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Abstract. Forecasting flood–landslide cascading disasters
in flood- and landslide-prone regions is an important topic
within the scientific community. Existing hydrological–
geotechnical models mainly employ infinite or static 3D sta-
bility models, and very few models have incorporated the
3D landslide model into a distributed hydrological model.
In this work, we modified a 3D landslide model to ac-
count for slope stability under various soil wetness states
and then coupled it with the Coupled Routing and Excess
STorage (CREST) distributed hydrology model, forming a
new modeling system called iHydroSlide3D v1.0. Through
embedding a soil moisture downscaling method, this model
is able to model hydrological and slope-stability submod-
ules even at different resolutions. For a large-scale appli-
cation, we paralleled the code and elaborated several com-
putational strategies. The model produces a relatively com-
prehensive and reliable diagnosis for flood–landslide events,
including (i) complete hydrological components (e.g., soil
moisture and streamflow), (ii) a landslide susceptibility as-
sessment (factor of safety and probability of occurrence),
and (iii) a landslide hazard analysis (geometric properties
of potential failures). We evaluated the plausibility of the
model by testing it in a large and complex geographical area,
the Yuehe River basin, China, where we attempted to repro-

duce cascading flood–landslide events. The results are well
verified at both hydrological and geotechnical levels. iHy-
droSlide3D v1.0 is therefore appropriately used as an in-
novative tool for assessing and predicting cascading flood–
landslide events once the model is well calibrated.

1 Introduction

Landslides represent mass-movement processes in hilly and
mountainous environments and pose significant threats to
human lives and properties (Hong et al., 2006; He et al.,
2016). Rainfall events characterized by short-duration but
high-intensity precipitation can substantially change the soil
state of unlithified soil mantle or regolith (Srivastava and
Yeh, 1991; Iverson, 2000; Baum et al., 2010) and thus affect
hillslope stability and cause flash floods in channels. Fore-
casting flood–landslide hazards and correspondingly evacu-
ating people from hazardous zones in advance are widely re-
garded as a critical risk reduction strategy (Abraham et al.,
2021). However, to date, it is still challenging to accurately
and reasonably forecast the landslides due to the complex
natural processes and the interweaving hydrological, geo-
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morphic, and geotechnical mechanisms (Sidle and Bogaard,
2016; Guzzetti, 2021).

Modeling landslide susceptibility can be appropriately ac-
complished by adopting a variety of approaches, includ-
ing statistical methods (Guzzetti et al., 2007; Segoni et al.,
2018), physically based models (Baum et al., 2010; He et al.,
2016; Zhang et al., 2016), and geotechnical approaches (van
Westen et al., 2006), among others. Among them, the de-
terministic and physically based models (PBMs) are popu-
larly used for modeling the spatiotemporal susceptibility of
landslides. Some of these approaches attempt to define a di-
rect correlation between rainfall depth and slope stability un-
der some simplified hypotheses (Montrasio and Valentino,
2008; Liao et al., 2010). These models are useful for regional
landslide stability assessment but fail to reproduce cascading
flood–landslide disasters in catchments. More recently, ef-
forts have been devoted to coupling the sound hydrological
models with more or less complex landslide models (Baum
and Godt, 2010; Lepore et al., 2013; He et al., 2016; Zhang
et al., 2016; Aristizábal et al., 2016; Wang et al., 2020).
Literature has shown the contributions of hydrological–
geotechnical models to real-world applications, such as im-
provements of disaster preparedness and hazard management
in North Carolina, US (Zhang et al., 2016), and long-term
vulnerability estimates in Shaanxi Province, China (Wang
et al., 2020), to name a few. These models include physical
representations of precipitation, evapotranspiration, infiltra-
tion with continuous soil moisture accounting, runoff rout-
ing, and the slope-stability module. However, most of them
rely on infinite slope-stability models (i.e., one-dimensional
models), which are based on the assumption of planar shal-
low failures and fail to capture the complexity of landslide
geometry in many landscapes where shallow- and deep-
seated landslides inherently coexist (Zêzere et al., 2005;
Mergili et al., 2014b; Tran et al., 2018). To this end, three-
dimensional slope-stability models (3D models) are pro-
posed to cope with more complex scenarios (Mergili et al.,
2014a; Reid et al., 2015).

Until now, as reviewed by Vandromme et al. (2020), the
existing hazard software for the implementation of spatial
PBMs mainly employs the one-dimensional (1D) or two-
dimensional (2D) methods for slope-stability calculation.
The 3D approaches like Scoops3D (Reid et al., 2015) and
r.slope.stability (Mergili et al., 2014a) are only practical for
static conditions such as imposed water level and fully sat-
urated soil state. Researchers have attempted to combine
the hydrological part of the Transient Rainfall Infiltration
and Grid-Based Regional Slope-Stability (TRIGRS, a well-
known, publicly available software) model (Baum et al.,
2010) with a 3D model and analyzed the hillslope stabil-
ity on a regional scale (Tran et al., 2018; He et al., 2021).
To date, there are still very few fully coupled hydrological–
geotechnical models capable of performing at large scales
and producing 3D information of landslide disasters. The
progress is hindered by complicated model structures and

considerable computational loads. The latter is inevitable and
is an inherent feature for PBMs when the applications are
conducted at a large scale using the 3D models (Zieher et al.,
2017). Another problem is the selection of computational
spatial resolutions. Hydrological modeling with a coarse spa-
tial resolution (e.g., 1 km resolution or coarser) but a large-
scale coverage has been widely available with the increasing
availability of meteorological and land surface data (X. Xue
et al., 2013; Chao et al., 2019, 2021). However, such a reso-
lution is insufficient to capture the slope failures on hillslope
scales, particularly for the landslide events that usually oc-
cur within an area of only tens or hundreds of square meters
(Chen et al., 2017). Moreover, it is not wise to unlimitedly
refine the mesh resolution of the hydrological model over a
relatively large region. A strategy to tackle the differential
needs for computational resolutions among the submodules
is essential (Wang et al., 2020).

A comprehensive assessment for landslide disasters is gen-
erally composed of three parts (Vandromme et al., 2020): a
landslide inventory, a landslide susceptibility analysis (usu-
ally denotes factor of safety (FS) and probability of occur-
rence), and a landslide hazard analysis (i.e., magnitude that
takes into account the area and volume of failure). Among
them, the landslide hazard analysis is not very common as
the ordinary 1D models cannot represent the geometric prop-
erties of landslides. Previous studies for this purpose are
more inclined to use available landslide datasets (Guzzetti
et al., 2009; Brunetti et al., 2009; Klar et al., 2011) and
advanced sensing and photogrammetric methods and tech-
niques (e.g., aerial photograph interpretation, high-resolution
imagery, and lidar interpretation) (Lacroix, 2016). However,
in many cases, the landslide data are not well documented
or insufficient data are unfavorable to support such analy-
sis (e.g., only failure locations are recorded). Performing the
landslide hazard analysis in such cases is necessary but diffi-
cult to implement.

In this work, we developed an innovative physically based
integrated hydrological processes and 3D slope-stability
modeling framework, which is called the integrated Hydro-
logical processes and 3-Dimensional landSlide prediction
model (iHydroSlide3D v1.0), by coupling a distributed hy-
drological model with a newly developed 3D geotechnical
model. To alleviate the chronic contradiction of mesh reso-
lutions required for hydrological and landslide simulations,
we adopted the soil downscaling method to handle the soil
moisture. iHydroSlide3D v1.0 is built on a parallel computa-
tional design, allowing the code to run efficiently on a multi-
core machine. The code was tested in a large and complex
geographical area, the Yuehe River basin of western China,
where we attempted to reproduce cascading flood–landslide
events.

The paper is organized as follows. We first describe the
basic theories of submodules and main features of the frame-
work in Sect. 2. In addition, we also elaborate the strategies
for model implementation in Sect. 2. In Sect. 3, we introduce
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a case study and associated materials required for model sim-
ulation and evaluation. The results, primarily focused on the
evolution processes of cascading flood–landslide events trig-
gered by a rainstorm, are presented in Sect. 4. Finally, we
discuss the results and summarize the conclusions in Sect. 5.

2 The integrated hydrological–geotechnical model
framework: iHydroSlide3D v1.0

2.1 Overall structure

iHydroSlide3D v1.0 is a physically based modeling frame-
work that accounts for both hydrological and geotechnical
processes. The model mainly includes the following mod-
ules: (i) a distributed hydrological model based on the Cou-
pled Routing and Excess STorage (CREST) model, (ii) a
newly developed 3D landslide model, and (iii) a soil moisture
downscaling method. The model can currently process two
sets of data with different resolutions, allowing us to simulta-
neously model hydrological and geotechnical processes with
different spatial resolutions. iHydroSlide3D v1.0 is coded in
MATLAB and is capable of running in a parallel manner,
currently supported by the Linux and Windows operating
systems. Detailed descriptions of the model are presented as
follows.

