Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-617-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-617-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation
Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS, 7001, Australia
Geography and Spatial Sciences, School of Technology, Environments and Design, University of Tasmania, Hobart, TAS, 7001, Australia
now at: Alfred Wegener Institute, PO Box 120161, 27515 Bremerhaven, Germany
David E. Gwyther
Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS, 7001, Australia
Coastal and Regional Oceanography Laboratory, School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia
Benjamin K. Galton-Fenzi
Australian Antarctic Division, Kingston, TAS, 7050, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia
Kaitlin A. Naughten
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
Related authors
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
Geosci. Model Dev., 18, 2945–2960, https://doi.org/10.5194/gmd-18-2945-2025, https://doi.org/10.5194/gmd-18-2945-2025, 2025
Short summary
Short summary
The new coupled ice sheet–ocean model addresses challenges related to horizontal resolution through advanced mesh flexibility, enabled by the use of unstructured grids. We describe the new model, verify its functioning in an idealised setting and demonstrate its advantages in a global-ocean–Antarctic ice sheet domain. The results of this study comprise an important step towards improving predictions of the Antarctic contribution to sea level rise over centennial timescales.
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022, https://doi.org/10.5194/tc-16-1409-2022, 2022
Short summary
Short summary
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at which the ocean melts glaciers. Here, using a computational ocean model, we derive the first estimate of present-day tidal melting that covers all of Antarctica. Our results suggest that large-scale ocean models aiming to accurately predict ice melt rates will need to account for the effects of tides. The inclusion of tide-induced friction at the ice–ocean interface should be prioritized.
Lawrence A. Bird, Vitaliy Ogarko, Laurent Ailleres, Lachlan Grose, Jérémie Giraud, Felicity S. McCormack, David E. Gwyther, Jason L. Roberts, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 3355–3380, https://doi.org/10.5194/tc-19-3355-2025, https://doi.org/10.5194/tc-19-3355-2025, 2025
Short summary
Short summary
The terrain of the seafloor has important controls on the access of warm water below floating ice shelves around Antarctica. Here, we present an open-source method to infer what the seafloor looks like around the Antarctic continent and within these ice shelf cavities, using measurements of the Earth's gravitational field. We present an improved seafloor map for the Vincennes Bay region in East Antarctica and assess its impact on ice melt rates.
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Adrian Jenkins, and Kaitlin A. Naughten
The Cryosphere, 19, 2527–2557, https://doi.org/10.5194/tc-19-2527-2025, https://doi.org/10.5194/tc-19-2527-2025, 2025
Short summary
Short summary
Glaciers in the Amundsen Sea region of Antarctica have been retreating and losing mass, but their future contribution to global sea level rise remains highly uncertain. We use an ice sheet model and uncertainty quantification methods to evaluate the probable range of mass loss from this region for two future climate scenarios. We find that the rate of ice loss until 2100 will likely remain similar to present-day observations, with little sensitivity to climate scenario over this short time frame.
Claire K. Yung, Xylar S. Asay-Davis, Alistair Adcroft, Christopher Y. S. Bull, Jan De Rydt, Michael S. Dinniman, Benjamin K. Galton-Fenzi, Daniel Goldberg, David E. Gwyther, Robert Hallberg, Matthew Harrison, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, James R. Jordan, Nicolas C. Jourdain, Kazuya Kusahara, Gustavo Marques, Pierre Mathiot, Dimitris Menemenlis, Adele K. Morrison, Yoshihiro Nakayama, Olga Sergienko, Robin S. Smith, Alon Stern, Ralph Timmermann, and Qin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-1942, https://doi.org/10.5194/egusphere-2025-1942, 2025
Short summary
Short summary
ISOMIP+ compares 12 ocean models that simulate ice-ocean interactions in a common, idealised, static ice shelf cavity setup, aiming to assess and understand inter-model variability. Models simulate similar basal melt rate patterns, ocean profiles and circulation but differ in ice-ocean boundary layer properties and spatial distributions of melting. Ice-ocean boundary layer representation is a key area for future work, as are realistic-domain ice sheet-ocean model intercomparisons.
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
Geosci. Model Dev., 18, 2945–2960, https://doi.org/10.5194/gmd-18-2945-2025, https://doi.org/10.5194/gmd-18-2945-2025, 2025
Short summary
Short summary
The new coupled ice sheet–ocean model addresses challenges related to horizontal resolution through advanced mesh flexibility, enabled by the use of unstructured grids. We describe the new model, verify its functioning in an idealised setting and demonstrate its advantages in a global-ocean–Antarctic ice sheet domain. The results of this study comprise an important step towards improving predictions of the Antarctic contribution to sea level rise over centennial timescales.
Benjamin Keith Galton-Fenzi, Richard Porter-Smith, Sue Cook, Eva Cougnon, David E. Gwyther, Wilma G. C. Huneke, Madelaine G. Rosevear, Xylar Asay-Davis, Fabio Boeira Dias, Michael S. Dinniman, David Holland, Kazuya Kusahara, Kaitlin A. Naughten, Keith W. Nicholls, Charles Pelletier, Ole Richter, Helene L. Seroussi, and Ralph Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4047, https://doi.org/10.5194/egusphere-2024-4047, 2025
Short summary
Short summary
Melting beneath Antarctica’s floating ice shelves is key to future sea-level rise. We compare several different ocean simulations with satellite measurements, and provide the first multi-model average estimate of melting and refreezing driven by both ocean temperature and currents beneath ice shelves. The multi-model average can provide a useful tool for better understanding the role of ice shelf melting in present-day and future ice-sheet changes and informing coastal adaptation efforts.
