Articles | Volume 16, issue 10
https://doi.org/10.5194/gmd-16-2915-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2915-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
iHydroSlide3D v1.0: an advanced hydrological–geotechnical model for hydrological simulation and three-dimensional landslide prediction
Guoding Chen
The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, Jiangsu, 210098, China
College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, Jiangsu, 210098, China
Yangtze Institute for Conservation and Development, Hohai University, Nanjing, Jiangsu, 210098, China
College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
China Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing, Jiangsu, 210098, China
Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
Sheng Wang
The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, Jiangsu, 210098, China
Yangtze Institute for Conservation and Development, Hohai University, Nanjing, Jiangsu, 210098, China
College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
Yi Xia
The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, Jiangsu, 210098, China
College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
Lijun Chao
The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, Jiangsu, 210098, China
Yangtze Institute for Conservation and Development, Hohai University, Nanjing, Jiangsu, 210098, China
College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, Hohai University, Nanjing, Jiangsu, 210098, China
Related authors
No articles found.
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, Qinuo Zhang, Xuejun Yi, Haijun Wang, Wei Liu, Wei Gao, and Jerker Jarsjö
Hydrol. Earth Syst. Sci., 29, 3703–3725, https://doi.org/10.5194/hess-29-3703-2025, https://doi.org/10.5194/hess-29-3703-2025, 2025
Short summary
Short summary
This study enhanced a popular water flow model by adding two components: one for snow melting and another for frozen ground cycles. Tested with satellite data and streamflow, the updated model improved accuracy, especially in winter. Frozen ground delays soil drainage, boosting spring runoff by 39 %–77 % and cutting evaporation by 85 %. These findings reveal that frozen ground drives seasonal water patterns.
Jin Feng, Ke Zhang, Lijun Chao, Huijie Zhan, and Yunping Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-137, https://doi.org/10.5194/essd-2025-137, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Understanding how soil moisture affects evapotranspiration (ET) is essential for improving ET estimates. However, many global ET datasets overlook soil moisture constraints, causing large uncertainties. In this study, we developed an improved model that better captures the influence of soil moisture on vegetation and soil evaporation. Our model significantly improves ET estimation accuracy and provides a new long-term global ET dataset to support water cycle and climate research.
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, and Jerker Jarsjö
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-401, https://doi.org/10.5194/hess-2024-401, 2025
Preprint under review for HESS
Short summary
Short summary
This study explores how snow dynamics and hydropower reservoirs shape monthly runoff in the Yalong River basin, China. Using 15 years of data and a extended Budyko framework, we found that snow accumulation and melt dominate runoff in high-altitude areas, while reservoirs increasingly influence lower elevations. These factors reduce runoff seasonality at the basin outlet, emphasizing how climate change and human activity alter water availability in cold, mountainous regions.
Jiefan Niu, Ke Zhang, Xi Li, and Hongjun Bao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-304, https://doi.org/10.5194/hess-2024-304, 2024
Preprint under review for HESS
Short summary
Short summary
This study developed a new method for classifying catchments, combining machine learning techniques with climate and landscape data. By analyzing catchments across China, we identified six climate regions and 35 unique catchment types, each with distinct streamflow patterns. This classification method improves hydrological predictions, especially in areas lacking direct data.
Mohammed Abdallah, Ke Zhang, Lijun Chao, Abubaker Omer, Khalid Hassaballah, Kidane Welde Reda, Linxin Liu, Tolossa Lemma Tola, and Omar M. Nour
Hydrol. Earth Syst. Sci., 28, 1147–1172, https://doi.org/10.5194/hess-28-1147-2024, https://doi.org/10.5194/hess-28-1147-2024, 2024
Short summary
Short summary
A D-vine copula-based quantile regression (DVQR) model is used to merge satellite precipitation products. The performance of the DVQR model is compared with the simple model average and one-outlier-removed average methods. The nonlinear DVQR model outperforms the quantile-regression-based multivariate linear and Bayesian model averaging methods.