2.2 Hydrological model: the Coupled Routing and
Excess STorage model

A physically based hydrological model, i.e., the Coupled
Routing and Excess STorage (CREST) (Wang et al., 2011;
Khan et al., 2011; Shen et al., 2016; X. W. Xue et al.,
2013), is adopted to simulate hydrological processes that
trigger the rainstorm-induced landslide events. The CREST
model was first developed by the University of Oklahoma
(http://hydro.ou.edu, last access: 23 December 2014) and
NASA SERVIR project team (http://www.servir.net, last ac-
cess: 15 September 2016) and served for predictions of flash
floods caused by rainfalls on its early-version stage (Wang
et al., 2011). The model is further enhanced by considering
the Multi-Radar Multi-Sensor (MRMS) forcing data and has
been used for hydroclimatology studies such as extreme hy-
drological events (e.g., floods and droughts) (Zhang et al.,
2015; Khan et al., 2011) and statistical and hydrological eval-
uation in ungauged basins (X. Xue et al., 2013). The CREST
model is run in a distributed fashion via a cell-to-cell design
concept, while the coupling between overland flow genera-
tion and routing scheme allows a realistic and detailed simu-
lation of hydrological variables such as soil moisture, which
plays a major role in determining the stability of a slope.
More recently, several coupled hydrological–geotechnical
models based on the CREST model such as CRESLIDE (He
et al., 2016) and iCRESTRIGRS (Zhang et al., 2016) have
emerged as the application evolves. These models, count-
ing on the hydrological simulation of the CREST model,

have achieved their capability of back calculation and/or pre-
diction for rainfall-triggered landslides. As a consequence,
CREST has been comprehensively and extensively evaluated
regarding its hydrological simulation skill and its flexibility
for coupling. A detailed description of the CREST model can
be found in Wang et al. (2011). For better understanding the
work of this study, it is still important to briefly review the
principal theories of the CREST model here.

The CREST model is driven by precipitation and potential
or actual evapotranspiration. The rainfall–runoff-generation
processes are computed at each cell, starting with account-
ing for its received precipitation at each time step (P ). After
P passes the canopy layer and deducts canopy interception,
the excess precipitation (Psoil) then reaches the soil surface.
A conceptual variable infiltration curve (VIC), originated
from the Xinanjiang model (Zhao, 1992) and later adopted
by the VIC model (Liang et al., 1994), is used to further di-
vide the Psoil into excess rain (R) and infiltration water (I ).
The CREST model assumes that each soil column is capable
of storing a maximum water depth, which is regarded as the
infiltration capacity (i) and varies over an area in the follow-
ing relationship:

i = im

[
1− (1− a)

1
b

]
, (1)

where the im is the maximum infiltration capacity of a cell
and strongly depends on the soil properties, a is a fraction
number of a grid cell, and b is an empirical shape parame-
ter. Under this assumption, the amount of water available for
excess rain (R) and infiltration (I ) can be further expressed
as

I =

{
Wm−W,i+Psoil ≥ im

(Wm−W)+Wm ·
[
1− i+Psoil

im

]1+b
, i+Psoil < im,

(2)

R = Psoil− I, (3)

whereWm denotes the maximum water capacity of a cell and
W represents the total mean water of the three soil layers.
R can be further partitioned into overland and subsurface
flows by comparing Psoil to the infiltration rate of the first
layer (K), which is closely related to the soil saturated hy-
draulic conductivity (Ksat). Then CREST adopts the multi-
linear reservoir method to simulate the cell-to-cell routing of
overland and subsurface runoff at each time step. The model
can better take into account the interaction between the sur-
face and subsurface flows by coupling the runoff-generation
process and the routing scheme (Wang et al., 2011).

2.3 Three-dimensional stability model based on sliding
surface

The 3D slope-stability analysis model was originally derived
to describe the characteristics of a potential failure (Hovland,
1979). This model has no iteration procedure but computes
the FS directly compared to the slope-stability models es-
tablished based on Bishop (1955) and Janbu et al. (1956).

https://doi.org/10.5194/gmd-16-2915-2023 Geosci. Model Dev., 16, 2915–2937, 2023

http://hydro.ou.edu
http://www.servir.net


2918 G. Chen et al.: iHydroSlide3D v1.0: an advanced hydrological–geotechnical model

Embedded in the geographic information system (GIS), the
model composes a slope failure with column units, expressed
as grid cells in GIS (software like 3DSlopeGIS) (Xie et al.,
2003, 2004, 2006). More recently, progress has been made in
a more sophisticated software r.slope.stability (Mergili et al.,
2014a, b) that has the capacity to perform on a regional scale
via a parallel computational technique. More importantly, the
3D slope-stability model has proven to be effective on both
shallow and deep landslides and thus behaves better as a ro-
bust geotechnical tool and has potential for wide applications
(Zieher et al., 2017; Palacio Cordoba et al., 2020).

However, to implement on a large scale, the previous ver-
sions of the 3D stability model treat the hydrological com-
ponent (e.g., transient soil moisture and water level) as static
or imposed inputs, failing to consider the time-dependent hy-
drological processes (Mergili et al., 2014b, a). In this work,
the model is extended to take into account spatiotemporal
variations of water fluxes and storages on regular grids by
introducing the hydrological module. Following an assump-
tion of being ellipsoidal or truncated in shape, the potential
slope failures are randomly generated over a whole study re-
gion. When applied in a regional assessment, the theory of
the model can be mainly divided into the following two parts.

2.3.1 Coordinate transformation and geometric
derivation

Three levels of the coordinate system involved in this model
are the (i) GIS coordinate system (x,y,z) over the whole
study area (Fig. 1), (ii) Cartesian coordinate (x′,y′,z′) of
each potential failure, and (iii) ellipsoid coordinate system
(x′′,y′′,z′′) along the direction of the steepest slope in a sin-
gle ellipsoid. The center of each ellipsoid (xc,yc,zc) is ran-
domly generated within the study area, while the GIS coor-
dinate system is simultaneously transformed to the Cartesian
coordinate from a ground perspective (Mergili et al., 2014b):

x′ = (x− xc)cosα+ (y− yc)sinα, (4)
y′ = (y− yc)cosα− (x− xc)sinα, (5)

where α is the main dip direction of the ellipsoid, x′′ is easily
derived as x′′ = x′

cosβ (β is the main inclination of the ellip-
soid; see Fig. 2), y′′ is identical to the y′ axis, and z′ is identi-
cal to the z axis (Fig. 1). Then we need to filter the grid cells
encompassed by this random ellipsoid, meeting the follow-
ing condition:

x′

a2
e
+
y′

b2
e
≤ 1, (6)

where ae and be are half axes of the ellipsoid, following
the x′′ and y′′ axes, respectively. These geometric lengths are
randomly generated within user-defined ranges. To facilitate
the derivation, we give a value of another half axis of the
ellipsoid (ce) beforehand, which is highly dependent on fail-
ure depth and should be reconsidered in following sections.

Figure 1. Coordinate systems involved in an arbitrary ellipsoid.

Hence, with regard to an ideal ellipsoid, the above variables
need to satisfy the basic equation of the ellipsoid:

(x′′+1x′′)2

a2
e

+
y′′2

b2
e
+

1x′2

c2
e (tanβ)2

= 1. (7)

By solving the intermediate variable 1x′′, the z′′ can be
computed as

z′′ =
1x′′

tanβ
. (8)

Finally, we transformed it back into the GIS coordinate
system:

zslip = zc+
(z′′− x′ sinβ)

cosβ
, (9)

where zslip is the elevation of the considered cell in the el-
lipsoid. We get all coordinates once a random ellipsoid is
generated. We further note that such a procedure is required
for each random ellipsoid (i.e., each random loop) and thus
is time-consuming particularly in a regional map system. The
countermeasures will be introduced in the following sections.