Fabio Boeira Dias, Matthew H. England, Adele K. Morrison, and Benjamin Galton-Fenzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3905, https://doi.org/10.5194/egusphere-2024-3905, 2025
Short summary
Short summary
The Antarctic Ice Sheet melting dominates the sea-level projection uncertainties. Much uncertainty arises from our limited understanding of how ice shelves melt from below. Using a detailed ocean-ice shelf model, we found that East Antarctic ice shelves experience seasonal melting driven by ocean heat transport variability. In contrast, West Antarctic ice shelves show consistent melting due to a steady supply of warm, deep water, indicating potentially distinct response due to a warming climate.
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024, https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
Short summary
We introduce an accelerated forcing approach to address timescale discrepancies between the ice sheets and ocean components in coupled modelling by reducing the ocean simulation duration. The approach is evaluated using idealized coupled models, and its limitations in real-world applications are discussed. Our results suggest it can be a valuable tool for process-oriented coupled ice sheet–ocean modelling and downscaling climate simulations with such models.
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Jan De Rydt and Kaitlin Naughten
The Cryosphere, 18, 1863–1888, https://doi.org/10.5194/tc-18-1863-2024, https://doi.org/10.5194/tc-18-1863-2024, 2024
Short summary
Short summary
The West Antarctic Ice Sheet is losing ice at an accelerating pace. This is largely due to the presence of warm ocean water around the periphery of the Antarctic continent, which melts the ice. It is generally assumed that the strength of this process is controlled by the temperature of the ocean. However, in this study we show that an equally important role is played by the changing geometry of the ice sheet, which affects the strength of the ocean currents and thereby the melt rates.
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024, https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
Short summary
Ocean forecasting relies on the combination of numerical models and ocean observations through data assimilation (DA). Here we assess the performance of two DA systems in a dynamic western boundary current, the East Australian Current, across a common modelling and observational framework. We show that the more advanced, time-dependent method outperforms the time-independent method for forecast horizons of 5 d. This advocates the use of advanced methods for highly variable oceanic regions.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
Ronja Reese, Julius Garbe, Emily A. Hill, Benoît Urruty, Kaitlin A. Naughten, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, David Chandler, Petra M. Langebroek, and Ricarda Winkelmann
The Cryosphere, 17, 3761–3783, https://doi.org/10.5194/tc-17-3761-2023, https://doi.org/10.5194/tc-17-3761-2023, 2023
Short summary
Short summary
We use an ice sheet model to test where current climate conditions in Antarctica might lead. We find that present-day ocean and atmosphere conditions might commit an irreversible collapse of parts of West Antarctica which evolves over centuries to millennia. Importantly, this collapse is not irreversible yet.
David E. Gwyther, Shane R. Keating, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 157–178, https://doi.org/10.5194/gmd-16-157-2023, https://doi.org/10.5194/gmd-16-157-2023, 2023
Short summary
Short summary
Ocean eddies are important for weather, climate, biology, navigation, and search and rescue. Since eddies change rapidly, models that incorporate or assimilate observations are required to produce accurate eddy timings and locations, yet the model accuracy is rarely assessed below the surface. We use a unique type of ocean model experiment to assess three-dimensional eddy structure in the East Australian Current and explore two pathways in which this subsurface structure is being degraded.
Paul R. Holland, Gemma K. O'Connor, Thomas J. Bracegirdle, Pierre Dutrieux, Kaitlin A. Naughten, Eric J. Steig, David P. Schneider, Adrian Jenkins, and James A. Smith
The Cryosphere, 16, 5085–5105, https://doi.org/10.5194/tc-16-5085-2022, https://doi.org/10.5194/tc-16-5085-2022, 2022
Short summary
Short summary
The Antarctic Ice Sheet is losing ice, causing sea-level rise. However, it is not known whether human-induced climate change has contributed to this ice loss. In this study, we use evidence from climate models and palaeoclimate measurements (e.g. ice cores) to suggest that the ice loss was triggered by natural climate variations but is now sustained by human-forced climate change. This implies that future greenhouse-gas emissions may influence sea-level rise from Antarctica.
David E. Gwyther, Colette Kerry, Moninya Roughan, and Shane R. Keating
Geosci. Model Dev., 15, 6541–6565, https://doi.org/10.5194/gmd-15-6541-2022, https://doi.org/10.5194/gmd-15-6541-2022, 2022
Short summary
Short summary
The ocean current flowing along the southeastern coast of Australia is called the East Australian Current (EAC). Using computer simulations, we tested how surface and subsurface observations might improve models of the EAC. Subsurface observations are particularly important for improving simulations, and if made in the correct location and time, can have impact 600 km upstream. The stability of the current affects model estimates could be capitalized upon in future observing strategies.
