Articles | Volume 15, issue 19
https://doi.org/10.5194/gmd-15-7421-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7421-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
Elchin E. Jafarov
Earth and Environmental Sciences Division, Los Alamos National
Laboratory, Los Alamos, NM, USA
Woodwell Climate Research Center, Falmouth, MA, USA
Ken D. Tape
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
Benjamin M. Jones
Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA
Victor Stepanenko
Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
Related authors
No articles found.
Fabian Seemann, Michael Zech, Maren Jenrich, Guido Grosse, Benjamin M. Jones, Claire Treat, Lutz Schirrmeister, Susanne Liebner, and Jens Strauss
EGUsphere, https://doi.org/10.5194/egusphere-2025-3727, https://doi.org/10.5194/egusphere-2025-3727, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Arctic coastal landscapes, like those in northernmost Alaska, often contain saline sediments that are more prone to thawing. We studied six sediment cores to understand how thawing and salinity affect organic carbon breakdown and land change. Our results show that salinity speeds up organic matter loss when permafrost thaws. This highlights the overlooked risk of salinity in shaping Arctic landscapes and carbon release as the climate continues to warm.
Elchin E. Jafarov, Hélène Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev., 18, 3857–3875, https://doi.org/10.5194/gmd-18-3857-2025, https://doi.org/10.5194/gmd-18-3857-2025, 2025
Short summary
Short summary
This study improves how we tune ecosystem models to reflect carbon and nitrogen storage in Arctic soils. By comparing model outputs with data from a black spruce forest in Alaska, we developed a clearer, more efficient method of matching observations. This is a key step towards understanding how Arctic ecosystems may respond to warming and release carbon, helping make future climate predictions more reliable.
Frieda P. Giest, Maren Jenrich, Guido Grosse, Benjamin M. Jones, Kai Mangelsdorf, Torben Windirsch, and Jens Strauss
Biogeosciences, 22, 2871–2887, https://doi.org/10.5194/bg-22-2871-2025, https://doi.org/10.5194/bg-22-2871-2025, 2025
Short summary
Short summary
Climate warming causes permafrost to thaw, releasing greenhouse gases and affecting ecosystems. We studied sediments from Arctic coastal landscapes, including land, lakes, lagoons, and the ocean, finding that organic carbon storage and quality vary with landscape features and saltwater influence. Freshwater and land areas store more carbon, while saltwater reduces its quality. These findings improve predictions of Arctic responses to climate change and their impact on global carbon cycling.
Valeria Briones, Hélène Genet, Elchin E. Jafarov, Brendan M. Rogers, Jennifer D. Watts, Anna-Maria Virkkala, Annett Bartsch, Benjamin C. Maglio, Joshua Rady, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-226, https://doi.org/10.5194/essd-2025-226, 2025
Manuscript not accepted for further review
Short summary
Short summary
Arctic warming is causing permafrost to thaw, affecting ecosystems and climate. Since land cover, especially vegetation, shapes how permafrost responds, accurate maps are crucial. Using machine learning, we combined existing global and regional datasets to create a hybrid detailed 1-km map of Arctic-Boreal land cover, improving the representation of forests, shrubs, and wetlands across the circumpolar.
Noriaki Ohara, Andrew D. Parsekian, Benjamin M. Jones, Rodrigo C. Rangel, Kenneth M. Hinkel, and Rui A. P. Perdigão
The Cryosphere, 18, 5139–5152, https://doi.org/10.5194/tc-18-5139-2024, https://doi.org/10.5194/tc-18-5139-2024, 2024
Short summary
Short summary
Snow distribution characterization is essential for accurate snow water estimation for water resource prediction from existing in situ observations and remote-sensing data at a finite spatial resolution. Four different observed snow distribution datasets were analyzed for Gaussianity. We found that non-Gaussianity of snow distribution is a signature of the wind redistribution effect. Generally, seasonal snowpack can be approximated well by a Gaussian distribution for a fully snow-covered area.