2.3.2 Basic hydrogeological mechanics

This study adopted a conceptual parameter m to better sim-
ulate the soil moisture of each considered column in a ran-
dom ellipsoid (see Fig. 2). The parameters originated from
Montrasio and Valentino (2008) and were later represented in
further applications (Liao et al., 2010; He et al., 2016). The
parameter m is a distributed value ranging from 0 to 1 and
is controlled by hydrologic mechanisms (Fig. 2), which fur-
ther impacts the matric suction and results in occurrences of
landslides (Baum et al., 2010). More specifically, the appar-
ent cohesion is strongly dependent on matric suction, which
in turn is related to the degree of saturation of the soil col-
umn (Sr) (Montrasio and Valentino, 2008):

cψ (t)= δ · Sr · (1− Sr)
λ
· (1−m)α, (10)

where δ is a soil-type parameter and mainly refers to the peak
shear stress at a failure layer; α and λ are numerical parame-
ters to estimate the extreme points of the shear strength curve
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Figure 2. Typical longitudinal section of an ellipsoid used as slip surface in iHydroSlide3D v1.0: (a) overall features involved in a potential
failure and (b) forces acting at each column considering the groundwater effect.

versus Sr and versus the degree of saturation of the soil, re-
spectively. Then the total cohesion (C′) is computed as fol-
lows:

C′ = c′+ cψ (t), (11)

where c′ is effective cohesion depending on soil type and is
treated as a constant value associated with each grid cell. The
failures may take place in both partially and fully saturated
scenarios (Lu and Likos, 2006; Lu and Godt, 2013); the lat-
ter should take the seepage force (S) into account (Collins
and Znidarcic, 2004). Considering the inter-slice forces in
this model, the seepage force is computed according to the
hydraulic gradient, reflecting a more general situation in the
hillslope (King, 1989; Mergili et al., 2014b). Note that the
seepage force is only considered in soil columns satisfy-
ing m> 0. Besides, the grid cell that has a low elevation is
excluded from the considered ellipsoid by comparing zslip
and zc:

Dc = zc− zslip. (12)

For the soil column satisfying both of the conditions, m>
0 and Dc > 0, the seepage force can be approximated by the
slope (βw) and aspect (αw) of the groundwater table (Fig. 2),
acting in the direction of the hydraulic gradient (Mergili
et al., 2014b, a):

S = γw · dx · dy ·mH · sinβw, (13)

where γw is the specific weight of water and dx and dy are
the cell size, depending on the resolution of input data. To
further transfer the seepage force from hydraulic gradient to
sliding direction, S is first divided into horizontal (Sh) and
vertical (Sv) components (Fig. 2):

Sh = Scosβw and Sv = Ssinβw. (14)

Sv is irrelevant to the direction, while Sh needs to be fur-
ther projected according to the dip direction of grid col-
umn (αc) and the main inclination direction of the slip surface
given by

Sch = Shcos(αw−αc) and Smh = Shcos(αw−α). (15)

Conforming to the orthogonality rule, the projected seep-
age force (Sc,Sm) and its vertical angle (βSc ,βSm ) can be ex-
pressed as

Sc =

√
S2

v + S
2
ch;Sm =

√
S2

v + S
2
mh

cosβSc =
Sch

Sc
;βSm =

Smh

Sm
. (16)

The final expression of the seepage force acting on each
grid column can be written as normal and slope-parallel com-
ponents:

Ns = Sc sin(βSc −βc);Ts = Sm cos(βSm −βm). (17)

The soil weight (G′), considering the variant degree of sat-
uration and under the condition of Dc > 0, is derived as

G′ = dx ·dy · [ydDc+yw ·mH ·(n−1)+yw(Dc−mH)nSr],

(18)

where γd is the unit weight of the dry soil; n and Sr represent
the porosity and soil saturation degree, respectively. Based
on the limited equilibrium condition, the model assesses the
critical scenarios by calculating the FS, which can be me-
chanically subject to the stabilizing and destabilizing actions.
Summarizing the derivations above, the extended version of
the 3D slope-stability equation can be written as follows:

FS=

∑
c

[(
C′+ δ · Sr · (1− Sr)

λ
· (1−m)α

)
·A

+
(
G′cosβc+Ns

)
tanϕ

]
cosβm∑

c
(G′ sinβm+ Ts)cosβm

, (19)
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where ϕ is the friction angle; βc and βm denote the dip and
apparent dip of the slip surface at a considered soil column,
respectively; and A is the slip surface area of each column
and can be computed as

A= dx · dy

√
1− (sinβxz)2(sinβyz)2

cosβxz cosβyz
, (20)

where βxz and βyz are apparent dips of the x and y axis,
respectively. The relationships between the apparent dips and
main sliding direction assigned to each soil column can be
expressed as (Xie et al., 2003)

tanβm = tanβc|cos(αc−α)|,

tanβxz = tanβc sinαc,

tanβyz = tanβc cosαc. (21)

The model diagnoses whether the landslide is stable or not
by comparing the value of FS with a critical value that usu-
ally set to 1. At the same time, for each random ellipsoid, the
volume and area of a failure can be approximated by

VL =
∑

Dc · dx · dy, (22)

AL =
∑

dx · dy. (23)

It is noteworthy that the 3D stability model can function
independently by directly incorporating soil moisture and
groundwater table information. However, in a more practical
sense, the landslide model is coupled with the hydrological
model.

2.4 Soil moisture downscaling method

A near-conservative downscaling method of soil mois-
ture (Droesen, 2016; Wang et al., 2020) is adopted
here to link different-resolution-based submodules in iHy-
droSlide3D v1.0, i.e., the relatively coarse-resolution hy-
drological model and the fine-resolution 3D slope-stability
model. The method relates the soil moisture with the topo-
graphic wetness index (TWI) by proposing a conversion pa-
rameter, the wetness coefficient (Kw). The relationship be-
tween Kw and TWI at the coarse resolution (Kw,coarse and
TWIcoarse) is first detected, and the concave and convex ar-
eas are also distinguished. Then this relation is used to calcu-
late Kw and TWI at the fine resolution (Kw,fine and TWIfine),
which is further used to fix the soil moisture at fine resolu-
tion. Readers may refer to Wang et al. (2020) for more de-
tailed descriptions. This method helps the hydrological mod-
ule produce soil moisture with a higher resolution that can
be seamlessly utilized by the landslide module. The method
has demonstrated its effectiveness (Wang et al., 2020) and is
necessary for a hydrogeological-type model to balance the
tedious computational tasks and accuracy.

2.5 Coupling strategy and model implementation

iHydroSlide3D v1.0 mainly consists of three sub-modules:
(i) the hydrological model CREST, (ii) the soil moisture
downscaling method, and (iii) the 3D landslide-stability
model (Fig. 3). The CREST model undertakes the complete
computational tasks of hydrologic processes, including inter-
ception by vegetation, water infiltration, runoff generation,
cell-to-cell routing, and re-infiltration on each grid cell in
the course of excess surface runoff moving from upstream to
downstream, of which the infiltration and re-infiltration play
the most important role on the coupled hydrology–slope-
stability processes. The landslide model inherits the hydro-
logical variables from the hydrological model and acts as
a slope-stability monitor. The complete simulation cycle is
seamlessly facilitated by the downscaling module. To eluci-
date the implementation of iHydroSlide3D v1.0, we present
the logical framework in Fig. 3 and summarize the detailed
coupling strategy in the following.

1. Instead of directly linking the soil moisture with rain-
fall intensity, the model takes the water loss into account
due to the interception and evapotranspiration. The hy-
drological module helps to better simulate antecedent
conditions such as soil moisture and cumulative infiltra-
tion. As a consequence, the parameter m is updated as a
spatiotemporal variable (mt) (He et al., 2016):

mt =
Wt

nDt (1− Sr)
, (24)

where Wt is the mean water amount of the three soil
layers on a given grid cell. Sr can be computed as

Sr =
Wt

Wm
. (25)

Dt is the landslide’s initiation depth for various soil
states and is largely impacted by soil heterogeneity and
hydraulic properties (Lu and Godt, 2008). Therefore,
Dt is determined by infiltration processes at time t (He
et al., 2016):

Dt =

√
2KsHct

θn− θ0
, (26)

whereKs is saturated hydraulic conductivity,Hc is cap-
illary pressure, θn is volumetric water content of the sat-
urated soil, and θ0 is initial water content of the soil.
Note that mt, Sr, and Dt are gridded values.

2. We prepare two sets of data with different resolutions:
a relatively coarser hydrological resolution and a finer
landslide resolution. Once the soil moisture is calcu-
lated for all coarser grid cells, the soil moisture down-
scaling module is activated to calculate a new soil mois-
ture map in a finer resolution to fit the spatial resolution
of the landslide model (SMHydro→ SMLand).
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Figure 3. Flowchart illustrating the work process of iHydroSlide3D v1.0.

Figure 4. Cell-to-cell routing scheme and potential landslides generated across the grid in iHydroSlide3D v1.0: panels (a) and (b) illustrate
the definitions of PF and FS within the framework, respectively.

3. In each simulation time step, the model generates a large
number of ellipsoidal tested landslides with a random
geometric center and ellipsoid length and width. The
latter is constrained by the range of maximum and mini-
mum values, which are determined from field investiga-
tion and regarded as the input parameters. Each random

ellipsoid adopts maximum soil depth as another geo-
metric length (ce) among the encompassed cells (Dt =
max{Dcell1,Dcell2,Dcell3, . . .}). The coordinate transfor-
mation and related geometric derivation are then tackled
according to Sect. 2.3.1. Next, each tested landslide slip
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surface corresponds to a FS value, based on the mechan-
ical analysis described in Sect. 2.3.2.