Madelaine Rosevear, Benjamin Galton-Fenzi, and Craig Stevens
Ocean Sci., 18, 1109–1130, https://doi.org/10.5194/os-18-1109-2022, https://doi.org/10.5194/os-18-1109-2022, 2022
Short summary
Short summary
Understanding ocean-driven melting of Antarctic ice shelves is critical for predicting future sea level. However, ocean observations from beneath ice shelves are scarce. Here, we present unique ocean and melting data from the Amery Ice Shelf, East Antarctica. We use our observations to evaluate common methods of representing melting in ocean–climate models (melting
parameterisations) and show that these parameterisations overestimate melting when the ocean is warm and/or currents are weak.
Chen Zhao, Rupert Gladstone, Benjamin Keith Galton-Fenzi, David Gwyther, and Tore Hattermann
Geosci. Model Dev., 15, 5421–5439, https://doi.org/10.5194/gmd-15-5421-2022, https://doi.org/10.5194/gmd-15-5421-2022, 2022
Short summary
Short summary
We use a coupled ice–ocean model to explore an oscillation feature found in several contributing models to MISOMIP1. The oscillation is closely related to the discretized grounding line retreat and likely strengthened by the buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and frequent ice–ocean coupling. Our model choices have a non-trivial impact on mean melt and ocean circulation strength, which might be interesting for the coupled ice–ocean community.
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022, https://doi.org/10.5194/tc-16-1409-2022, 2022
Short summary
Short summary
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at which the ocean melts glaciers. Here, using a computational ocean model, we derive the first estimate of present-day tidal melting that covers all of Antarctica. Our results suggest that large-scale ocean models aiming to accurately predict ice melt rates will need to account for the effects of tides. The inclusion of tide-induced friction at the ice–ocean interface should be prioritized.
Yu Wang, Chen Zhao, Rupert Gladstone, Ben Galton-Fenzi, and Roland Warner
The Cryosphere, 16, 1221–1245, https://doi.org/10.5194/tc-16-1221-2022, https://doi.org/10.5194/tc-16-1221-2022, 2022
Short summary
Short summary
The thermal structure of the Amery Ice Shelf and its spatial pattern are evaluated and analysed through temperature observations from six boreholes and numerical simulations. The simulations demonstrate significant ice warming downstream along the ice flow and a great variation of the thermal structure across the ice flow. We suggest that the thermal structure of the Amery Ice Shelf is unlikely to be affected by current climate changes on decadal timescales.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Cited articles
Amblas, D.: Review of dense shelf water observations around Antarctica
(presence or absence), Supplement to: Amblas, D., Dowdeswell, J. A.: Physiographic influences on dense shelf-water cascading down the
Antarctic continental slope, PANGAEA [data set], Earth-Science Reviews, 185, 887–900,
https://doi.org/10.1594/PANGAEA.890758, 2018. a
Asay-Davis, X. S., Jourdain, N. C., and Nakayama, Y.: Developments in
Simulating and Parameterizing Interactions Between the Southern
Ocean and the Antarctic Ice Sheet, Current Climate Change Reports, 3,
316–329, https://doi.org/10.1007/s40641-017-0071-0, 2017. a, b, c
Assmann, K. M., Jenkins, A., Shoosmith, D. R., Walker, D. P., Jacobs, S. S.,
and Nicholls, K. W.: Variability of Circumpolar Deep Water transport
onto the Amundsen Sea Continental shelf through a shelf break trough,
J. Geophys. Res.-Oceans, 118, 6603–6620,
https://doi.org/10.1002/2013JC008871, 2013. a
Beckmann, A., Hellmer, H., and Timmermann, R.: A numerical model of the
Weddell Sea: Large scale circulation and water mass distribution,
J. Geophys. Res.-Lett., 104, 23375–23391, 1999. a
Bett, D. T., Holland, P. R., Garabato, A. C. N., Jenkins, A., Dutrieux, P.,
Kimura, S., and Fleming, A.: The Impact of the Amundsen Sea
Freshwater Balance on Ocean Melting of the West Antarctic Ice
Sheet, J. Geophys. Rese.-Oceans, 125, e2020JC016305,
https://doi.org/10.1029/2020JC016305, 2020. a
Colleoni, F., Santis, L. D., Siddoway, C. S., Bergamasco, A., Golledge, N. R.,
Lohmann, G., Passchier, S., and Siegert, M. J.: Spatio-temporal variability
of processes across Antarctic ice-bed-ocean interfaces, Nat. Commun., 9, 2289, https://doi.org/10.1038/s41467-018-04583-0, 2018. a, b
Cougnon, E. A., Galton‐Fenzi, B. K., Meijers, A. J. S., and Legrésy, B.:
Modeling interannual dense shelf water export in the region of the Mertz
Glacier Tongue (1992–2007), J. Geophys. Res.-Oceans,
118, 5858–5872, https://doi.org/10.1002/2013JC008790, 2013. a, b
Davis, P. E. D., Jenkins, A., Nicholls, K. W., Brennan, P. V., Abrahamsen,
E. P., Heywood, K. J., Dutrieux, P., Cho, K.-H., and Kim, T.-W.: Variability
in Basal Melting Beneath Pine Island Ice Shelf on Weekly to
Monthly Timescales, J. Geophys. Res.-Oceans, 123,
8655–8669, https://doi.org/10.1029/2018JC014464, 2018. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., Berg, L. v. d., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., Rosnay, P. d., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA‐Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dinniman, M. S., Klinck, J. M., and Smith, W. O.: Cross-shelf exchange in a
model of the Ross Sea circulation and biogeochemistry, Deep-Sea Res.