Lydia Stolpmann, Ingmar Nitze, Ingeborg Bussmann, Benjamin M. Jones, Josefine Lenz, Hanno Meyer, Juliane Wolter, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2024-2822, https://doi.org/10.5194/egusphere-2024-2822, 2024
Preprint archived
Short summary
Short summary
We combine hydrochemical and lake change data to show consequences of permafrost thaw induced lake changes on hydrochemistry, which are relevant for the global carbon cycle. We found higher methane concentrations in lakes that do not freeze to the ground and show that lagoons have lower methane concentrations than lakes. Our detailed lake sampling approach show higher concentrations in Dissolved Organic Carbon in areas of higher erosion rates, that might increase under the climate warming.
Mauricio Arboleda-Zapata, Michael Angelopoulos, Pier Paul Overduin, Guido Grosse, Benjamin M. Jones, and Jens Tronicke
The Cryosphere, 16, 4423–4445, https://doi.org/10.5194/tc-16-4423-2022, https://doi.org/10.5194/tc-16-4423-2022, 2022
Short summary
Short summary
We demonstrate how we can reliably estimate the thawed–frozen permafrost interface with its associated uncertainties in subsea permafrost environments using 2D electrical resistivity tomography (ERT) data. In addition, we show how further analyses considering 1D inversion and sensitivity assessments can help quantify and better understand 2D ERT inversion results. Our results illustrate the capabilities of the ERT method to get insights into the development of the subsea permafrost.
M. R. Udawalpola, C. Witharana, A. Hasan, A. Liljedahl, M. Ward Jones, and B. Jones
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-M-2-2022, 203–208, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-203-2022, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-203-2022, 2022
Victor Lomov, Victor Stepanenko, Maria Grechushnikova, and Irina Repina
EGUsphere, https://doi.org/10.5194/egusphere-2022-329, https://doi.org/10.5194/egusphere-2022-329, 2022
Preprint withdrawn
Short summary
Short summary
We present the first mechanistic model LAKE2.3 for prediction of methane emissions from artificial reservoirs. Estimates of CH4 emissions from the Mozhaysk reservoir (Moscow region) provided by the model are demonstrated. Methane annual emissions through diffusion, ebullition and downstream degassing according to in situ measurements and model simulations are presented. The experiments with the model allowed to determine the most sensitive model parameters for calibration of methane fluxes.
Noriaki Ohara, Benjamin M. Jones, Andrew D. Parsekian, Kenneth M. Hinkel, Katsu Yamatani, Mikhail Kanevskiy, Rodrigo C. Rangel, Amy L. Breen, and Helena Bergstedt
The Cryosphere, 16, 1247–1264, https://doi.org/10.5194/tc-16-1247-2022, https://doi.org/10.5194/tc-16-1247-2022, 2022
Short summary
Short summary
New variational principle suggests that a semi-ellipsoid talik shape (3D Stefan equation) is optimum for incoming energy. However, the lake bathymetry tends to be less ellipsoidal due to the ice-rich layers near the surface. Wind wave erosion is likely responsible for the elongation of lakes, while thaw subsidence slows the wave effect and stabilizes the thermokarst lakes. The derived 3D Stefan equation was compared to the field-observed talik thickness data using geophysical methods.
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022, https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
Short summary
Recent research indicates the importance of lateral transport of dissolved carbon in the polygonal tundra, suggesting that the freeze-up period could further promote lateral carbon transport. We conducted subsurface tracer simulations on high-, flat-, and low-centered polygons to test the importance of the freeze–thaw cycle and freeze-up time for tracer mobility. Our findings illustrate the impact of hydraulic and thermal gradients on tracer mobility, as well as of the freeze-up time.
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021, https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
Short summary
Polygon-shaped landforms present in relatively flat Arctic tundra result in complex landscape-scale water drainage. The drainage pathways and the time to transition from inundated conditions to drained have important implications for heat and carbon transport. Using fundamental hydrologic principles, we investigate the drainage pathways and timing of individual polygons, providing insights into the effects of polygon geometry and preferential flow direction on drainage pathways and timing.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Ingmar Nitze, Sarah W. Cooley, Claude R. Duguay, Benjamin M. Jones, and Guido Grosse
The Cryosphere, 14, 4279–4297, https://doi.org/10.5194/tc-14-4279-2020, https://doi.org/10.5194/tc-14-4279-2020, 2020
Short summary
Short summary
In summer 2018, northwestern Alaska was affected by widespread lake drainage which strongly exceeded previous observations. We analyzed the spatial and temporal patterns with remote sensing observations, weather data and lake-ice simulations. The preceding fall and winter season was the second warmest and wettest on record, causing the destabilization of permafrost and elevated water levels which likely led to widespread and rapid lake drainage during or right after ice breakup.