4. Attributable to random strategy in the model architec-
ture, any tested landslide will be possibly overlapped
by another one, resulting in the confusing values of FS
for each considered grid cell. In other words, each grid
cell has a chance to be stable or unstable. For instance,
as illustrated in Fig. 4, grid cell “a” is estimated to be
unstable in tested landslide no. 3 but stable in tested
landslides no. 4 and no. 5. In this work, we assign the
minimum value of FS (FSmin, Fig. 4b) to each grid cell
(Mergili et al., 2014b). Each FS calculation is treated
as an independent event; the failure probability (PF,
Fig. 4a) is determined by counting the failure tests in
all possible outcomes:

FSt =min{FSL1 ,FSL2 ,FSL3}, (27)

PFt =
∑

PFFS<1∑
PFFS<1+

∑
PFFS>1

. (28)

The model counts all possible values of FS and, based
on a sufficiently large number of ellipsoids (reasonable
density value, Eq. 31) and possible ellipsoid dimen-
sions, determines the final values of FS and PF for each
considered grid cell. Similarly, each grid cell belongs to
a maximum value of volume and area of a failure:

VLmax =max{VL1 ,VL2 ,VL3 , . . .}, (29)
ALmax =max{AL1 ,AL2 ,AL3 , . . .}. (30)

The records of these values are only effective in the cur-
rent simulation moment and will be reset as the sim-
ulation time moves forward. As the hydrological pro-
cess evolves, the model is able to dynamically assess the
slope stability and treats the slope-stability assessment
indices as variables.

We believe that the above variables will reach the compu-
tational convergence provided the number of tested ellipsoids
is sufficient enough. As a requirement, the “density” of ellip-
soids is recommended to reflect the total number over the
study area (Mergili et al., 2014b):

ds = n
Ap

As
= n

π(ae|max+ ae|min)(be|max+ be|min)ct

16As
, (31)

where n is the chosen total number of tested landslides; Ap is
average vertical projection of the area of a single tested land-
slide; As is the extent of the study area; ae|max, ae|min, be|max,
and be|min are the upper and lower limits for randomization
of ellipsoid length and width; and ct is a dimensionless cor-
rection factor and is set to the average cosine of the slope
(Mergili et al., 2014a). Note that the ds is strongly related to
constraints of the random length and width and resolution of
the digital elevation model, which should be tested and set to

an appropriate value before meaningful application. We also
acknowledge that the model outcome represents the worst-
case situation (FSmin, Vmax, and Amax), along with the prob-
ability of the failure (PF).

2.6 Auxiliary computational strategy

There are two main computational bottlenecks in the model,
which cause a large computational burden: (i) the operation
of coordination transformation described in Sect. 2.3.1 is re-
quired for each random ellipsoid and, even in a single sim-
ulation time, will be executed n times (see Eq. 31); (ii) the
3D slope-stability model is inherently complicated and is
also repeatedly calculated for n times, leading to tedious
computational tasks. To cope with the above computation-
intensive problems, the following strategies are adopted in
this work.

1. We use the smallest and variable moving window to
just encompass a single ellipsoid being tested. Each el-
lipsoid can correspond to a small coordinate matrix, in
which the coordination transform occurs, to avoid com-
puting the entire study area.

2. iHydroSlide3D v1.0 is built upon a parallel computing
framework and is capable of running on multicore pro-
cessors or computer clusters. The model also provides
the option to call the local maximum or a user-defined
number of cores up to the limit of the hardware. The
model divides the study area into user-defined number
of tiles, and each of them is processed independently
in parallel. All computing tasks need to be queued un-
til there are free computing cores. The slope-stability
information is computed and counted for each tile and
is stored in the computer memory. At the end of each
simulation time step, the model combines all tiles and
recalculates the overlapping part of the margin of each
moving window and then outputs the final results. The
model clears the computer memory after the procedure
and repeats the above operations in the next simulation
period.

2.7 Model validation

iHydroSlide3D v1.0 can be mainly evaluated on the hydro-
logical and landslide event levels (Fig. 3). Streamflow obser-
vations from the local gauge stations are utilized for valida-
tion of the modeled discharge. The statistical metrics such as
the Nash–Sutcliffe coefficient of efficiency (NSEC), Pearson
correlation coefficient (CC), and relative bias are computed
to measure the model performance. Furthermore, more than
a single gauge station is necessary when the very large scale
or multiple basins are involved. We also expect that the hy-
drologic process can be further calibrated by soil moisture
data if the measurements are available, since soil moisture
is more related to slope stability and thus is recommended

Geosci. Model Dev., 16, 2915–2937, 2023 https://doi.org/10.5194/gmd-16-2915-2023



G. Chen et al.: iHydroSlide3D v1.0: an advanced hydrological–geotechnical model 2923

(Lepore et al., 2013). To validate the model’s predicative ca-
pability for landslides, in situ measurements (e.g., L,W,V ,
and A of failures) will be ideal data for model validation and
refinement. Such data not only serve for evaluation but also
provide more hints for the constraint of random procedure
and model preparation. However, in most cases, only point-
like landslides are available for assessing the performance of
initiation location prediction. Two existing synthetic indices,
%LRclass (Park et al., 2013; Tran et al., 2018) and receiver
operating characteristic (ROC) curve (Fawcett, 2006), are
used to measure the model performance. Due to the absence
of specific timing information for all landslide occurrences,
we evaluated the model performance under the worst-case
scenario of hydrological conditions, where the FS reaches its
minimum value. In other words, we would consider a suc-
cessful prediction if the recorded landslide sites were esti-
mated as failures during the complete rainfall event.

2.8 Model inputs and outputs

The model inputs can be summarized into four types (given
in Table 1): meteorological forcing data, land surface fea-
ture data, simulation parameters, and calibration/verification
data. The detailed description, value/resolution, and source
can be found in Sect. 3. The abbreviations of input data
correspond the file name in the simulating folders, helping
users quickly identify and prepare necessary documents. The
output variables include all typical hydrological components
(e.g., overland runoff, soil moisture, and infiltration infor-
mation) and landslide assessments (FSPFVL and AL). Note
that model output is controlled by a user-defined global con-
trol file, and the components are thus selected based on the
interest of the user. The model calls for two sets of topo-
graphic data (see Sect. 2.5), and all gridded data are either
downscaled or aggregated to an objective spatial resolution
to ensure the forcing and auxiliary data matching with each
other. iHydroSlide3D v1.0 currently supports several differ-
ent options for file formats (ASCII, TIFF, and TXT) and map
projections, of which the Geographic Tagged Image File For-
mat (GeoTIFF) is preferred for its distinct advantage of con-
taining native compression capabilities, making the file sizes
smaller.

3 Materials and model setup

We test the iHydroSlide3D v1.0 code in the Yuehe River
basin, Shaanxi Province, China (Fig. 5). The basin has an
elevation between 270 and 2700 ma.s.l. and covers a total
area of 1100 km2. The terrain in this basin is characterized
by steep hills, gullies, and valleys, while its flood season is
usually accompanied by heavy and frequent rainfall. As a re-
sult, this basin is highly susceptible to slope instability and
sliding (Zhang et al., 2019; Wang et al., 2020). In this area,
54 slope failure locations were reported during a rainstorm

from 3 to 4 July in 2012 (no more specific time record). In
addition, the discharge of the flash flood was also observed
at the outlet of the basin.

Hourly precipitation data were provided by the China Me-
teorological Administration (CMA) based on the observa-
tions of gauge stations and were interpolated into a spatial
resolution of 3 arcsec (∼ 90 m). The potential evapotranspi-
ration (PET) data were derived from the Global Land Data
Assimilation System (GLDAS). The 3 h, 0.25◦ PET data
were first downscaled to a resolution of 3′′ using bilinear
interpolation and further downscaled to an hourly scale us-
ing linear interpolation. Two different resolutions of DEM
(90 and 12.5 m) from the NASA Shuttle Radar Topography
Mission (SRTM) version 3.0 (SRTM3) DEM and Advanced
Land Observing Satellite (ALOS) DEM are used for hydro-
logical and landslide modeling (introduced in Sect. 2.5), re-
spectively. The flow direction (FDR) and flow accumulation
maps (FAC) are necessary for hydrological simulation and
can be derived from the DEM map. The slope angle map is
optional for hydrological modeling but required for landslide
modeling, which can be directly computed through a built-
in slope angle calculation function in iHydroSlide3D v1.0.
The TWI data were derived using the ESRI ArcGIS and its
ArcHydro toolbox. The land cover data were derived from
the 30 m GlobeLand30-2010 data (Chen et al., 2015). Soil
texture was classified into the 12 United States Department of
Agriculture (USDA) soil texture types from the Harmonized
World Soil Database (HWSD v1.2) (Wieder et al., 2014)
based on a lookup table (Table 2) shared by both hydrologi-
cal and landslide modules.

The parameters used for this model are largely related to
an a priori map of soil information and have been generated
by Wang et al. (2020) and Zhang et al. (2016). Wm corre-
sponds to available water capacity between field capacity
and wilting point (Table 2) and is distributed according to
both topography and soil texture (Yao et al., 2012; Wang
et al., 2020). Saturated hydraulic conductivity (ks) strongly
depends on the soil type and is determined through the pe-
dotransfer lookup table (Table 2). Impervious surface area
(ISA) can obviously affect the hydrological process such as
infiltration and runoff generation and is calculated for each
grid cell by considering the fractions of artificial surface and
wetland in a land cover map. For the landslide module, the
constraints of the random landslides are regarded as a priori
parameters depending on the inventory. The inventory did
not record the dimensional information (length and width)
for all landslides, but it recorded a few of them, from which
we picked the maximum and minimum values to comprise
the constraints. Considering the random interval equals the
spatial resolution, the constraint boundaries were rounded to
the integer for further simplification. The total tiles divided
from the entire area, along with the landslide density and
user-defined number of cores, are summarized as related to
parallel computational parameters. The basic materials and
parameters are listed in Tables 3 and 4.
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Table 1. Overview of inputs datasets needed in iHydroSlide3D v1.0.

