Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5045-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5045-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SnowClim v1.0: high-resolution snow model and data for the western United States
Abby C. Lute
CORRESPONDING AUTHOR
Water Resources Program, University of Idaho, Moscow, ID 83844, USA
now at: Woodwell Climate Research Center, Falmouth, MA 02540, USA
John Abatzoglou
Management of Complex Systems, University of California, Merced, CA 95343, USA
Timothy Link
Department of Forest, Rangeland, and Fire Sciences, University of
Idaho, Moscow, ID 83844, USA
Related authors
No articles found.
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483, https://doi.org/10.5194/essd-2025-483, 2025
Preprint under review for ESSD
Short summary
Short summary
The second State of Wildfires report examines extreme wildfire events from 2024 to early 2025. It analyses key regional events in Southern California, Northeast Amazonia, Pantanal-Chiquitano, and the Congo Basin, assessing their drivers, predictability, and attributing them to climate change and land use. Seasonal outlooks and decadal projections are provided. Climate change greatly increased the likelihood of these fires, and without strong mitigation, such events will become more frequent.
A. Park Williams, Winslow D. Hansen, Caroline S. Juang, John T. Abatzoglou, Volker C. Radeloff, Bowen Wang, Jazlynn Hall, Jatan Buch, and Gavin D. Madakumbura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2934, https://doi.org/10.5194/egusphere-2025-2934, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The new WULFFSS is a monthly gridded forest-fire model to simulate forest fires across the western United States in response to vegetation, topographic, anthropogenic, and climate factors. This effort is motivated by the ten-fold increase in western U.S. annual forest area burned over the past 40 years. The WULFFSS is highly skillful, accounting for over 80 % of the observed variability in annual forest-fire area and capturing observed spatial, intra-annual variations, and trends.
Bhupinderjeet Singh, Mingliang Liu, John Abatzoglou, Jennifer Adam, and Kirti Rajagopalan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2284, https://doi.org/10.5194/egusphere-2024-2284, 2024
Preprint archived
Short summary
Short summary
Hydrology models rely on simplistic static approaches to precipitation phase partitioning. We evaluate model skill changes for a suite of snow metrics by transitioning to a more accurate dynamic partitioning. We found that the transition resulted in a better match between modeled and observed metrics, with a 50 % reduction in model bias, emphasizing the need for the hydrological modeling community to adopt dynamic partitioning.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Yavar Pourmohamad, John T. Abatzoglou, Erin J. Belval, Erica Fleishman, Karen Short, Matthew C. Reeves, Nicholas Nauslar, Philip E. Higuera, Eric Henderson, Sawyer Ball, Amir AghaKouchak, Jeffrey P. Prestemon, Julia Olszewski, and Mojtaba Sadegh
Earth Syst. Sci. Data, 16, 3045–3060, https://doi.org/10.5194/essd-16-3045-2024, https://doi.org/10.5194/essd-16-3045-2024, 2024
Short summary
Short summary
The FPA FOD-Attributes dataset provides > 300 biological, physical, social, and administrative attributes associated with > 2.3×106 wildfire incidents across the US from 1992 to 2020. The dataset can be used to (1) answer numerous questions about the covariates associated with human- and lightning-caused wildfires and (2) support descriptive, diagnostic, predictive, and prescriptive wildfire analytics, including the development of machine learning models.
Jianning Ren, Jennifer C. Adam, Jeffrey A. Hicke, Erin J. Hanan, Christina L. Tague, Mingliang Liu, Crystal A. Kolden, and John T. Abatzoglou
Hydrol. Earth Syst. Sci., 25, 4681–4699, https://doi.org/10.5194/hess-25-4681-2021, https://doi.org/10.5194/hess-25-4681-2021, 2021
Short summary
Short summary
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows that water yield increases after trees are killed, many others document no change or a decrease. The climatic and environmental mechanisms driving hydrologic response to tree mortality are not well understood. We demonstrated that the direction of hydrologic response is a function of multiple factors, so previous studies do not necessarily conflict with each other; they represent different conditions.
Cited articles
Abatzoglou, J. T. and Brown, T. J.: A comparison of statistical downscaling
methods suited for wildfire applications, Int. J. Climatol., 32, 772–780,
https://doi.org/10.1002/joc.2312, 2012.