Cited articles
Abnizova, A., Siemens, J., Langer, M., and Boike, J.: Small ponds with major
impact: The relevance of ponds and lakes in permafrost landscapes to carbon
dioxide emissions, Global Biogeochem. Cy., 26, GB2041,
https://doi.org/10.1029/2011GB004237, 2012.
Alexeev, V. A., Arp, C. D., Jones, B. M., and Cai, L.: Arctic sea ice
decline contributes to thinning lake ice trend in northern Alaska, Environ.
Res. Lett., 11, 074022, https://doi.org/10.1088/1748-9326/11/7/074022, 2016.
Arp, C. D., Jones, B. M., Urban, F. E., and Grosse, G.: Hydrogeomorphic
processes of thermokarst lakes with grounded-ice and floating-ice regimes on
the Arctic coastal plain, Alaska, 25, 2422–2438,
https://doi.org/10.1002/hyp.8019, 2011.
Arp, C. D., Jones, B. M., Grosse, G., Bondurant, A. C., Romanovsky, V. E.,
Hinkel, K. M., and Parsekian, A. D.: Threshold sensitivity of shallow Arctic
lakes and sublake permafrost to changing winter climate, Geophys.
Res. Lett., 43, 6358–6365, https://doi.org/10.1002/2016GL068506,
2016.
Boike, J., Georgi, C., Kirilin, G., Muster, S., Abramova, K., Fedorova, I., Chetverova, A., Grigoriev, M., Bornemann, N., and Langer, M.: Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia – observations and modeling (Lena River Delta, Siberia), Biogeosciences, 12, 5941–5965, https://doi.org/10.5194/bg-12-5941-2015, 2015.
Clark, J. A. and Jafarov, E. E.: LAKE 2.0_processing-scripts
and data, Zenodo [code and data set], https://doi.org/10.5281/zenodo.5593754, 2021.
Côté, J. and Konrad, J.-M.: A generalized thermal conductivity model
for soils and construction materials, Can. Geotech. J., 42, 443–458,
https://doi.org/10.1139/t04-106, 2005.
Creighton, A. L., Parsekian, A. D., Angelopoulos, M., Jones, B. M.,
Bondurant, A., Engram, M., Lenz, J., Overduin, P. P., Grosse, G., Babcock,
E., and Arp, C. D.: Transient Electromagnetic Surveys for the Determination
of Talik Depth and Geometry Beneath Thermokarst Lakes, J. Geophys. Res.-Sol. Ea., 123, 9310–9323,
https://doi.org/10.1029/2018JB016121, 2018.
Edgar, C., Cherry, J., Cohen, L., Haupert, C., Kade, A., Laundre, J., Dam,
B. V., and McPherson, R.: Hourly meteorological data from Toolik Field
Station, Alaska (1988–2017), Arctic Data Center [data set], https://doi.org/10.18739/A2FJ29C5J, 2018.
Grant, L., Vanderkelen, I., Gudmundsson, L., Tan, Z., Perroud, M.,
Stepanenko, V. M., Debolskiy, A. V., Droppers, B., Janssen, A. B. G.,
Woolway, R. I., Choulga, M., Balsamo, G., Kirillin, G., Schewe, J., Zhao,
F., del Valle, I. V., Golub, M., Pierson, D., Marcé, R., Seneviratne, S.
I., and Thiery, W.: Attribution of global lake systems change to
anthropogenic forcing, Nat. Geosci., 14, 849–854,
https://doi.org/10.1038/s41561-021-00833-x, 2021.
Grenier, C., Anbergen, H., Bense, V., Chanzy, Q., Coon, E., Collier, N.,
Costard, F., Ferry, M., Frampton, A., Frederick, J., Gonçalvès, J.,
Holmén, J., Jost, A., Kokh, S., Kurylyk, B., McKenzie, J., Molson, J.,
Mouche, E., Orgogozo, L., Pannetier, R., Rivière, A., Roux, N.,
Rühaak, W., Scheidegger, J., Selroos, J.-O., Therrien, R., Vidstrand,
P., and Voss, C.: Groundwater flow and heat transport for systems undergoing
freeze-thaw: Intercomparison of numerical simulators for 2D test cases,
Adv. Water Resour., 114, 196–218,
https://doi.org/10.1016/j.advwatres.2018.02.001, 2018.