Jin Feng, Ke Zhang, Huijie Zhan, and Lijun Chao
Hydrol. Earth Syst. Sci., 27, 363–383, https://doi.org/10.5194/hess-27-363-2023, https://doi.org/10.5194/hess-27-363-2023, 2023
Short summary
Short summary
Here we improved a satellite-driven evaporation algorithm by introducing the modified versions of the two constraint schemes. The two moisture constraint schemes largely improved the evaporation estimation on two barren-dominated basins of the Tibetan Plateau. Investigation of moisture constraint uncertainty showed that high-quality soil moisture can optimally represent moisture, and more accessible precipitation data generally help improve the estimation of barren evaporation.
Cited articles
Abele, G.: Bergsturze in den Alpen. Ihre Verbreitung, Morphologie und Folgeerscheinungen, Wiss. Alpenvereinshefte, 25, 1974.
Abraham, M. T., Satyam, N., Rosi, A., Pradhan, B., and Segoni, S.:
Usage of antecedent soil moisture for improving the performance of rainfall thresholds for landslide early warning, CATENA, 200, 105147, https://doi.org/10.1016/j.catena.2021.105147, 2021.
Alvioli, M. and Baum, R. L.:
Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface, Environ. Model. Softw., 81, 122–135, https://doi.org/10.1016/j.envsoft.2016.04.002, 2016.
Aristizábal, E., Vélez, J. I., Martínez, H. E., and Jaboyedoff, M.:
SHIA_Landslide: A distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins, Landslides, 13, 497–517, https://doi.org/10.1007/s10346-015-0580-7, 2016.
Arnone, E., Noto, L. V., Lepore, C., and Bras, R. L.:
Physically-based and distributed approach to analyze rainfall-triggered landslides at watershed scale, Geomorphology, 133, 121–131, 2011.
Baum, R. L. and Godt, J. W.:
Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259–272, https://doi.org/10.1007/s10346-009-0177-0, 2010.
Baum, R. L., Godt, J. W., and Savage, W. Z.:
Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, J. Geophys. Res.-Earth, 115, F3, https://doi.org/10.1029/2009JF001321, 2010.
Bishop, A. W.:
The use of the Slip Circle in the Stability Analysis of Slopes, Géotechnique, 5, 7–17, https://doi.org/10.1680/geot.1955.5.1.7, 1955.
Brunetti, M. T., Guzzetti, F., and Rossi, M.:
Probability distributions of landslide volumes, Nonlin. Processes Geophys., 16, 179–188, https://doi.org/10.5194/npg-16-179-2009, 2009.
Chakraborty, A. and Goswami, D. D.:
State of the art: Three Dimensional (3D) Slope-Stability Analysis, International Journal of Geotechnical Engineering, 10, 493–498, https://doi.org/10.1080/19386362.2016.1172807, 2016.
Chao, L., Zhang, K., Li, Z., Wang, J., Yao, C., and Li, Q.:
Applicability assessment of the CASCade Two Dimensional SEDiment (CASC2D-SED) distributed hydrological model for flood forecasting across four typical medium and small watersheds in China, J. Flood Risk Manag., 12, e12518, https://doi.org/10.1111/jfr3.12518, 2019.
Chao, L., Zhang, K., Yang, Z.-L., Wang, J., Lin, P., Liang, J., Li, Z., and Gu, Z.:
Improving flood simulation capability of the WRF-Hydro-RAPID model using a multi-source precipitation merging method, J. Hydrol., 592, 125814, https://doi.org/10.1016/j.jhydrol.2020.125814, 2021.
Chen, C.-W., Oguchi, T., Hayakawa, Y. S., Saito, H., and Chen, H.:
Relationship between landslide size and rainfall conditions in Taiwan, Landslides, 14, 1235–1240, https://doi.org/10.1007/s10346-016-0790-7, 2017.
Chen, G., Zhang, K., and Wang, S.: Date to iHydroSlide3D v1.0, Zenodo [data set], https://doi.org/10.5281/zenodo.4559938, 2021a.
Chen, G., Zhang, K., and Wang, S.: Source code to iHydroSlide3D v1.0, Zenodo [code],
https://doi.org/10.5281/zenodo.4577536, 2021b.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., and Lu, M.: Global land cover mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogram., 103, 7–27, 2015.