Pt. II, 50, 3103–3120,
https://doi.org/10.1016/j.dsr2.2003.07.011, 2003. a
Dupont, T. K. and Alley, R. B.: Assessment of the importance of ice-shelf
buttressing to ice-sheet flow, Geophys. Res. Lett., 32, L04503, https://doi.org/10.1029/2004GL022024, 2005. a
Dutrieux, P., Vaughan, D. G., Corr, H. F. J., Jenkins, A., Holland, P. R., Joughin, I., and Fleming, A. H.: Pine Island glacier ice shelf melt distributed at kilometre scales, The Cryosphere, 7, 1543–1555, https://doi.org/10.5194/tc-7-1543-2013, 2013. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a, b, c
Greene, C. A., Blankenship, D. D., Gwyther, D. E., Silvano, A., and Wijk,
E. v.: Wind causes Totten Ice Shelf melt and acceleration, Science
Advances, 3, e1701681, https://doi.org/10.1126/sciadv.1701681, 2017. a, b
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016. a
Griffiths, S. D. and Peltier, W. R.: Megatides in the Arctic Ocean under
glacial conditions, Geophys. Res. Lett., 35, e1701681,
https://doi.org/10.1029/2008GL033263, 2008. a
Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, The Cryosphere, 7, 647–655, https://doi.org/10.5194/tc-7-647-2013, 2013. a
Guo, G., Shi, J., Gao, L., Tamura, T., and Williams, G. D.: Reduced Sea Ice
Production Due to Upwelled Oceanic Heat Flux in Prydz Bay,
East Antarctica, Geophys. Res. Lett., 46, 4782–4789,
https://doi.org/10.1029/2018GL081463, 2019. a
Gwyther, D. E., Cougnon, E. A., Galton-Fenzi, B. K., Roberts, J. L., Hunter,
J. R., and Dinniman, M. S.: Modelling the response of ice shelf basal melting
to different ocean cavity environmental regimes, Ann. Glaciol., 57,
131–141, https://doi.org/10.1017/aog.2016.31, 2016. a, b, c, d
Gwyther, D. E., O’Kane, T. J., Galton-Fenzi, B. K., Monselesan, D. P., and
Greenbaum, J. S.: Intrinsic processes drive variability in basal melting of
the Totten Glacier Ice Shelf, Nat. Commun., 9, 3141,
https://doi.org/10.1038/s41467-018-05618-2, 2018. a, b
Gwyther, D. E., Spain, E. A., King, P., Guihen, D., Williams, G. D., Evans, E.,
Cook, S., Richter, O., Galton‐Fenzi, B. K., and Coleman, R.: Cold Ocean
Cavity and Weak Basal Melting of the Sørsdal Ice Shelf
Revealed by Surveys Using Autonomous Platforms, J.
Geophys. Res.-Oceans, 125, e2019JC015882,
https://doi.org/10.1029/2019JC015882, 2020. a
Haid, V. and Timmermann, R.: Simulated heat flux and sea ice production at
coastal polynyas in the southwestern Weddell Sea, J. Geophys.
Res.-Oceans, 118, 2640–2652, https://doi.org/10.1002/jgrc.20133,
2013. a
Hattermann, T.: Antarctic Thermocline Dynamics along a Narrow Shelf
with Easterly Winds, J. Phys. Oceanogr., 48, 2419–2443,
https://doi.org/10.1175/JPO-D-18-0064.1, 2018. a, b
Hattermann, T., Nøst, O. A., Lilly, J. M., and Smedsrud, L. H.: Two years of
oceanic observations below the Fimbul Ice Shelf, Antarctica,
Geophys. Res. Lett., 39, L12605, https://doi.org/10.1029/2012GL051012, 2012. a
Hattermann, T., Smedsrud, L. H., Nøst, O. A., Lilly, J. M., and Galton-Fenzi,
B. K.: Eddy-resolving simulations of the Fimbul Ice Shelf cavity
circulation: Basal melting and exchange with open ocean, Ocean Model.,
82, 28–44, https://doi.org/10.1016/j.ocemod.2014.07.004, 2014. a, b
Hellmer, H. H. and Olbers, D. J.: A two-dimensional model for the thermohaline
circulation under an ice shelf, Antarctic Science, 1, 325–336,
https://doi.org/10.1017/S0954102089000490, 1989. a
Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice-Ocean
Interactions at the Base of an Ice Shelf, J. Phys.
Oceanogr., 29, 1787–1800,
https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999. a
Holland, P. R.: The Transient Response of Ice Shelf Melting to
Ocean Change, J. Phys. Oceanogr., 47, 2101–2114,
https://doi.org/10.1175/JPO-D-17-0071.1, 2017. a
Holland, P. R., Feltham, D. L., and Jenkins, A.: Ice Shelf Water plume flow
beneath Filchner-Ronne Ice Shelf, Antarctica, J.
