Articles | Volume 15, issue 19
https://doi.org/10.5194/gmd-15-7421-2022
https://doi.org/10.5194/gmd-15-7421-2022
Model evaluation paper
 | 
06 Oct 2022
Model evaluation paper |  | 06 Oct 2022

Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model

Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko

Related authors

Exploring the capabilities of electrical resistivity tomography to study subsea permafrost
Mauricio Arboleda-Zapata, Michael Angelopoulos, Pier Paul Overduin, Guido Grosse, Benjamin M. Jones, and Jens Tronicke
The Cryosphere, 16, 4423–4445, https://doi.org/10.5194/tc-16-4423-2022,https://doi.org/10.5194/tc-16-4423-2022, 2022
Short summary
AUTOMATED RECOGNITION OF PERMAFROST DISTURBANCES USING HIGH-SPATIAL RESOLUTION SATELLITE IMAGERY AND DEEP LEARNING MODELS
M. R. Udawalpola, C. Witharana, A. Hasan, A. Liljedahl, M. Ward Jones, and B. Jones
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-M-2-2022, 203–208, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-203-2022,https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-203-2022, 2022
Mechanistic modelling of the variability of methane emissions from an artificial reservoir
Victor Lomov, Victor Stepanenko, Maria Grechushnikova, and Irina Repina
EGUsphere, https://doi.org/10.5194/egusphere-2022-329,https://doi.org/10.5194/egusphere-2022-329, 2022
Preprint withdrawn
Short summary
A new Stefan equation to characterize the evolution of thermokarst lake and talik geometry
Noriaki Ohara, Benjamin M. Jones, Andrew D. Parsekian, Kenneth M. Hinkel, Katsu Yamatani, Mikhail Kanevskiy, Rodrigo C. Rangel, Amy L. Breen, and Helena Bergstedt
The Cryosphere, 16, 1247–1264, https://doi.org/10.5194/tc-16-1247-2022,https://doi.org/10.5194/tc-16-1247-2022, 2022
Short summary
The importance of freeze–thaw cycles for lateral tracer transport in ice-wedge polygons
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022,https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary

Related subject area

Hydrology
Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023,https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023,https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023,https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023,https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Customized deep learning for precipitation bias correction and downscaling
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023,https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary

Cited articles

Abnizova, A., Siemens, J., Langer, M., and Boike, J.: Small ponds with major impact: The relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions, Global Biogeochem. Cy., 26, GB2041, https://doi.org/10.1029/2011GB004237, 2012. 
Alexeev, V. A., Arp, C. D., Jones, B. M., and Cai, L.: Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska, Environ. Res. Lett., 11, 074022, https://doi.org/10.1088/1748-9326/11/7/074022, 2016. 
Arp, C. D., Jones, B. M., Urban, F. E., and Grosse, G.: Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska, 25, 2422–2438, https://doi.org/10.1002/hyp.8019, 2011. 
Arp, C. D., Jones, B. M., Grosse, G., Bondurant, A. C., Romanovsky, V. E., Hinkel, K. M., and Parsekian, A. D.: Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate, Geophys. Res. Lett., 43, 6358–6365, https://doi.org/10.1002/2016GL068506, 2016. 
Boike, J., Georgi, C., Kirilin, G., Muster, S., Abramova, K., Fedorova, I., Chetverova, A., Grigoriev, M., Bornemann, N., and Langer, M.: Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia – observations and modeling (Lena River Delta, Siberia), Biogeosciences, 12, 5941–5965, https://doi.org/10.5194/bg-12-5941-2015, 2015. 
Download
Short summary
Lakes in the Arctic are important reservoirs of heat. Under climate warming scenarios, we expect Arctic lakes to warm the surrounding frozen ground. We simulate water temperatures in three Arctic lakes in northern Alaska over several years. Our results show that snow depth and lake ice strongly affect water temperatures during the frozen season and that more heat storage by lakes would enhance thawing of frozen ground.