Grosse, G., Jones, B., and Arp, C.: 8.21 Thermokarst Lakes, Drainage, and
Drained Basins, in: Treatise on Geomorphology, edited by: Shroder, J. F.,
Academic Press, San Diego, 325–353,
https://doi.org/10.1016/B978-0-12-374739-6.00216-5, 2013.
Guo, M., Zhuang, Q., Yao, H., Golub, M., Leung, L. R., Pierson, D., and Tan,
Z.: Validation and Sensitivity Analysis of a 1-D Lake Model Across Global
Lakes, J. Geophys. Res.-Atmos., 126, e2020JD033417,
https://doi.org/10.1029/2020JD033417, 2021.
Hinkel, K., Lenters, J., Arp, C., and Frey, K.: Collaborative Research:
Toward a Circumarctic Lakes Observation Network (CALON) – Multiscale
observations of lacustrine systems, Arctic Data Center [data set], https://doi.org/10.18739/A2VM42Z1H, 2012.
Iakunin, M., Stepanenko, V., Salgado, R., Potes, M., Penha, A., Novais, M. H., and Rodrigues, G.: Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in western Europe using the LAKE 2.0 model, Geosci. Model Dev., 13, 3475–3488, https://doi.org/10.5194/gmd-13-3475-2020, 2020.
Jafarov, E., Clark, J., Piliouras, A., Tape, K., Jones, B., and Rowland, J.:
The LAKE model input dataset for three Arctic lakes, ESS-DIVE: Deep Insight
for Earth Science Data, ESS-Dive [data set], https://doi.org/10.15485/1808368, 2021.
Jeffries, M. O. and Morris, K.: Instantaneous daytime conductive heat flow
through snow on lake ice in Alaska, Hydrol. Process., 20, 803–815,
https://doi.org/10.1002/hyp.6116, 2006.
Jeffries, M. O., Zhang, T., Frey, K., and Kozlenko, N.: Estimating
late-winter heat flow to the atmosphere from the lake-dominated Alaskan
North Slope, J. Glaciol., 45, 315–324, https://doi.org/10.3189/S0022143000001817, 1999.
Jones, B., Grosse, G., and Clark, J.: Fox Den Lake bed water temperature,
Northwest Seward Peninsula, Alaska, 2009–2013, Arctic Data Center [data set], https://doi.org/10.18739/A2W37KX02, 2021.
Jorgenson, M. T., Yoshikawa, K., Kanevskiy, M., Shur, Y., Romanovsky, V.,
Marchenko, S., Grosse, G., Brown, J., and Jones, B.: Permafrost Characteristics of Alaska, in:
Proceedings of the ninth international conference on permafrost, Fairbanks, AK, University of Alaska, 29 June 2008, 3, 121–122, 2008.
Jorgenson, M. T. and Shur, Y.: Evolution of lakes and basins in northern
Alaska and discussion of the thaw lake cycle, J. Geophys.
Res.-Earth, 112, F02S17, https://doi.org/10.1029/2006JF000531, 2007.
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R.: Abrupt increase in
permafrost degradation in Arctic Alaska, Geophys. Res. Lett., 33, L02503,
https://doi.org/10.1029/2005GL024960, 2006.
Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling,
D. R., Huang, X., Smith, W. L., Su, W., and Ham, S.-H.: Surface Irradiances
of Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy
Balanced and Filled (EBAF) Data Product, J. Climate, 31, 4501–4527,
https://doi.org/10.1175/JCLI-D-17-0523.1, 2018.
Kirillin, G., Hochschild, J., Mironov, D., Terzhevik, A., Golosov, S., and
Nützmann, G.: FLake-Global: Online lake model with worldwide coverage,
Environ. Model. Softw., 26, 683–684,
https://doi.org/10.1016/j.envsoft.2010.12.004, 2011.