Collins, B. D. and Znidarcic, D.:
Stability analyses of rainfall induced landslides, J. Geotech. Geoenviron., 130, 362–372, 2004.
Droesen, J.: Downscaling Soil Moisture Using Topography–The Evaluation and Optimisation of a Downscaling Approach, Wageningen University Wageningen, The Netherlands, 2016.
Fawcett, T.:
An introduction to ROC analysis, Pattern Recogn. Lett., 27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006.
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage, W. Z.:
Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning, Eng. Geol., 102, 99–111, 2008.
Flamig, Z. L., Vergara, H., and Gourley, J. J.:
The Ensemble Framework For Flash Flood Forecasting (EF5) v1.2: description and case study, Geosci. Model Dev., 13, 4943–4958, https://doi.org/10.5194/gmd-13-4943-2020, 2020.
Griffiths, D. V., Huang, J., and Fenton, G. A.:
Probabilistic infinite slope analysis, Comput. Geotech., 38, 577–584, https://doi.org/10.1016/j.compgeo.2011.03.006, 2011.
Guzzetti, F.:
On the Prediction of Landslides and Their Consequences, in: Understanding and Reducing Landslide Disaster Risk: Volume 1 Sendai Landslide Partnerships and Kyoto Landslide Commitment, edited by: Sassa, K., Mikoš, M., Sassa, S., Bobrowsky, P. T., Takara, K., and Dang, K., ICL Contribution to Landslide Disaster Risk Reduction, Springer International Publishing, Cham, 3–32, https://doi.org/10.1007/978-3-030-60196-6_1, 2021.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.:
Rainfall thresholds for the initiation of landslides in central and southern Europe, Meteorol. Atmos. Phys., 98, 239–267, https://doi.org/10.1007/s00703-007-0262-7, 2007.
Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., and Valigi, D.:
Landslide volumes and landslide mobilization rates in Umbria, central Italy, Earth Planet. Sc. Lett., 279, 222–229, https://doi.org/10.1016/j.epsl.2009.01.005, 2009.
Haflidason, H., Lien, R., Sejrup, H. P., Forsberg, C. F., and Bryn, P.:
The dating and morphometry of the Storegga Slide, Mar. Petrol. Geol., 22, 123–136, https://doi.org/10.1016/j.marpetgeo.2004.10.008, 2005.
He, J., Qiu, H., Qu, F., Hu, S., Yang, D., Shen, Y., Zhang, Y., Sun, H., and Cao, M.:
Prediction of spatiotemporal stability and rainfall threshold of shallow landslides using the TRIGRS and Scoops3D models, CATENA, 197, 104999, https://doi.org/10.1016/j.catena.2020.104999, 2021.
He, X., Hong, Y., Vergara, H., Zhang, K., Kirstetter, P.-E., Gourley, J. J., Zhang, Y., Qiao, G., and Liu, C.:
Development of a coupled hydrological-geotechnical framework for rainfall-induced landslides prediction, J. Hydrol., 543, 395–405, https://doi.org/10.1016/j.jhydrol.2016.10.016, 2016.
Hicks, M. A. and Spencer, W. A.:
Influence of heterogeneity on the reliability and failure of a long 3D slope, Comput. Geotech., 37, 948–955, https://doi.org/10.1016/j.compgeo.2010.08.001, 2010.
Ho, J.-Y., Lee, K. T., Chang, T.-C., Wang, Z.-Y., and Liao, Y.-H.:
Influences of spatial distribution of soil thickness on shallow landslide prediction, Eng. Geol., 124, 38–46, https://doi.org/10.1016/j.enggeo.2011.09.013, 2012.
Hong, Y., Adler, R., and Huffman, G.:
Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment, Geophys. Res. Lett., 33, 22, https://doi.org/10.1029/2006GL028010, 2006.
Hovland, H. J.:
Three-dimensional slope stability analysis method, J. Geotech. Geoenviron., 105, 693–695, 1979.
Imaizumi, F. and Sidle, R. C.:
Linkage of sediment supply and transport processes in Miyagawa Dam catchment, Japan, J. Geophys. Res.-Earth, 112, F3, https://doi.org/10.1029/2006JF000495, 2007.