Geophys. Res., 112, C05044, https://doi.org/10.1029/2006JC003915, 2007. a
Holland, P. R., Jenkins, A., and Holland, D. M.: The Response of Ice
Shelf Basal Melting to Variations in Ocean Temperature, J. Clim., 21, 2558–2572, https://doi.org/10.1175/2007JCLI1909.1, 2008. a
Holland, P. R., Corr, H. F. J., Vaughan, D. G., Jenkins, A., and Skvarca, P.:
Marine ice in Larsen Ice Shelf, Geophys. Res. Lett., 36, L11604,
https://doi.org/10.1029/2009GL038162, 2009. a
Horgan, H. J., Walker, R. T., Anandakrishnan, S., and Alley, R. B.: Surface
elevation changes at the front of the Ross Ice Shelf: Implications
for basal melting, J. Geophys. Res.-Oceans, 116, C02005,
https://doi.org/10.1029/2010JC006192, 2011. a
Jacobs, S. S.: Bottom water production and its links with the thermohaline
circulation, Antarctic Science, 16, 427–437,
https://doi.org/10.1017/S095410200400224X, 2004. a
Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A., and Frolich, R. M.:
Melting of ice shelves and the mass balance of Antarctica, J. Glaciol., 38, 375–387, https://doi.org/10.3189/S0022143000002252, 1992. a, b, c
Jacobs, S. S., Jenkins, A., Giulivi, C. F., and Dutrieux, P.: Stronger ocean
circulation and increased melting under Pine Island Glacier ice shelf,
Nat. Geosci., 4, 519–523, https://doi.org/10.1038/ngeo1188, 2011. a
Jacobs, S. S., Giulivi, C. F., Dutrieux, P., Rignot, E., Nitsche, F., and
Mouginot, J.: Getz Ice Shelf melting response to changes in ocean
forcing, J. Geophys. Res.-Oceans, 118, 4152–4168,
https://doi.org/10.1002/jgrc.20298, 2013. a
Jong, L., Gladstone, R., and Galton-Fenzi, B. K.: Coupled ice sheet-ocean
modelling to investigate ocean driven melting of marine ice sheets in
Antarctica, in: 19th EGU General Assembly, EGU2017, Vienna, Austria, 23–28 April 2017, 1573, available at: http://adsabs.harvard.edu/abs/2017EGUGA..19.1573J (last access: 17 January 2022), 2017. a, b
Joughin, I. and Padman, L.: Melting and freezing beneath Filchner-Ronne
Ice Shelf, Antarctica, Geophys. Res. Lett., 30, 1477,
https://doi.org/10.1029/2003GL016941, 2003. a
Kimura, S., Jenkins, A., Regan, H., Holland, P. R., Assmann, K. M., Whitt,
D. B., Wessem, M. V., Berg, W. J. v. d., Reijmer, C. H., and Dutrieux, P.:
Oceanographic Controls on the Variability of Ice-Shelf Basal
Melting and Circulation of Glacial Meltwater in the Amundsen Sea
Embayment, Antarctica, J. Geophys. Res.-Oceans, 122,
10131–10155, https://doi.org/10.1002/2017JC012926, 2017. a
King, M. A. and Padman, L.: Accuracy assessment of ocean tide models around
Antarctica, Geophys. Res. Lett., 32, L23608, https://doi.org/10.1029/2005GL023901, 2005. a, b, c
Kusahara, K. and Hasumi, H.: Modeling Antarctic ice shelf responses to future
climate changes and impacts on the ocean, J. Geophys. Res.-Oceans, 118, 2454–2475, https://doi.org/10.1002/jgrc.20166, 2013. a, b
Kusahara, K., Hasumi, H., and Tamura, T.: Modeling sea ice production and dense
shelf water formation in coastal polynyas around East Antarctica, J. Geophys. Res.-Oceans, 115, C10006, https://doi.org/10.1029/2010JC006133, 2010. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994. a
Little, C. M., Gnanadesikan, A., and Oppenheimer, M.: How ice shelf morphology
controls basal melting, J. Geophys. Res.-Oceans, 114,
C12007, https://doi.org/10.1029/2008JC005197, 2009. a
Lüpkes, C. and Birnbaum, G.: “Surface Drag in the Arctic Marginal
Sea-ice Zone: A Comparison of Different Parameterisation
Concepts”, Bound.-Lay. Meteorol., 117, 179–211,
https://doi.org/10.1007/s10546-005-1445-8, 2005. a
Mack, S. L., Dinniman, M. S., Klinck, J. M., McGillicuddy, D. J., and Padman,
L.: Modeling Ocean Eddies on Antarctica's Cold Water Continental
Shelves and Their Effects on Ice Shelf Basal Melting, J. Geophys. Res.-Oceans, 124, 5067–5084, https://doi.org/10.1029/2018JC014688,
2019. a
Makinson, K., Holland, P. R., Jenkins, A., Nicholls, K. W., and Holland, D. M.:
Influence of tides on melting and freezing beneath Filchner-Ronne Ice
Shelf, Antarctica, Geophys. Res. Lett., 38, L06601,
https://doi.org/10.1029/2010GL046462, 2011. a, b
Malyarenko, A., Robinson, N. J., Williams, M. J. M., and Langhorne, P. J.: A
Wedge Mechanism for Summer Surface Water Inflow Into the Ross
Ice Shelf Cavity, J. Geophys. Res.-Oceans, 124,
1196–1214, https://doi.org/10.1029/2018JC014594, 2019. a, b