Kling, G.: Toolik Lake Inlet discharge data collected during summers of 2010
to 2018, Arctic LTER, Toolik Research Station, Alaska, ver 2, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/169d1bae55373c44a368727573ef70eb, 2019.
Langer, M., Westermann, S., Boike, J., Kirillin, G., Grosse, G., Peng, S.,
and Krinner, G.: Rapid degradation of permafrost underneath waterbodies in
tundra landscapes – Toward a representation of thermokarst in land surface
models, J. Geophys. Res.-Earth, 121, 2446–2470, https://doi.org/10.1002/2016JF003956, 2016.
Leppäranta, M.: Freezing of Lakes and the Evolution of their Ice Cover, 1st edn.,
Springer Berlin, Heidelberg, 301 pp., https://doi.org/10.1007/978-3-642-29081-7, 2015.
Lin, Z., Niu, F., Xu, Z., Xu, J., and Wang, P.: Thermal regime of a
thermokarst lake and its influence on permafrost, Beiluhe Basin,
Qinghai-Tibet Plateau, Permafrost Periglac., 21, 315–324, https://doi.org/10.1002/ppp.692, 2010.
Ling, F. and Liao, Q.: Simple Model for Thermal Regime of Permafrost Surrounding an Expanding Thermokarst Lake, Pacific Journal of Applied Mathematics, 8, 115–122, 2016.
Ling, F. and Zhang, T.: Numerical simulation of permafrost thermal regime
and talik development under shallow thaw lakes on the Alaskan Arctic Coastal
Plain, J. Geophys. Res., 108, 4511, https://doi.org/10.1029/2002JD003014, 2003.
Ling, F. and Zhang, T.: Modeling study of talik freeze-up and permafrost
response under drained thaw lakes on the Alaskan Arctic Coastal Plain, J. Geophys. Res., 109, D01111,
https://doi.org/10.1029/2003JD003886, 2004.
Ling, F. and Zhang, T.: Simulating heat source effect of a thermokarst lake
in the first 540 years on the Alaskan Arctic using a simple lake expanding
model, Cold Reg. Sci. Technol., 160, 176–183,
https://doi.org/10.1016/j.coldregions.2019.01.009, 2019.
MacIntyre, S. and Cortes, A.: Time series of water temperature, specific
conductance, and oxygen from Toolik Lake, North Slope, Alaska, 2015–2016, Arctic Data Center [data set],
https://doi.org/10.18739/A2Z892F91, 2017.
Mironov, D. V.: Parameterization of Lakes in Numerical Weather Prediction:
Description of a Lake Model, Technical Report, 41 pp., German Weather Service, Offenbach am
Main, Germany, 2008.
Morris, K., Jeffries, M., and Duguay, C.: Model simulation of the effects of
climate variability and change on lake ice in central Alaska, USA, Ann. Glaciol., 40,
113–118, https://doi.org/10.3189/172756405781813663, 2005.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,
Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov,
A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda,
S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin,
J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316,
https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.
Painter, S. L.: Three-phase numerical model of water migration in partially
frozen geological media: model formulation, validation, and applications,
Comput. Geosci., 15, 69–85, https://doi.org/10.1007/s10596-010-9197-z, 2011.
Painter, S. L., Coon, E. T., Atchley, A. L., Berndt, M., Garimella, R.,
Moulton, J. D., Svyatskiy, D., and Wilson, C. J.: Integrated
surface/subsurface permafrost thermal hydrology: Model formulation and
proof-of-concept simulations, Water Resour. Res., 52, 6062–6077,
https://doi.org/10.1002/2015WR018427, 2016.
Parsekian, A. D., Creighton, A. L., Jones, B. M., and Arp, C. D.: Surface
nuclear magnetic resonance observations of permafrost thaw below floating,
bedfast, and transitional ice lakes, Geophysics, 84, EN33–EN45,
https://doi.org/10.1190/geo2018-0563.1, 2019.
Patterson, J. C., Hamblin, P. F., and Imberger, J.: Classification and
dynamic simulation of the vertical density structure of lakes, Limnol.
Oceanogr., 29, 845–861, https://doi.org/10.4319/lo.1984.29.4.0845, 1984.
