHY data
does not necessarily indicate that our simulation quality is
low.

3.4 Limitations

Although crop yield simulations were improved, there were
several limitations because of the assumptions, methods, and
datasets used in this study. First, in accordance with the
methods of previous studies (Müller et al., 2017; Jägermeyr
et al., 2021), yield calculation and aggregation were con-
ducted with the assumption that the irrigated harvest area
and total harvest area per crop did not change throughout the
study period; this assumption was based on data availability.
However, these aspects do change over time. To overcome
the problems associated with such an assumption, dynamic
harvest area data at annual intervals, as generated by Mialyk
et al. (2022), should be considered in future studies. Second,
our calibration was conducted at the national scale in accor-
dance with the method of Fader et al. (2010) rather than using
finer spatial scales (e.g., subnational or grid-level), which in-
creased the uncertainty of the yield simulations within each
country. As shown in Fig. 7, the yield distribution is highly
variable within a specific country. To incorporate the spatial
heterogeneity in crop yield, parameter calibration should ide-
ally be conducted at the grid-cell level (e.g., Iizumi et al.,
2009; Sakurai et al., 2014). Although this approach has long-
term promise, it is technically challenging because of uncer-
tainty in the global gridded yield products and the poten-
tial for inflation in the parameter optimization calculation.
In addition, the calibrated parameter reflected the mean aver-
age state, therefore potentially ignoring the yearly variation.
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Figure 8. Time series correlation between simulated yield (simu-
lation CVC) and GDHY yield after trend removal using a 5-year
moving average. Gray areas indicate no statistically significant cor-
relation between the two datasets (p > 0.1), and white areas indi-
cate no yield data for that crop in at least one of the two datasets.
Panels show the determination coefficients for (a) maize, (b) wheat,
(c) rice, and (d) soybean, respectively.

Third, the reference dataset from GDHY does not represent
purely observation-based yield, and, therefore, it is subject
to errors or uncertainty resulting from its own methodology
(e.g., errors in gross primary production and crop stress re-
sponse) (Müller et al., 2017). Finally, our crop model is a
simple model that does not fully represent the processes in-
fluencing crop growth. For example, we did not explicitly
simulate N and P processes, although these effects are now
reflected in the calibrated parameters (Fader et al., 2010).
Additionally, the waterlogging effect is underrepresented in
most crop models, including our model (Jägermeyr et al.,

2021). Such physical mechanisms should be addressed in the
development of future models.

4 Case study to estimate the contribution of irrigation
to global food production

To demonstrate that the enhanced model can be applied for
food–water nexus studies, we compared the predictions of a
well-recognized study by Sibert and Döll (2010), which es-
timated the contribution of irrigation to global food produc-
tion, with our predictions. This required a global crop yield
model capable of estimating crop yield and explicitly dealing
with the effect of irrigation.

Irrigation plays a critical role in global food production.
The literature usually indicates that approximately 40 % of
global total food production is from irrigated land (Postel
et al., 2001; Siebert et al., 2005; Abdullah, 2006; Khan et al.,
2006; Wada et al., 2013; Perrone, 2020; Ringler et al., 2020;
Borsato et al., 2020), but the rationale and country-specific
variation have not been fully explained. To our knowledge,
Postel (1992) reported one of the first estimates, whereby ap-
proximately 36 % of the global food production was from
irrigated land based on statistical data. Then, Siebert and
Döll (2010) reported that irrigation contributed to approxi-
mately 33 % of the total global production. Here, we revisited
the irrigation contributions for global production of maize,
wheat, rice, and soybean using our improved model. Irriga-
tion contribution in percentage (I ) in a country (c) is de-
fined as follows: I,c=

Yldirri,c·Areairri,c
Yldirri,c·Areairri,c+Yldrain,c·Arearain,c

·100%,
where Yldirri,c and Yldrain,c are the irrigated and rainfed
yields for a country, respectively; Areairri,c and Arearain,c are
the total irrigated and rainfed harvest areas for a country, re-
spectively.

Our results showed that the global average production lev-
els from irrigated cropland were approximately 27 %, 30 %,
61 %, and 16 % for maize, wheat, rice, and soybean, respec-
tively. These estimates were close to the estimates of Siebert
and Döll (2010): 26 %, 37 %, 77 %, and 8 %, respectively.
The similarities between these two studies mainly arose be-
cause both studies used data from Portmann et al. (2010)
for crop-specific harvested area, and both models were cali-
brated with FAO data.

5 Conclusions

In this study, we determined the effects of CO2 fertilization
and vapor pressure deficit on crop yield using the global hy-
drological model H08. Then, we calibrated the yields of four
major staple crops: maize, wheat, rice, and soybean. The
calibrated national yield estimates generally showed good
consistency with FAO statistical national yields. The cali-
brated grid-level yield estimates showed similarities in terms
of spatial patterns and the reproduction of interannual varia-
tion compared with GDHY yield over a wide area, although
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there were substantial differences in other places. As reported
in previous studies, the full reproduction of historical inter-
annual yield variation remains challenging for global grid-
ded crop modeling. Finally, we quantified the contributions
of irrigation to the global production of maize, wheat, rice,
and soybean; we explored the variations in irrigation contri-
butions among countries. Our improvements provide a tool
that can simultaneously simulate the water cycle and crop
production while specifying irrigation water withdrawal in
terms of the most detailed sources within a single frame-
work, which will be beneficial for advancing global food–
water nexus studies in the future (e.g., planetary boundaries,
virtual water trade, and sustainable development goals).

Code and data availability. The model code used
in the present study is archived on Zenodo
(https://doi.org/10.5281/zenodo.7344809, Ai and Hanasaki,
2022). Technical information regarding the H08 model is available
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to the datasets used in the present study are provided in the main
text.
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