Input Datasets Derived datasets/parameters

Topographic Digital elevation model (DEM) Flow direction (FDR)
Flow accumulation (FAC)
Topographic wetness index (TWI)

Land cover (LANDCOVER) Land surface cover Percentage impervious area (ISA)
Soil texture (SOIL) Soil lookup table All soil-related parameters
Forcing data Precipitation (rain) and evapotranspiration (PET) data NA
Simulation parameters Previous literature, documents, and calibration results NA
Calibration/verification data Recorded floods and landslides NA

NA: not available.

Figure 5. Locations of the Yuehe River basin with its elevation and the reported landslide events.

We run the model on the high-performance (HP) clus-
ter with one manage node and eight computational nodes
(Intel® Xeon® CPU E5-2660 v4 at 2.00 GHz). Each node
is equipped with a CentOS system featuring 28 cores and
64 GB of RAM. Utilizing hyper-threading technology, it can
effectively achieve a total of 56 threads.

4 Results

4.1 Evaluation of the soil moisture downscaling method

We first evaluated the impacts and effectiveness of the soil
moisture downscaling method, which provides more detailed
soil water information (groundwater) for landslide model-
ing and may directly impact the stability assessments. Com-
pared to the infinite landslide model (Wang et al., 2020), the
3D model can fully consider the grid cells encompassed by
an assumed landslide boundary (elliptical outline; see Fig. 6).
The cells were chosen from the 90 m resolution datasets with
different antecedent soil water amount, of which the single
value was converted to a range among over the 7× 7 map
with a 12.5 m spatial resolution (Fig. 6). The long axis (ae) of
the tested ellipse reaches the diagonal of the square as far as
possible to encompass more soil columns, and the potential
depth of a failure is set to 2 m. The downscaled soil moisture

values are irregularly distributed (Fig. 6) because they are
contributed by several factors with local slope angle as the
major one (Wang et al., 2020). As a consequence, the fac-
tor of safety was computed to a different value when using
the single or composed soil moisture values for an assumed
landslide (Table 5). In these four test sites, the risks are com-
puted as the worse situations. However, in reality, such ef-
fects will be more uncertain due to the fact that the location
and geometry of a landslide and associated hydrological con-
ditions are all variable during the modeling. We argue that
this downscaling method is necessary when we perform iHy-
droSlide3D v1.0 in a cross-scale manner.

4.2 Testing landslide density

The model requires an appropriate user-defined landslide
density that is highly related to model computation effi-
ciency. This value is determined to satisfy the convergence
of the results over the study area and an acceptable level of
the running time. Similar work has been done in previous re-
search (Mergili et al., 2014b), and, equally important, here
we further study the relationship between the tile size and
random ellipsoid density required. We carried out the conver-
gence tests for three different sizes of a divided tile: 20× 20,
50× 50, and 100× 100 (number of grid cells). For each sce-
nario, we increased the ds (see Eq. 31) value and compared
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Table 2. Lookup table of key parameters for different soil types used in this study (refer to Wang et al., 2020; and Zhang et al., 2016).

USDA soil type Soil Saturated Porosity Friction Soil dry Field Wilting
cohesion hydraulic angle unit weight capacity point

(kPa) conductivity (degree) (kNm−3) (m3 m−3) (m3 m−3)
(ms−1)

Silty clay 30 1.06× 10−6 0.49 18.5 18 0.36 0.21
Clay 40 1.31× 10−6 0.47 16.5 19.5 0.36 0.21
Silty clay loam 50 1.44× 10−6 0.48 16.5 14 0.34 0.19
Clay loam 35 2.72× 10−6 0.46 20 14 0.34 0.21
Silt 9 2.05× 10−6 0.52 26.5 16.5 0.32 0.165
Silt loam 9 2.50× 10−6 0.46 24 14 0.3 0.15
Sandy clay 24.5 4.31× 10−6 0.41 22.5 18.5 0.31 0.23
Loam 10 4.53× 10−6 0.43 22.5 13 0.26 0.12
Sandy clay loam 29 6.59× 10−6 0.39 20 15 0.33 0.175
Sandy loam 6 1.02× 10−5 0.4 32 15 0.23 0.1
Loamy sand 7.5 1.78× 10−5 0.42 28.5 20.5 0.14 0.06
Sand 5 2.44× 10−5 0.43 40 21 0.12 0.04

Table 3. Detailed information of basic input data used in iHydroSlide3D v1.0.

Model input Value/resolution Data source

Rain (mm) Downscaled to hourly and of 3′′ resolution China Meteorological Administration (CMA) based on
gauge stations

PET (mm) Downscaled to hourly and of 3′′ resolution Global Land Data Assimilation System (GLDAS)

DEM (m) 90 and 12.5 m for hydrological and landslide
modeling, respectively

SRTM3 DEM (NASA v2.1) and ALOS DEM (Alaska
Satellite Facility)

FDR (◦) 90 m resolution Derived from the DEM data using the ESRI ArcGIS
ArcHydro toolbox

FAC (–) 90 m resolution Derived from the DEM data using the ESRI ArcGIS
ArcHydro toolbox

LANDCOVER (–) Aggregated to 90 m resolution GlobeLand30-2010 (Chen et al., 2015)

SOIL (–) USDA soil code from 1 to 12 with 90 m resolu-
tion

Harmonized World Soil Database (HWSD v1.2; Wieder
et al., 2014) and the Natural Resources Conservation
Service (NRCS) of the US Department of Agriculture

TWI (–) Derived using ESRI ArcGIS and the ArcHydro
toolbox based on the slope and the upstream
contributing area; both 90 and 12.5 m resolution
are necessary

NA

NA: not available.

the spatial pattern with the previous ds step. Two computa-
tional targets, the cumulative changed area over the entire
region (

∑
changed pixels area) and cumulative changed FS

multiplied by area (FSR× area), were used to evaluate the
quantity of the convergence results (Mergili et al., 2014b).
The former target is easier to converge; i.e., all pixels have
been assigned a relatively invariant value of FS, while an-
other target is strongly affected by the area of the tile (Fig. 7).
In general, all the scenarios have similar convergence pro-

cesses in term of
∑

changed pixels area (ds = 500 in Fig. 7).
FSR× area is more difficult to converge with the increase
in the total area because this cumulative value is closely re-
lated the total number of the cells. We note that there exists
no theoretical value of landslide density due to the fact that
the generation of the potential landslide is totally random.
Strictly speaking, ds =∞ will be an optimum value; how-
ever, there will always be a trade-off between the quality and
efficiency of the calculation. Further, the increase for over-
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Table 4. Description of simulation parameters used in iHydroSlide3D v1.0.

Parameters Description Value/resolution Source

TimeStep (s) Time step of the simulation Defined by user NA

ISA (%) Percentage impervious area Computed based on land cover
map

NA

Ksat (mmh−1) Saturated hydraulic conductivity Derived from soil texture map NA

WM (mm) Available water capacity Computed from topography
and soil texture

Wang et al. (2020)

B (–) Exponent of the infiltration curve Determined by soil texture Flamig et al. (2020)

Ncores (–) Number of parallel computational cores Defined by user and limited by
hardware

NA

LandslideDensity (–) Density of the random ellipsoid over the area Defined in Eq. (31) and chosen
as a appropriate after testing

Refer to Mergili et al.
(2014a)

TotalTile (–) Number of divisions of study area Defined by user and should
refer to Ncores

NA

MAXae (m) The maximum length of a random ellipsoid 200 Landslide inventory

MINae (m) The minimum length of a random ellipsoid 50 Landslide inventory

MAXbe (m) The maximum width of a random ellipsoid 150 Landslide inventory

MINbe (m) The minimum width of a random ellipsoid 50 Landslide inventory

NA: not available.

Figure 6. Soil moisture downscaling results from a coarser resolution (90 m) to a finer resolution (12.5 m). (a–d) Four grid cells selected
from the 90 m resolution map. The ellipse is the assumed landslide boundary and encompasses the grid cells with the 12.5 m resolution.

all quality of the prediction cannot be found with a larger
adopted density when the

∑
changed pixels area has con-

verged, which in turn can significantly increase the compu-
tational burden (Mergili et al., 2014a). Besides, the density
is mainly determined by constraints for the randomization of
ellipsoid dimensions, for which the value would be set based
on necessary tests if the model is applied to a new area. For
the application in this study area, we consider ds = 500 a suf-

ficiently reasonable approximation. The computing time for
simulation is 55 432 s, with 328 s per time step.