Iverson, R. M.:
Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897–1910, https://doi.org/10.1029/2000WR900090, 2000.
Janbu, N., Bjerrum, L., and Kjaernsli, B.:
Soil mechanics applied to some engineering problems, Norwegian Geotechnical Institute, 1956.
Johnston, E. C., Davenport, F. V., Wang, L., Caers, J. K., Muthukrishnan, S., Burke, M., and Diffenbaugh, N. S.:
Quantifying the effect of precipitation on landslide hazard in urbanized and non-urbanized areas, Geophys. Res. Lett., 48, e2021GL094038, https://doi.org/10.1029/2021GL094038, 2021.
Khan, S. I., Adhikari, P., Hong, Y., Vergara, H., F Adler, R., Policelli, F., Irwin, D., Korme, T., and Okello, L.:
Hydroclimatology of Lake Victoria region using hydrologic model and satellite remote sensing data, Hydrol. Earth Syst. Sci., 15, 107–117, https://doi.org/10.5194/hess-15-107-2011, 2011.
King, G. J. W.:
Revision of effective-stress method of slices, Géotechnique, 39, 497–502, https://doi.org/10.1680/geot.1989.39.3.497, 1989.
Klar, A., Aharonov, E., Kalderon-Asael, B., and Katz, O.:
Analytical and observational relations between landslide volume and surface area, J. Geophys. Res.-Earth, 116, F2, https://doi.org/10.1029/2009JF001604, 2011.
Lacroix, P.:
Landslides triggered by the Gorkha earthquake in the Langtang valley, volumes and initiation processes, Earth Planets Space, 68, 46, https://doi.org/10.1186/s40623-016-0423-3, 2016.
Lanni, C., Borga, M., Rigon, R., and Tarolli, P.:
Modelling shallow landslide susceptibility by means of a subsurface flow path connectivity index and estimates of soil depth spatial distribution, Hydrol. Earth Syst. Sci., 16, 3959–3971, https://doi.org/10.5194/hess-16-3959-2012, 2012.
Lepore, C., Arnone, E., Noto, L. V., Sivandran, G., and Bras, R. L.:
Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico, Hydrol. Earth Syst. Sci., 17, 3371–3387, https://doi.org/10.5194/hess-17-3371-2013, 2013.
Leroi, E., Bonnard, C., Fell, R., and McInnes, R.:
Risk assessment and management, Landslide Risk Management, CRC Press, 169–208, 2005.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.:
A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res.-Atmos., 99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.
Liao, Z., Hong, Y., Wang, J., Fukuoka, H., Sassa, K., Karnawati, D., and Fathani, F.:
Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets, Landslides, 7, 317–324, https://doi.org/10.1007/s10346-010-0219-7, 2010.
Lizárraga, J. J. and Buscarnera, G.:
Probabilistic modeling of shallow landslide initiation using regional scale random fields, Landslides, 17, 1979–1988, https://doi.org/10.1007/s10346-020-01438-y, 2020.
Lu, N. and Godt, J.:
Infinite slope stability under steady unsaturated seepage conditions, Water Resour. Res., 44, 11, https://doi.org/10.1029/2008WR006976, 2008.
Lu, N. and Godt, J. W.:
Hillslope Hydrology and Stability, Cambridge University Press, https://doi.org/10.1017/CBO9781139108164, 2013.
Lu, N. and Likos, W. J.:
Suction stress characteristic curve for unsaturated soil, J. Geotech. Geoenviron., 132, 131–142, 2006.
Marchesini, I., Cencetti, C., and De Rosa, P.:
A preliminary method for the evaluation of the landslides volume at a regional scale, GeoInformatica, 13, 277–289, https://doi.org/10.1007/s10707-008-0060-5, 2009.
Marin, R. J., Velásquez, M. F., and Sánchez, O.:
Applicability and performance of deterministic and probabilistic physically based landslide modeling in a data-scarce environment of the Colombian Andes, J. S. Am. Earth Sci., 108, 103175, https://doi.org/10.1016/j.jsames.2021.103175, 2021.
Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-Muntau, B., Rossi, M., and Guzzetti, F.:
A strategy for GIS-based 3-D slope stability modelling over large areas, Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, 2014a.