Mathiot, P., Barnier, B., Gallée, H., Molines, J. M., Sommer, J. L., Juza, M.,
and Penduff, T.: Introducing katabatic winds in global ERA40 fields to
simulate their impacts on the Southern Ocean and sea-ice, Ocean
Model., 35, 146–160, https://doi.org/10.1016/j.ocemod.2010.07.001, 2010. a
Mathiot, P., Jenkins, A., Harris, C., and Madec, G.: Explicit representation and parametrised impacts of under ice shelf seas in the Z∗ coordinate ocean model NEMO 3.6, Geosci. Model Dev., 10, 2849–2874, https://doi.org/10.5194/gmd-10-2849-2017, 2017. a, b, c, d
Mazloff, M. R., Heimbach, P., and Wunsch, C.: An Eddy-Permitting Southern
Ocean State Estimate, J. Phys. Oceanogr., 40, 880–899,
https://doi.org/10.1175/2009JPO4236.1, 2010. a, b
McPhee, M. G.: A time‐dependent model for turbulent transfer in a stratified
oceanic boundary layer, J. Geophys. Res.-Oceans, 92,
6977–6986, https://doi.org/10.1029/JC092iC07p06977, 1987. a
Mellor, G. L., Ezer, T., and Oey, L.-Y.: The Pressure Gradient Conundrum
of Sigma Coordinate Ocean Models, J. Atmos. Ocean. Tech., 11, 1126–1134,
https://doi.org/10.1175/1520-0426(1994)011<1126:TPGCOS>2.0.CO;2, 1994. a, b
Mellor, G. L., Oey, L.-Y., and Ezer, T.: Sigma Coordinate Pressure
Gradient Errors and the Seamount Problem, J. Atmos. Ocean. Tech., 15, 1122–1131,
https://doi.org/10.1175/1520-0426(1998)015<1122:SCPGEA>2.0.CO;2, 1998. a
Meneghello, G., Marshall, J., Campin, J.-M., Doddridge, E., and Timmermans,
M.-L.: The Ice-Ocean Governor: Ice-Ocean Stress Feedback
Limits Beaufort Gyre Spin-Up, Geophys. Res. Lett., 45,
11293–11299, https://doi.org/10.1029/2018GL080171, 2018a. a
Meneghello, G., Marshall, J., Timmermans, M.-L., and Scott, J.: Observations of
Seasonal Upwelling and Downwelling in the Beaufort Sea Mediated
by Sea Ice, J. Phys. Oceanogr., 48, 795–805,
https://doi.org/10.1175/JPO-D-17-0188.1, 2018b. a
Menemenlis, D., Campin, J., Heimbach, P., Hill, C., Lee, T., Nguyen, A.,
Schodlok, M., and Zhang, H.: ECCO2: High Resolution Global Ocean
and Sea Ice Data Synthesis, AGU Fall Meeting Abstracts, available at: http://adsabs.harvard.edu/abs/2008AGUFMOS31C1292M (last access: 17 January 2022), 2008. a
Millan, R., Rignot, E., Bernier, V., Morlighem, M., and Dutrieux, P.:
Bathymetry of the Amundsen Sea Embayment sector of West Antarctica
from Operation IceBridge gravity and other data, Geophys. Res. Lett., 44, 1360–1368, https://doi.org/10.1002/2016GL072071, 2017. a
Morrison, A. K., Hogg, A. M., England, M. H., and Spence, P.: Warm
Circumpolar Deep Water transport toward Antarctica driven by local
dense water export in canyons, Science Advances, 6, eaav2516,
https://doi.org/10.1126/sciadv.aav2516, 2020. a
Mouginot, J., Rignot, E., and Scheuchl, B.: MEaSURES Antarctic Boundaries
for IPY 2007–2009 from Satellite Radar, Version 1, Shelves, NSIDC [data set],
https://doi.org/10.5067/SEVV4MR8P1ZN, 2016. a, b, c
Mueller, R. D., Padman, L., Dinniman, M. S., Erofeeva, S. Y., Fricker, H. A.,
and King, M. A.: Impact of tide-topography interactions on basal melting of
Larsen C Ice Shelf, Antarctica, J. Geophys. Res.-Oceans, 117,
C05005, https://doi.org/10.1029/2011JC007263, 2012. a
Mueller, R. D., Hattermann, T., Howard, S. L., and Padman, L.: Tidal influences on a future evolution of the Filchner–Ronne Ice Shelf cavity in the Weddell Sea, Antarctica, The Cryosphere, 12, 453–476, https://doi.org/10.5194/tc-12-453-2018, 2018. a, b
Nakayama, Y., Timmermann, R., Schröder, M., and Hellmer, H. H.: On the
difficulty of modeling Circumpolar Deep Water intrusions onto the
Amundsen Sea continental shelf, Ocean Model., 84, 26–34,
https://doi.org/10.1016/j.ocemod.2014.09.007, 2014. a, b, c, d
Nakayama, Y., Menemenlis, D., Schodlok, M., and Rignot, E.: Amundsen and
Bellingshausen Seas simulation with optimized ocean, sea ice, and
thermodynamic ice shelf model parameters, J. Geophys. Res.-Oceans, 122, 6180–6195, https://doi.org/10.1002/2016JC012538, 2017. a, b, c, d
Nash, R.: International Bathymetric Chart of the Southern Ocean
(IBCSO), Scientific Committee on Antarctic Research (SCAR), available at: https://www.scar.org/science/ibcso/ibcso/ (last access: 17 January 2022), 2019. a
Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H.,
Timmermann, R., and Hellmer, H. H.: Future Projections of Antarctic Ice
Shelf Melting Based on CMIP5 Scenarios, J. Clim., 31,