4.3 Characteristics of rainfall and flood events

Provided the essential parameters and datasets are appropri-
ately prepared for iHydroSlide3D v1.0, we choose 20 June,
00:00, to 15 July, 00:00 (UTC+08:00), as the simulation pe-
riod, which is defined by two factors: (i) the period must in-
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Table 5. Impacts of soil moisture downscaling on the potential slope failures in terms of the computed FS value.

Test cases Original soil Downscaled soil Original FS FS from downscaled
moisture (m3 m−3) moisture (m3 m−3) soil moisture

1 71.9 % 66.3 %–83.6 % 1.65 1.97
2 77.5 % 71.2 %–84.5 % 1.45 1.81
3 71.6 % 62.6 %–86.2 % 1.96 2.35
4 75.3 % 68.3 %–87.3 % 1.46 1.78

Figure 7. Landslide density tests for tiles with (a) 20× 20,
(b) 50× 50, and (c) 100× 100 grid cells. The total areas for the
three scenarios are also presented. Two targets are computed during
an interval of ds = 1.

clude the main rainstorm triggering the flood and slope fail-
ures and (ii) the period should be longer than the observa-
tion period to exclude the effect of initial conditions (Zhang
et al., 2016; Wang et al., 2020). As illustrated in Fig. 8,
the rainstorm started around 4 July, 00:00 (UTC+08:00),
reached the peak rate (exceeded 25 mmh−1) within 5 h, and
lasted for about a day across the region. The peak discharge
was observed a few hours after the peak-rainfall moment,
reaching a value close to 1000 m3 s−1. The comparison be-
tween the modeled and observed discharge shows a gener-
ally good agreement with bias+ 37.9 %, NSEC+ 0.77, and
CC+ 0.93, respectively (Fig. 8). The slightly large bias im-
plies there is likely some uncertainty in routing or flow con-
centration processes depicted by the hydrological module in
iHydroSlide3D v1.0. Moreover, the model is sensitive to the
rainfall data (before 4 July, 02:00, and after 7 July, 14:00,
UTC+08:00). As a result, uncertainty in the rainfall data may
contribute to the bias in the simulated streamflow. Neverthe-

Figure 8. Basin-average rainfall rates and modeled hydrographs
against the observed streamflow.

less, the above results indicate that iHydroSlide3D v1.0 is
generally capable of simulating the flood events and runoff
processes when the model is calibrated.

4.4 Evolution of landslide risk responding to the
hydrological process

4.4.1 Soil moisture and factor of safety

The evolutions of the soil moisture and landslide suscepti-
bility are illustrated in Fig. 9. There is a small part of this
region being predicted as unstable areas (Fig. 9a) in the be-
ginning of the storm and can be explained by (i) the effect
of antecedent rainfall or initial hydrological conditions and
(ii) some grid cells that have steep slopes and are extremely
unstable (Arnone et al., 2011; Aristizábal et al., 2016). These
grid cells, generally located on very steep slopes, are more
easily calculated as unstable areas in terms of FS value ac-
cording to Eq. (19), which may bring some overestimation in
iHydroSlide3D v1.0. However, we have attempted to avoid
such weakness by using the wetting front concept with regard
to slope failure depth (Eq. 26), which is subject to the hydro-
logic infiltration process and remains very small at the early
stage of the rainfall event. As a result, a very small portion
is estimated (Fig. 9a). The soil moisture drastically increases
when the rainstorm starts, particularly for the computational
elements (streaks in Fig. 9a and b) belonging to main routing
channels of the drainage network. Based on the cell-to-cell
flow routing rule, at the early stage of the storm, these cells
have more chances to experience re-infiltration of excess sur-
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Figure 9. Spatiotemporal evolutions of the soil wetness (i.e., degree of saturation) and factor of safety. (a–d) Four moments that span the
complete rainfall event.

face runoff from upstream cells. As a consequence, they are
more likely to reach a saturated condition. This phenomenon
emphasizes the contribution of topography to the evolution
of soil moisture at the early stage of a rainstorm, when the
saturated hydraulic conductivity is relatively similar. In ac-
cordance with the soil moisture, more conditional unstable
grid cells are predicted compared to the spatial pattern before
rainfall starts. Soil moisture and landslide risk still continue
to increase 3 h later and after the rainstorm reaches its peak;
as a result, most of the study area is fully saturated, and unsta-
ble cells are substantially increased (Fig. 9c). Different from
the early stage, the excess portion of rainfall cannot effec-
tively be absorbed by soil anymore but contributes to runoff
instead, leading to the flood along the river channel (Fig. 8).
No significant difference can be observed between Fig. 9c
and d, as the water amount of the rainfall has exceeded the
infiltration demand and water capacity.

4.4.2 Probability of failure

The model estimates the probability of failure for each grid
cell due to the random operation of potential landslide gen-
eration (Sect. 2.7), although soil properties and hydrolog-
ical conditions are deterministic. The original unstable ar-
eas were further re-classified to a different degree of prob-
ability (Fig. 10). We specifically divided the risk zones in
terms of the PF values referring to the available classifica-
tion (Lizárraga and Buscarnera, 2020; Vandromme et al.,
2020): low (0<PF< 5 %), moderate (5 %<PF< 30 %),
high (30 %<PF< 60 %), and very high (PF> 60 %). As
shown in Fig. 10a, most of the unconditional unstable ar-
eas fell in zones of low and moderate susceptibility whilst
the others were estimated as the risks of high or very high.
The former grid cells (e.g., inset 2 in Fig. 10), affected by

the cell with a steep slope, might be computed as unstable
because iHydroSlide3D v1.0 assesses the slope stability us-
ing the 3D landslide model (Eq. 19) and then outputs the
minimum FS after random tests. In this work, relying on the
PF classification, we can infer there are only a few steep grid
cells (including themselves) near the grid cells with small
values of PF – at least they are attenuated by the flat terrain.
On the other side, for the grid cells with large PF values (e.g.,
inset 1 in Fig. 10, high or very high zones), the local topog-
raphy is more likely to be continuous steep slopes that can
be repeatedly calculated as unstable and thus cause larger PF
values (Eq. 28). However, very few landslides are observed in
the areas with steep slopes (Figs. 9 and 10). These areas may
be covered by no or very thin colluvium or regolith; under
this circumstance, soil depth tends to be negatively related
to slope angle according to field survey or available soil-
thickness models (Ho et al., 2012; Lanni et al., 2012; Alvioli
and Baum, 2016; Tran et al., 2018). In this way, hazards like
rockfall or avalanche are more expected instead of rainfall-
induced landslides for these areas with extremely steep slope
angles. Spatiotemporal evolution of the PF value shows that
the probabilistic approach is capable of not only identifying
the stable or unstable areas but also monitoring the unstable
area in a more reliable and informative way. Compared to the
binary assessment (stable and unstable), this method can help
to better understand the relationship of landslide risk with lo-
cal topography and dynamic hydrological conditions.

iHydroSlide3D v1.0 depicted the evolutions of unstable
area and all risk zones (as percent of the whole region) intro-
duced above over the computational time (curves in Fig. 11).
These two areas are controlled by the patterns of FS and
PF, respectively. Overall, the unstable area holds its leading
position during the complete rainstorm. More specifically,
FS values respond more dramatically to the rainfall event
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Figure 10. Spatiotemporal evolutions of the landslide occurrence probability. (a–d) Four moments that span the complete rainfall event.

Figure 11. Evolution of percent area computed as unstable or various failure probabilities as the rainfall continues.

than PF values, which makes the unstable area increase more
rapidly at the peak stage of the rainfall. This is not surpris-
ing because changing the value of PF should obey stricter
rules (Eqs. 27 and 28) and experience repeatedly random
tests. Among the various classes of the probability, the per-
cent area and sensitivity to rainfall decrease with increasing
PF-class value (see Fig. 11). At the early stage, the uncon-
ditional unstable area is computed to be less than 5 %, fol-
lowed by other PF classifications with various thresholds. In
particular, the percent area with PF> 60 % is close to zero –
precisely 0.12 %. At the end of the rainfall (the soil is nearly
fully saturated, and the curves are steady), the percent area
with PF> 5 % is about 10 % less than the total unstable area,
followed by the other zones of risk. A slight increase is ob-
served for PF> 60 % (very high zone), with a significant
contribution from the unconditional unstable areas. These
areas could remain unaffected by the hydrological process
(Aristizábal et al., 2016). The rest of the curves lie between

them. The spatiotemporal classification of the landslide prob-
ability, as well as the traditional binary state of slope stability,
is meaningful for landslide risk delineation and monitoring
the area with a specific failure probability of interest.