Mergili, M., Marchesini, I., Rossi, M., Guzzetti, F., and Fellin, W.:
Spatially distributed three-dimensional slope stability modelling in a raster GIS, Geomorphology, 206, 178–195, https://doi.org/10.1016/j.geomorph.2013.10.008, 2014b.
Montrasio, L. and Valentino, R.:
A model for triggering mechanisms of shallow landslides, Nat. Hazards Earth Syst. Sci., 8, 1149–1159, https://doi.org/10.5194/nhess-8-1149-2008, 2008.
Palacio Cordoba, J., Mergili, M., and Aristizábal, E.:
Probabilistic landslide susceptibility analysis in tropical mountainous terrain using the physically based r.slope.stability model, Nat. Hazards Earth Syst. Sci., 20, 815–829, https://doi.org/10.5194/nhess-20-815-2020, 2020.
Park, D. W., Nikhil, N. V., and Lee, S. R.:
Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event, Nat. Hazards Earth Syst. Sci., 13, 2833–2849, https://doi.org/10.5194/nhess-13-2833-2013, 2013.
Raia, S., Alvioli, M., Rossi, M., Baum, R. L., Godt, J. W., and Guzzetti, F.:
Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach, Geosci. Model Dev., 7, 495–514, https://doi.org/10.5194/gmd-7-495-2014, 2014.
Reid, M. E., Christian, S. B., Brien, D. L., and Henderson, S. T.:
Scoops3D: Software to analyze 3D slope stability throughout a digital landscape, USGS Numbered Series 14-A1, 236, U. S. Geological Survey, Reston, VA, 2015.
Segoni, S., Piciullo, L., and Gariano, S. L.:
A review of the recent literature on rainfall thresholds for landslide occurrence, Landslides, 15, 1483–1501, https://doi.org/10.1007/s10346-018-0966-4, 2018.
Shen, X., Hong, Y., Zhang, K., and Hao, Z.:
Refining a distributed linear reservoir routing method to improve performance of the CREST model, J. Hydrol. Eng., 22, 04016061, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001442, 2016.
Sidle, R. C. and Bogaard, T. A.:
Dynamic earth system and ecological controls of rainfall-initiated landslides, Earth-Sci. Rev., 159, 275–291, https://doi.org/10.1016/j.earscirev.2016.05.013, 2016.
Srivastava, R. and Yeh, T.-C. J.:
Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils, Water Resour. Res., 27, 753–762, https://doi.org/10.1029/90WR02772, 1991.
Tran, T. V., Alvioli, M., Lee, G., and An, H. U.:
Three-dimensional, time-dependent modeling of rainfall-induced landslides over a digital landscape: A case study, Landslides, 15, 1071–1084, https://doi.org/10.1007/s10346-017-0931-7, 2018.
van Westen, C. J., van Asch, T. W. J., and Soeters, R.:
Landslide hazard and risk Zonation—Why is it still so difficult?, B. Eng. Geol. Environ., 65, 167–184, https://doi.org/10.1007/s10064-005-0023-0, 2006.
Vandromme, R., Thiery, Y., Bernardie, S., and Sedan, O.:
ALICE (Assessment of Landslides Induced by Climatic Events): A single tool to integrate shallow and deep landslides for susceptibility and hazard assessment, Geomorphology, 367, 107307, https://doi.org/10.1016/j.geomorph.2020.107307, 2020.
Wang, J., Hong, Y., Li, L., Gourley, J. J., Khan, S. I., Yilmaz, K. K., Adler, R. F., Policelli, F. S., Habib, S., Irwn, D., Limaye, A. S., Korme, T., and Okello, L.:
The coupled routing and excess storage (CREST) distributed hydrological model, Hydrolog. Sci. J., 56, 84–98, https://doi.org/10.1080/02626667.2010.543087, 2011.
Wang, S., Zhang, K., van Beek, L. P. H., Tian, X., and Bogaard, T. A.:
Physically-based landslide prediction over a large region: Scaling low-resolution hydrological model results for high-resolution slope stability assessment, Environ. Model. Softw., 124, 104607, https://doi.org/10.1016/j.envsoft.2019.104607, 2020.