5243–5261, https://doi.org/10.1175/JCLI-D-17-0854.1, 2018a. a
Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R., Hellmer, H. H., Hattermann, T., and Debernard, J. B.: Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4, Geosci. Model Dev., 11, 1257–1292, https://doi.org/10.5194/gmd-11-1257-2018, 2018b. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Naughten, K. A., Rydt, J. D., Rosier, S. H. R., Holland, P. R., and Ridley,
J. K.: Two-timescale response of a large Antarctic ice shelf to climate
change, Nat. Commun., 12, 1991, https://doi.org/10.1038/s41467-021-22259-0, 2021. a
Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T., and Fahrbach,
E.: Ice‐ocean processes over the continental shelf of the southern
Weddell Sea, Antarctica: A review, Rev.Geophys., 47,
RG3003, https://doi.org/10.1029/2007RG000250, 2009. a
Nøst, O. A., Biuw, M., Tverberg, V., Lydersen, C., Hattermann, T., Zhou, Q.,
Smedsrud, L. H., and Kovacs, K. M.: Eddy overturning of the Antarctic
Slope Front controls glacial melting in the Eastern Weddell Sea,
J. Geophys. Res.-Oceans, 116, C11014, https://doi.org/10.1029/2011JC006965, 2011. a
Padman, L., Howard, S. L., and Muench, R.: Internal tide generation along the
South Scotia Ridge, Deep-Sea Res. Pt. II, 53, 157–171, https://doi.org/10.1016/j.dsr2.2005.07.011, 2006. a
Padman, L., Siegfried, M. R., and Fricker, H. A.: Ocean Tide Influences on
the Antarctic and Greenland Ice Sheets, Rev. Geophys., 56,
142–184, https://doi.org/10.1002/2016RG000546, 2018. a, b
Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci. USA, 116, 14414–14423, https://doi.org/10.1073/pnas.1906556116, 2019. a
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis
including error estimates in MATLAB using T_TIDE, Computers and
Geosciences, 28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002. a
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal
melting of ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968,
2012. a, b, c
Purkey, S. G. and Johnson, G. C.: Antarctic Bottom Water Warming and
Freshening: Contributions to Sea Level Rise, Ocean Freshwater
Budgets, and Global Heat Gain, J. Clim., 26, 6105–6122,
https://doi.org/10.1175/JCLI-D-12-00834.1, 2013. a
Richter, O.: kuechenrole/waom: Whole Antarctic Ocean Model, Zenodo [code], https://doi.org/10.5281/zenodo.3738985, 2020a. a, b
Richter, O.: kuechenrole/antarctic_melting: Post- and preprocessing tools for the ROMS Whole Antarctic Ocean Model, Zenodo [data set], https://doi.org/10.5281/zenodo.3738998, 2020b. a, b
Robertson, R.: Modeling internal tides over Fieberling Guyot: resolution,
parameterization, performance, Ocean Dynam., 56, 430–444,
https://doi.org/10.1007/s10236-006-0062-5, 2006. a
Roquet, F., Williams, G., Hindell, M. A., Harcourt, R., McMahon, C., Guinet,
C., Charrassin, J.-B., Reverdin, G., Boehme, L., Lovell, P., and Fedak, M.: A
Southern Indian Ocean database of hydrographic profiles obtained with
instrumented elephant seals, Sci. Data, 1, 140028,
https://doi.org/10.1038/sdata.2014.28, 2014. a
Schaffer, J., Timmermann, R., Arndt, J. E., Kristensen, S. S., Mayer, C., Morlighem, M., and Steinhage, D.: A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry, Earth Syst. Sci. Data, 8, 543–557, https://doi.org/10.5194/essd-8-543-2016, 2016. a
Schmidtko, S., Johnson, G. C., and Lyman, J. M.: MIMOC: A global monthly
isopycnal upper-ocean climatology with mixed layers, J. Geophys. Res.-Oceans, 118, 1658–1672, https://doi.org/10.1002/jgrc.20122,
2013. a
Schnaase, F. and Timmermann, R.: Representation of shallow grounding zones in
an ice shelf-ocean model with terrain-following coordinates, Ocean Model.,
144, 101487, https://doi.org/10.1016/j.ocemod.2019.101487, 2019. a, b
Schodlok, M. P., Menemenlis, D., and Rignot, E.: Ice shelf basal melt rates
around Antarctica from simulations and observations, J. Geophys. Res.-Oceans, 121, 1085–1109, https://doi.org/10.1002/2015JC011117, 2016. a, b, c
Shchepetkin, A. F. and McWilliams, J. C.: A method for computing horizontal
pressure-gradient force in an oceanic model with a nonaligned vertical
coordinate, J. Geophys. Res.-Oceans, 108, 3090,