4.4.3 Spatial performance of model

We evaluated the spatial performance of iHydroSlide3D v1.0
during the study period as presented in Table 6. We also
compare our model with the previous coupled model CRES-
LIDE, of which the infinite slope stability is adopted
(Fig. 12). Results show that 33 out of 54 landslides were
successfully predicted, falling into the area with FS< 1 and
PF> 0. For the zones of landslide risk, most of the fail-
ures (reaches 53.7 %) are observed in low and moderate risk
zones, whilst the remainder are in the zones with high and
very high risks. The value of the %LRclass index is evaluated
as 82.91 % when using the factor of safety for prediction, and
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Table 6. Comparison of LRclass and %LRclass obtained from FS and PF values. The unstable areas are further divided into several risk zones
with regard to their PF values.

FS class Number of Ratio to total Percent of predicted area LRclass %LRclass

events (a) events
(
c = a

b

) (
d =

cellclass
celltotal

)(
e = c

d

)
(= e/f )

FS< 1 33 61.11 24.46 2.50 82.91
FS> 1 21 38.89 75.54 0.51 17.09
Total events 54 (b) 100 100 3.01 (f ) 100
PF= 0 (null) 21 38.89 75.54 0.51 5.95
0<PF< 5 % (low) 13 24.07 9.04 2.66 30.76
5 %<PF< 30 % (moderate) 16 29.63 9.6 3.09 35.66
30 %<PF< 60 % (high) 3 5.56 3.92 1.42 16.37
PF> 60 % (very high) 1 1.85 1.9 0.97 11.26
Total events 54 100 100 8.66 100

Figure 12. ROC plot comparing slope-stability results from the
CRESLIDE model and iHydroSlide3D v1.0. The points on curves
correspond to FS= 1 for both models. The AUC values are also
shown in the plot.

the same index reaches 94.05 % when we add up the values
for all four risk zones. To be less conservative, the %LRclass
index for PF prediction can be 82.79 %, which is close to the
value by FS prediction, if we only consider the landslide risk
from low to high. This result can be explained by the number
of landslides per unit area; i.e., the binary approach would
cover more extensive areas to contain the landslide locations.
By adopting the probabilistic approach to identify classified
risk zones, we can focus on the area of interest and make
more targeted and efficient predictions.

The ROC analysis demonstrates that iHydroSlide3D v1.0
generally has a higher hit rate and lower false-positive rate
relative to the CRESLIDE model that is coupled with the in-
finite landslide model. The area under the ROC curve (AUC)
values for them are 0.77 and 0.72, respectively, suggest-
ing that iHydroSlide3D v1.0 outperforms CRESLIDE in this
case study. As mentioned in Sect. 2.3.2, the most significant
difference between the two models is the assumption of land-

slide geometry. The 3D model takes the neighboring cells
into account and thus provides a comprehensive FS value
(Eq. 19), while the infinite models abruptly solve the limit
equilibrium equation on a solo raster cell and are strongly
conditioned by the local topography (Mergili et al., 2014b).
This explains why the infinite-type models have a tendency
to provide more conservative results (i.e., lower stability or
worst situation) (Xie et al., 2006; Tran et al., 2018; Mergili
et al., 2014b; Chakraborty and Goswami, 2016; He et al.,
2021), indicated by higher false-positive rates (e.g., 0.32 for
CRESLIDE versus 0.20 for iHydroSlide3D when the thresh-
old equals 1) in this study.

4.4.4 Landslide hazard analysis

iHydroSlide3D v1.0 is capable of computing the extent (i.e.,
the area AL and volume VL) of potential landslides, which is
essential for landslide hazard assessment. Compared to the
visual techniques (e.g., aerial photograph interpretation and
high-resolution imagery) or in situ investigation, the model
estimates the AL and VL in a physics-based manner and
strongly depends on the restrictions of random ellipsoids. In
this way, AL is simply determined by the number of encom-
passed raster cells, while VL is computed by the soil columns
and the failure depth associated with hydrological infiltra-
tion (Eq. 26). Therefore, there exist common phenomena that
the values of VL are more variable than that of the AL; i.e.,
one unique AL may correspond to multiple VL values. Fur-
thermore, it is possible for adjacent cells to share the same
values of AL and VL, as they may fall within the same po-
tential landslide. In this work, we recorded and presented the
max value of the AL and VL as the worst scenario across the
unstable area (see Fig. 13) after the sufficient random tests.
Results show that most of the areas range from 4× 104 to
5× 104 m2, while the volumes are more variable with a max-
imum value of around 1.1 million m3. The relatively large
value of VL may result from (i) a relatively large AL that
contains more soil columns or (ii) deep-seated landslides in-
volved. It is worth noting that the areas with extremely large
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Figure 13. Spatial patterns of the max values of (a) AL and (b) VL for model-predicted landslides.

values of VL (Fig. 13b) are roughly overlapped by the areas
with relatively large PF (Fig. 10d). This can be explained by
the fact that, in our pursuit of the minimum of the FS, a rel-
atively thick failure depth was adopted in these areas, which
caused an overprediction for landslide areas (Ho et al., 2012).
Although the maximum magnitudes (AL and VL) of land-
slide hazards provide more conservative assessments, we ex-
pect that they are acceptable in slope engineering assessment
(Tran et al., 2018).

Due to a lack of historical documents for real AL and VL
in this field, we evaluated the landslide hazard results by fit-
ting the relationships of the AL and VL and comparing them
with the existing relationships reported in previous literature.
As the nature of these two geometrical properties introduced
above, we did not collect all the values for each pixel. In-
stead, we prepared the fitted source into six datasets accord-
ing to the combinations of AL and VL (source data in Ta-
ble 7). All possible VL values referred to the cases with PFmin
and PFmax, as well as four risk zones. We further fitted these
six sets using the power law and counted the R-square num-
ber (see Table 7). Moreover, as a comparison, we collected
four available relationships from previous literature com-
puted using field measurements in their study (Table 7, ID
7 to 10). We then plotted them by substituting the AL val-
ues in this work (see Fig. 14). Obviously, relatively fewer
data are plotted in Fig. 14a and b, which, as we have pointed
above, shows all possible areas for potential landslides with-
out a duplicate value. The values of VL estimated with PFmax
(Fig. 14b) are relatively larger than that with PFmin (Fig. 14a)
because the deeper slip depth tends to obtain a smaller FS
values, which in turn inevitably results in a larger volume of

a failure. The fitted curves are close to the available equations
in terms of trend, among which the Abele (1974) model over-
estimated the VL in cases with ID 1 and 2. The efficiency of
the fitted equations is generally good in terms of R2, reach-
ing 0.992. However, such a power model has low efficiency
for cases of ID 3 to 6 with lowR2 and abnormally wide confi-
dence intervals. Although these cases adopt the unique com-
binations of AL and VL, it is still very likely to accept the
samples with identical AL and consequently get more dots in
the AL ∼ VL graph (Fig. 14c–f), which further limits fitting
them as functions (i.e., a binary relation between two sets is
defined as an association where each element of the first set
is precisely linked to one element of the second set). In other
words, they are regarded as a sampling error when the power
model is considered. In this work, we can only provide rel-
atively ideal geometrical information (with regular and lim-
ited characteristics) in a mathematical manner, which is de-
termined by the cell size and random procedure. Even so, in
the cases of ID 1 and 2, unique values of AL are employed in
the power models. Note that such relationships are not only
limited to the maximum and minimum PF value but also any
value of interest. For those applications limited by field mea-
surements, the method proposed here is expected to roughly
assess the magnitude of landslide hazards.

5 Discussion and conclusions

We have modified the 3D landslide model to make it
applicable for more general situations (i.e., all possible
soil moisture states). To this end, we incorporated the
distributed hydrological model CREST to undertake the
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Table 7. Relationships linking maximum landslide area AL to landslide volume VL.

ID Equation ALmin (m2) ALmax (m2) Source data used to fit R2

1 VL= 2855×A0.687
L 547× 103 9× 104 Unique AL and VL with PFmin 0.992

2 VL= 1464×A0.766
L 547× 103 9× 104 Unique AL and VL with PFmax 0.992

3 VL= 26 727×A1.061
L 547× 103 9× 104 Unique combination of AL and VL in the low zone 0.599

4 VL= 8029×A0.842
L 719× 103 883× 104 Unique combination of AL and VL in the moderate zone 0.184

5 VL= 5134×A0.684
L 625× 103 883× 104 Unique combination of AL and VL in the high zone 0.13

6 VL= 1541×A0.806
L 625× 103 858× 104 Unique combination of AL and VL in the very high zone 0.221

7 VL= 0074×A1.450
L 2× 100 1× 109 Guzzetti et al. (2009)

8 VL= 039×A1.31
L 1× 101 3× 103 Imaizumi and Sidle (2007)

9 VL= 0242×A1.307
L 2× 105 6× 107 Abele (1974)

10 VL= 12273×A1.047
L 3× 105 39× 1010 Haflidason et al. (2005)

Column 1 lists the equation number. Column 2 shows the fitted equations in this work (ID 1 to 6) and available equations (ID 7 to 10) selected from previous literature.
Columns 2 and 3 list the ranges of AL applied for equations; the data for ID 1 to 6 are from this work; data for ID 7 to 10 are from the literature. Column 4 gives the data
source. Column 5 lists the common statistical measure R squared (R2).