Wieder, W., Boehnert, J., Bonan, G., and Langseth, M.:
Regridded harmonized world soil database v1. 2, ORNL DAAC, https://doi.org/10.3334/ORNLDAAC/1247, 2014.
Xie, M., Esaki, T., Zhou, G., and Mitani, Y.:
Three-dimensional stability evaluation of landslides and a sliding process simulation using a new geographic information systems component, Environ. Geol., 43, 503–512, https://doi.org/10.1007/s00254-002-0655-3, 2003.
Xie, M., Esaki, T., and Zhou, G.:
GIS-Based Probabilistic Mapping of Landslide Hazard Using a Three-Dimensional Deterministic Model, Nat. Hazards, 33, 265–282, https://doi.org/10.1023/B:NHAZ.0000037036.01850.0d, 2004.
Xie, M., Esaki, T., Qiu, C., and Wang, C.:
Geographical information system-based computational implementation and application of spatial three-dimensional slope stability analysis, Comput. Geotech., 33, 260–274, https://doi.org/10.1016/j.compgeo.2006.07.003, 2006.
Xue, X., Hong, Y., Limaye, A. S., Gourley, J. J., Huffman, G. J., Khan, S. I., Dorji, C., and Chen, S.:
Statistical and hydrological evaluation of TRMM-Based Multi-Satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins?, J. Hydrol., 499, 91–99, https://doi.org/10.1016/j.jhydrol.2013.06.042, 2013.
Xue, X. W., Hong, Y., Limaye, A. S., Gourley, J. J., Huffman, G. J., Khan, S. I., Dorji, C., and Chen, S.:
Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins?, J. Hydrol., 499, 91–99, 2013.
Yao, C., Li, Z., Yu, Z., and Zhang, K.:
A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information, J. Hydrol., 468, 47–62, 2012.
Zêzere, J. L., Trigo, R. M., and Trigo, I. F.:
Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation, Nat. Hazards Earth Syst. Sci., 5, 331–344, https://doi.org/10.5194/nhess-5-331-2005, 2005.
Zhang, K., Xue, X., Hong, Y., Gourley, J. J., Lu, N., Wan, Z., Hong, Z., and Wooten, R.:
iCRESTRIGRS: a coupled modeling system for cascading flood–landslide disaster forecasting, Hydrol. Earth Syst. Sci., 20, 5035–5048, https://doi.org/10.5194/hess-20-5035-2016, 2016.
Zhang, K., Wang, S., Bao, H., and Zhao, X.:
Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province, China, Nat. Hazards Earth Syst. Sci., 19, 93–105, https://doi.org/10.5194/nhess-19-93-2019, 2019.
Zhang, Y., Hong, Y., Wang, X., Gourley, J. J., Xue, X., Saharia, M., Ni, G., Wang, G., Huang, Y., Chen, S., and Tang, G.:
Hydrometeorological Analysis and Remote Sensing of Extremes: Was the July 2012 Beijing Flood Event Detectable and Predictable by Global Satellite Observing and Global Weather Modeling Systems?, J. Hydrometeorol., 16, 381–395, https://doi.org/10.1175/JHM-D-14-0048.1, 2015.
Zhao, R.-J.:
The xinanjiang model applied in china, J. Hydrol., 135, 371–381, 1992.
Zhuo, L., Dai, Q., Han, D., Chen, N., and Zhao, B.:
Assessment of simulated soil moisture from WRF Noah, Noah-MP, and CLM land surface schemes for landslide hazard application, Hydrol. Earth Syst. Sci., 23, 4199–4218, https://doi.org/10.5194/hess-23-4199-2019, 2019a.
Zhuo, L., Dai, Q., Han, D., Chen, N., Zhao, B., and Berti, M.:
Evaluation of remotely sensed soil moisture for landslide hazard assessment, IEEE J. Sel. Top. Appl., 12, 162–173, 2019b.
Zieher, T., Schneider-Muntau, B., and Mergili, M.:
Are real-world shallow landslides reproducible by physically-based models? Four test cases in the Laternser valley, Vorarlberg (Austria), Landslides, 14, 2009–2023, https://doi.org/10.1007/s10346-017-0840-9, 2017.
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a...