Peng, E.-X., Sheng, Y., Hu, X.-Y., Wu, J.-C., and Cao, W.: Thermal effect of
thermokarst lake on the permafrost under embankment, Advances in Climate
Change Research, 12, 76–82, https://doi.org/10.1016/j.accre.2020.10.002,
2021.
Provost, A. M. and Voss, C. I.: SUTRA, a model for saturated-unsaturated,
variable-density groundwater flow with solute or energy
transport – Documentation of generalized boundary conditions, a modified
implementation of specified pressures and concentrations or temperatures,
and the lake capability, SUTRA, a model for saturated-unsaturated,
variable-density groundwater flow with solute or energy
transport – Documentation of generalized boundary conditions, a modified
implementation of specified pressures and concentrations or temperatures,
and the lake capability, book 6, chap. A52, U.S. Geological Survey, Reston, VA, 62 pp.,
https://doi.org/10.3133/tm6A52, 2019.
Rouse, W. R., Douglas, M. S. V., Hecky, R. E., Hershey, A. E., Kling, G. W.,
Lesack, L., Marsh, P., Mcdonald, M., Nicholson, B. J., Roulet, N. T., and
Smol, J. P.: Effects of Climate Change on the Freshwaters of Arctic and
Subarctic North America, Hydrol. Process., 11, 873–902,
https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8<873::AID-HYP510>3.0.CO;2-6, 1997.
Rowland, J. C., Travis, B. J., and Wilson, C. J.: The role of advective heat
transport in talik development beneath lakes and ponds in discontinuous
permafrost, Geophys. Res. Lett., 38, L17504,
https://doi.org/10.1029/2011GL048497, 2011.
Rueda, F. J. and MacIntyre, S.: Modelling the fate and transport of
negatively buoyant storm–river water in small multi-basin lakes,
Environ. Model. Softw., 25, 146–157,
https://doi.org/10.1016/j.envsoft.2009.07.002, 2010.
Rutan, D. A., Kato, S., Doelling, D. R., Rose, F. G., Nguyen, L. T.,
Caldwell, T. E., and Loeb, N. G.: CERES Synoptic Product: Methodology and
Validation of Surface Radiant Flux, J. Atmos. Ocean.
Tech., 32, 1121–1143, https://doi.org/10.1175/JTECH-D-14-00165.1,
2015.
Smith, A., Lott, N., and Vose, R.: The Integrated Surface Database: Recent
Developments and Partnerships, B. Am. Meteorol.
Soc., 92, 704–708, 2011.
Spanoudaki, K., Stamou, A. I., and Nanou-Giannarou, A.: Development and
verification of a 3-D integrated surface water–groundwater model, J. Hydrol., 375, 410–427, https://doi.org/10.1016/j.jhydrol.2009.06.041,
2009.
Stepanenko, V.: LAKE (Version 2.0), Zenodo [code], https://doi.org/10.5281/zenodo.6353238, 2022.
Stepanenko, V. and Lykossov, V.: Numerical modeling of the heat and moisture
transport in a lake-soil system, Russ. Meteorol. Hydrol, 3, 69–75, 2005.
Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., and Vesala, T.: LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes, Geosci. Model Dev., 9, 1977–2006, https://doi.org/10.5194/gmd-9-1977-2016, 2016.
Stepanenko, V. M., Goyette, S., Martynov, A., Perroud, M., Fang, X., and
Mironov, D.: First steps of a Lake Model Intercomparison Project: LakeMIP,
Boreal Environ. Res, 15, 191–202, http://hdl.handle.net/10138/233085 (last access: 29 September 2022), 2010.
Stepanenko, V. M., Machul'skaya, E. E., Glagolev, M. V., and Lykossov, V.
N.: Numerical modeling of methane emissions from lakes in the permafrost
zone, Izv. Atmos. Ocean. Phys., 47, 252–264,
https://doi.org/10.1134/S0001433811020113, 2011.
Stepanenko, V. M., Martynov, A., Jöhnk, K. D., Subin, Z. M., Perroud, M., Fang, X., Beyrich, F., Mironov, D., and Goyette, S.: A one-dimensional model intercomparison study of thermal regime of a shallow, turbid midlatitude lake, Geosci. Model Dev., 6, 1337–1352, https://doi.org/10.5194/gmd-6-1337-2013, 2013.