https://doi.org/10.1029/2001JC001047, 2003. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Modelling, 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Shean, D. E., Joughin, I. R., Dutrieux, P., Smith, B. E., and Berthier, E.: Ice shelf basal melt rates from a high-resolution digital elevation model (DEM) record for Pine Island Glacier, Antarctica, The Cryosphere, 13, 2633–2656, https://doi.org/10.5194/tc-13-2633-2019, 2019. a
Sherwood, C. R., Aretxabaleta, A. L., Harris, C. K., Rinehimer, J. P., Verney, R., and Ferré, B.: Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234), Geosci. Model Dev., 11, 1849–1871, https://doi.org/10.5194/gmd-11-1849-2018, 2018. a
Sikirić, M. D., Janeković, I., and Kuzmić, M.: A new approach to bathymetry
smoothing in sigma-coordinate ocean models, Ocean Model., 29, 128–136,
https://doi.org/10.1016/j.ocemod.2009.03.009, 2009. a, b, c
Silvano, A., Rintoul, S. R., Peña‐Molino, B., and Williams, G. D.:
Distribution of water masses and meltwater on the continental shelf near the
Totten and Moscow University ice shelves, J. Geophys. Res.-Oceans, 122, 2050–2068, https://doi.org/10.1002/2016JC012115, 2017. a, b
Silvano, A., Rintoul, S. R., Peña-Molino, B., Hobbs, W. R., van Wijk, E., Aoki,
S., Tamura, T., and Williams, G. D.: Freshening by glacial meltwater enhances
melting of ice shelves and reduces formation of Antarctic Bottom Water,
Sci. Adv., 4, eaap9467, https://doi.org/10.1126/sciadv.aap9467, 2018. a, b
Stern, A. A., Dinniman, M. S., Zagorodnov, V., Tyler, S. W., and Holland,
D. M.: Intrusion of warm surface water beneath the McMurdo Ice Shelf,
Antarctica, J. Geophys. Res.-Oceans, 118, 7036–7048,
https://doi.org/10.1002/2013JC008842, 2013. a, b
Stewart, A. L. and Thompson, A. F.: Eddy‐mediated transport of warm
Circumpolar Deep Water across the Antarctic Shelf Break,
Geophys. Res. Lett., 42, 432–440, https://doi.org/10.1002/2014GL062281, 2015. a, b, c
Stewart, A. L., Klocker, A., and Menemenlis, D.: Circum-Antarctic Shoreward
Heat Transport Derived From an Eddy- and Tide-Resolving
Simulation, Geophys. Res. Lett., 45, 834–845,
https://doi.org/10.1002/2017GL075677, 2018. a, b, c
Stewart, C. L., Christoffersen, P., Nicholls, K. W., Williams, M. J. M., and
Dowdeswell, J. A.: Basal melting of Ross Ice Shelf from solar heat
absorption in an ice-front polynya, Nat. Geosci., 12, 435–440,
https://doi.org/10.1038/s41561-019-0356-0, 2019. a, b
Tamura, T., Ohshima, K. I., Nihashi, S., and Hasumi, H.: Estimation of
Surface Heat/Salt Fluxes Associated with Sea Ice
Growth/Melt in the Southern Ocean, Scientific Online Letters on the Atmosphere (SOLA), 7, 17–20,
https://doi.org/10.2151/sola.2011-005, 2011. a, b
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc.,
93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2011. a
Thoma, M., Jenkins, A., Holland, D. M., and Jacobs, S. S.: Modelling
Circumpolar Deep Water intrusions on the Amundsen Sea continental
shelf, Antarctica, Geophys. Res. Lett., 35, L18602,
https://doi.org/10.1029/2008GL034939, 2008. a, b
Timmermann, R. and Goeller, S.: Response to Filchner–Ronne Ice Shelf cavity warming in a coupled ocean–ice sheet model – Part 1: The ocean perspective, Ocean Sci., 13, 765–776, https://doi.org/10.5194/os-13-765-2017, 2017. a
Timmermann, R. and Hellmer, H.: Southern Ocean warming and increased ice
shelf basal melting in the twenty-first and twenty-second centuries based on
coupled ice-ocean finite-element modelling, Ocean Dynam., 63, 1011–1026,
https://doi.org/10.1007/s10236-013-0642-0, 2013.
a
Timmermann, R., Beckmann, A., and Hellmer, H. H.: Simulations of ice-ocean
dynamics in the Weddell Sea 1. Model configuration and validation,
J. Geophys. Res.-Oceans, 107, 3024, https://doi.org/10.1029/2000JC000741, 2002. a
Williams, G. D., Herraiz-Borreguero, L., Roquet, F., Tamura, T., Ohshima,
K. I., Fukamachi, Y., Fraser, A. D., Gao, L., Chen, H., McMahon, C. R.,
Harcourt, R., and Hindell, M.: The suppression of Antarctic bottom water
formation by melting ice shelves in Prydz Bay, Nat. Commun., 7,
12577, https://doi.org/10.1038/ncomms12577, 2016. a
Wåhlin, A. K., Steiger, N., Darelius, E., Assmann, K. M., Glessmer, M. S., Ha,
H. K., Herraiz-Borreguero, L., Heuzé, C., Jenkins, A., Kim, T. W., Mazur,
A. K., Sommeria, J., and Viboud, S.: Ice front blocking of ocean heat
transport to an Antarctic ice shelf, Nature, 578, 568–571,
https://doi.org/10.1038/s41586-020-2014-5, 2020. a
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that...