Figure 14. Six sets of source data (ID 1 to 6 in Table 7) are plotted and fitted in this work. All available equations (ID 7 to 10 in Table 7) are
plotted by substituting the AL values in this work. Red zone shows 95 % confidence intervals.

computational task of hydrological components, forming a
new coupled hydrological–geotechnical model called iHy-
droSlide3D v1.0. The model is capable of assessing the spa-
tiotemporal landslide susceptibility (FS and PF), perform-
ing hazard analysis (geometric properties of landslides, AL
and VL), and predicting flash floods driven by rainfall pro-
cesses. Considering differential needs for computational res-
olutions by the hydrological and landslide modules, we em-
bedded the soil downscaling method to seamlessly execute
the code within such a sophisticated framework contain-
ing two datasets with different resolutions. In addition, we
parallelized the code of the landslide module for efficient
large-scale performance. We evaluated our computational ef-
ficiency by comparing with two available parallel codes TRI-
GRS v2.1 (Alvioli and Baum, 2016) and r.slope.stability
(Mergili et al., 2014a). The runtime for the single time step
is 328 s for the present code, while it is 110 and 1900 s for

TRIGRS v2.1 and r.slope.stability, respectively, in their de-
scriptive literature. Such a comparison is unfair because the
runtime was not obtained under the same testing prerequi-
sites. Moreover, differences in model structure prevent them
from being treated equally. TRIGRS v2.1 uses a simple infi-
nite slope description, and r.slope.stability does not include
the hydrological simulation. We show them here only for the
general impression, upon which users may estimate the com-
putational cost based on hardware and simulation scale.

Prior information on parameters is necessary for this
model and needs to be handled with the utmost care. Most of
the parameters are determined by available datasets and field
records, while few of them are calibrated manually based on
computational experimental tests. In particular, the landslide
density could significantly affect the output results, and, even
worse, a small value may yield meaningless results and un-
wanted consequences. Thus, the landslide density needs to
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be regularly tested when the code is applied for a new region.
However, we would preliminarily recommend ds = 500 for a
rough assessment as it has been tested in detail in this study
and a study by Mergili et al. (2014a). We conclude that the
converged density value tends to be irrelevant to the tile area
once the constraints of the landslide’s shape are determined.
We also argue that the soil downscaling method is necessary
when we run the hydrological and landslide modules at dif-
ferent resolutions, because the uneven soil moisture patterns
exactly impact the slope-stability assessment. In particular,
the 3D stability model should sufficiently consider the spatial
distribution of soil moisture within an objective slip surface.
This is a typical difference when we adopt the downscaling
method compared to the infinite stability model (Wang et al.,
2020).

In this work, we have prepared the observed river stream-
flow from the gauge and the point-like landslide locations.
Although we have gotten a generally good agreement with
the observations in terms of discharge and similar efforts
have been made in previous studies (He et al., 2016; Zhang
et al., 2016; Wang et al., 2020), the results cannot directly
prove that the soil moisture is accurately estimated, which is
truly associated with slope stability, per se. Other soil mois-
ture data through site measurement (Lepore et al., 2013) or
satellite (Zhuo et al., 2019a, b) can be used to further vali-
date the model performance. However, field measurements
are usually not available, and even many boreholes can only
cover some of the many grid cells in a large-scale region
(Marin et al., 2021), making the representativeness of ground
observations questionable. The observation from the satellite
is useful for soil moisture in shallow depth, hindering the
application for landslide predictions at a deep depth (Zhuo
et al., 2019a). Therefore, we consider the soil moisture as an
intermediate hydrological component, of which the spatial
pattern is simulated at each time step.

The model advantageously provides a spatiotemporal per-
spective for the evolution of hydrological processes, as well
as the landslide assessments and hazards. Together with the
random operation, the model can simultaneously assign the
unstable grid cells with the factor of safety and failure proba-
bility. We expect such a combination of landslide assessment
analysis is effective and more targeted. Moreover, temporal
monitoring of the process evolution is useful for dynamic
management of unstable areas subject to rainfall events. The
overall performance of the model is generally satisfactory
based on the statistical metrics of both hydrological (bias,
NSEC, CC) and landslide aspects (%LRclassROC−AUC).
We further recommend that the %LRclass index can be appro-
priately used to evaluate the landslides within various zones
of risk determined by PF ranges. Note that we did not dis-
tinguish the unconditional stable and unstable grid cells be-
forehand, although they can inherently occur in the landslide
models built upon the limit equilibrium principle (Aristizábal
et al., 2016). However, iHydroSlide3D v1.0 defined the fail-
ure depth by adopting the wetting front concept that is subject

to the infiltration process. The model, therefore, can better
target the rainfall event and reasonably handles the hydro-
logic initial conditions. In addition, the results also indicate
that the 3D landslide model can ameliorate the overpredic-
tion problem, known to be present in the infinite landslide
models.

The comprehensive assessments (for both flood and land-
slide) possibly contribute to land management and disaster
risk management with professional analysis. The landslide
susceptibility and hazard zoning are able to manage land-
slide hazard in urban/rural areas by excluding development in
higher hazard areas and requiring hydro-geotechnical assess-
ment in the planning stage (Fell et al., 2008). The conception
has been introduced across some countries such as France
(Fell et al., 2008) and Switzerland (Leroi et al., 2005). A
recent work corroborated existing hypotheses that urbaniza-
tion increases landslide hazards (Johnston et al., 2021). Our
model could be used as a tool to study the importance of con-
sidering interactions with urbanization when predicting land-
slide hazards under climate change scenarios. The current
modular framework and flexibility of modeling setup also
make it feasible to link with other numerical weather predic-
tion models and real-time forcings. These complicated appli-
cations generally require extraordinary computing resources
to support. The verification for landslide geometric output
(volume and surface area) is still limited by the available
measured data (e.g., landslide scars used in Arnone et al.,
2011). Instead, we evaluated them with the fitted power-law
equations, which, together with the available relationships in
previous studies, are used as statistical tools for analysis of
regional landslide magnitude. We have not unveiled the fun-
damental geotechnical mechanics of landslides in terms of
3D geometry of the sliding surface, which need be solved
through field investigation. The present study employs the
limit equilibrium method and iteration in a manner akin to
Marchesini et al. (2009). Notably, we expanded upon previ-
ous research by conducting model simulations over a con-
siderably larger spatial extent, thereby yielding more fine-
grained findings.

Another limitation is the geotechnical parameters ex-
tracted from the available datasets. Determining their val-
ues in this way cannot consider geotechnical uncertainty due
to inherent temporal and spatial variability of terrain materi-
als (Hicks and Spencer, 2010; Griffiths et al., 2011; Mergili
et al., 2014a). One way to overcome the problem is adopting
the Monte Carlo approach, examples of which can be found
in literature (Raia et al., 2014; Mergili et al., 2014a; Van-
dromme et al., 2020). Such embedded probabilistic method,
no doubt, will considerably bring additional computational
burden. In addition, we associate the failure depth with the
infiltration process in this work, neglecting the spatial dis-
tribution of soil thickness in a terrain, which shall be a sub-
ject of future studies by supplying different soil-thickness as-
sumptions.
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In summary, a new hydrological–geotechnical model, iHy-
droSlide3D v1.0, coupling a distributed hydrological model
(CREST) and a three-dimensional slope-stability model
(3D landslide model), was described and tested in this study.
The model is capable of simulating the spatiotemporal evolu-
tions of hydrological components and landslide susceptibil-
ity and hazard. In order to coordinate the different resolution
of datasets required for hydrological and landslide modules,
the soil downscaling module is embedded to ensure that the
code can be seamlessly executed. For efficiency, we program
the code within a parallel framework and, together with the
auxiliary efforts, make it possible to run in a large region.
The model comprehensively presented the consequences of
rainfall-triggered landslides at the watershed scale. With the
evaluations from both hydrological and landslide aspects, we
highlight the performance of iHydroSlide3D v1.0 on back
analysis and the potential for predicting cascading flood–
landslide disasters. The produced zones of risk and land-
slide geometric properties are valuable for disaster preven-
tion and risk management. The modeling system presented
in this work is also designed as a framework and has the
potential to adopt other hydrological or land surface model
(LSM) schemes and landslide models as alternatives. More-
over, iHydroSlide3D v1.0 can be further improved by op-
timizing geotechnical parameters and adopting other soil-
thickness assumptions.

Code and data availability. The source code to iHy-
droSlide3D v1.0 is available on GitHub at https://github.com/
GuodingChen/iHydroSlide3D_v1.0 (last access: 2 August 2021)
and on Zenodo at https://doi.org/10.5281/zenodo.4577536
(Chen et al., 2021b). The data of results displayed in this
paper are provided, along with the plot code, on GitHub at
https://github.com/GuodingChen/Data-Plot_code/tree/Data&
plot_code (last access: 2 August 2021) and on Zenodo at
https://doi.org/10.5281/zenodo.4559938 (Chen et al., 2021a).
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