Stepanenko, V. M., Repina, I. A., Ganbat, G., and Davaa, G.: Numerical
Simulation of Ice Cover of Saline Lakes, Izv. Atmos. Ocean. Phys., 55,
129–138, https://doi.org/10.1134/S0001433819010092, 2019.
Stepanenko, V. M., Valerio, G., and Pilotti, M.: Horizontal Pressure
Gradient Parameterization for One-Dimensional Lake Models, J.
Adv. Model. Earth Sy., 12, e2019MS001906,
https://doi.org/10.1029/2019MS001906, 2020.
Sturm, M. and Liston, G. E.: The snow cover on lakes of the Arctic Coastal
Plain of Alaska, U.S.A., J. Glaciol., 49, 370–380,
https://doi.org/10.3189/172756503781830539, 2003.
Tan, Z., Zhuang, Q., and Anthony, K. W.: Modeling methane emissions from
arctic lakes: Model development and site-level study, J. Adv.
Model. Earth Sy., 7, 459–483, https://doi.org/10.1002/2014MS000344,
2015.
Tan, Z., Zhuang, Q., Shurpali, N. J., Marushchak, M. E., Biasi, C., Eugster,
W., and Anthony, K. W.: Modeling CO2 emissions from Arctic lakes: Model
development and site-level study, J. Adv. Model. Earth
Sy., 9, 2190–2213, https://doi.org/10.1002/2017MS001028, 2017.
Urban, F. E.: Data Release associated with Data Series – DOI/GTN-P Climate and
Active-Layer Data Acquired in the National Petroleum Reserve-Alaska and the
Arctic National Wildlife Refuge, 1998–2019 (ver. 3.0, March 2021), U.S. Geological Survey data release [data set],
https://doi.org/10.5066/F7VX0FGB, 2017.
Walker, D. A., Raynolds, M. K., Daniëls, F. J. A., Einarsson, E.,
Elvebakk, A., Gould, W. A., Katenin, A. E., Kholod, S. S., Markon, C. J.,
Melnikov, E. S., Moskalenko, N. G., Talbot, S. S., and Yurtsev, B. A.: The
Circumpolar Arctic vegetation map, J. Veg. Sci., 16,
267–282, https://doi.org/10.1111/j.1654-1103.2005.tb02365.x, 2005.
Wielicki, B. A., Barkstrom, B. R., Baum, B. A., Charlock, T. P., Green, R.
N., Kratz, D. P., Lee, R. B., Minnis, P., Smith, G. L., Wong, T., Young, D.
F., Cess, R. D., Coakley, J. A., Crommelynck, D. A. H., Donner, L., Kandel,
R., King, M. D., Miller, A. J., Ramanathan, V., Randall, D. A., Stowe, L.
L., and Welch, R. M.: Clouds and the Earth's Radiant Energy System (CERES):
algorithm overview, IEEE T. Geosci. Remote, 36,
1127–1141, https://doi.org/10.1109/36.701020, 1998.
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., and Bastviken, D.:
Climate-sensitive northern lakes and ponds are critical components of
methane release, Nat. Geosci., 9, 99–105,
https://doi.org/10.1038/ngeo2578, 2016.
Williamson, C. E., Saros, J. E., Vincent, W. F., and Smol, J. P.: Lakes and
reservoirs as sentinels, integrators, and regulators of climate change, Limnol. Oceanogr., 54,
2273–2282, https://doi.org/10.4319/lo.2009.54.6_part_2.2273, 2009.
Zhang, T. and Jeffries, M. O.: Modeling interdecadal variations of lake-ice
thickness and sensitivity to climatic change in northernmost Alaska, Ann. Glaciol., 31,
339–347, https://doi.org/10.3189/172756400781819905, 2000.
Short summary
Lakes in the Arctic are important reservoirs of heat. Under climate warming scenarios, we expect Arctic lakes to warm the surrounding frozen ground. We simulate water temperatures in three Arctic lakes in northern Alaska over several years. Our results show that snow depth and lake ice strongly affect water temperatures during the frozen season and that more heat storage by lakes would enhance thawing of frozen ground.
Lakes in the Arctic are important reservoirs of heat. Under climate warming scenarios, we expect...