Anderson, E. A.: A point energy and mass balance model of a snow cover, NOAA
Technical Report NWS 19, National Weather Service, 150 p., https://repository.library.noaa.gov/view/noaa/6392 (last access: 1 June 2021), 1976.
Anderson, E. A.: Snow Accumulation and Ablation Model – SNOW-17, US
National Weather Service, Silver Spring, MD, 61 p., https://www.weather.gov/media/owp/oh/hrl/docs/22snow17.pdf (last access: 1 June 2021), 2006.
Armstrong, R. L. and Brun, E.: Snow and Climate: Physical Processes,
Surface Energy Exchange and Modeling, Cambridge University Press, Cambridge,
UK, p. 58, ISBN 9780521130653, 2008.
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R.,
and Dozier, J.: Mountain hydrology of the western United States, Water
Resour. Res., 42, W08432, https://doi.org/10.1029/2005WR004387, 2006.
Barsugli, J. J., Ray, A. J., Livneh, B., Dewes, C. F., Heldmyer, A.,
Rangwala, I., Guinotte, J. M., and Torbit, S.: Projections of Mountain
Snowpack Loss for Wolverine Denning Elevations in the Rocky Mountains,
Earths Future, 8, e2020EF001537, https://doi.org/10.1029/2020EF001537, 2020.
Bernhardt, M. and Schulz, K.: SnowSlide: A simple routine for calculating
gravitational snow transport, Geophys. Res. Lett., 37, L11502,
https://doi.org/10.1029/2010GL043086, 2010.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Blöschl, G. and Kirnbauer, R.: Point snowmelt models with different
degrees of complexity – Internal processes, J. Hydrol., 129, 127–147,
https://doi.org/10.1016/0022-1694(91)90048-M, 1991.
Boone, A.: Description du Schema de Neige ISBA-ES (Explicit
Snow), Centre National de Recherches Météorologiques,
Météo-France, Toulouse, France, 63 p.,
https://www.umr-cnrm.fr/IMG/pdf/snowdoc.pdf (last access: 1 June 2021), 2002.
Braun, L. N.: Simulation of snowmelt-runoff in lowland and lower alpine
regions of Switzerland, PhD dissertation, ETH Zurich, 166 p.,
https://doi.org/10.3929/ETHZ-A-000334295, 1984.
Burakowski, E. and Magnusson, M.: Climate Impacts on the Winter Tourism
Economy in the United States, Prepared for Protect Our Winters (POW) and
Natural Resources Defense Council (NRDC), 33 p.,
https://scholars.unh.edu/ersc/118/ (last access: 1 June 2021), 2012.
Choi, G., Robinson, D. A., and Kang, S.: Changing Northern Hemisphere Snow
Seasons, J. Climate, 23, 5305–5310,
https://doi.org/10.1175/2010JCLI3644.1, 2010.
Cohen, J.: Snow cover and climate, Weather, 49, 150–156,
https://doi.org/10.1002/j.1477-8696.1994.tb05997.x, 1994.
Corripio, M. J. G.: Insol: Solar Radiation, R package version 1.2.1 [code],
https://CRAN.R-project.org/package=insol (last access: 1 March 2021), 2015.
Curtis, J. A., Flint, L. E., Flint, A. L., Lundquist, J. D., Hudgens, B.,
Boydston, E. E., and Young, J. K.: Incorporating Cold-Air Pooling into
Downscaled Climate Models Increases Potential Refugia for Snow-Dependent
Species within the Sierra Nevada Ecoregion, CA, PLoS ONE, 9, e106984,
https://doi.org/10.1371/journal.pone.0106984, 2014.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.:
The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Dettinger, M.: Climate Change, Atmospheric Rivers, and Floods in California
– A Multimodel Analysis of Storm Frequency and Magnitude Changes, J. Am. Water
Resour. As., 47, 514–523,
https://doi.org/10.1111/j.1752-1688.2011.00546.x, 2011.
DeWalle, D. and Rango, A.: Principles of Snow Hydrology, Cambridge
University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511535673, 2008.
Dickinson, R. E., Henderson-Sellers, A., and Kennedy, P. J.:
Biosphere-Atmosphere Transfer Scheme (BATS) Version le as Coupled to the
NCAR Community Climate Model, NCAR Technical Note NCAR/TN-387+STR, National Center for Atmospheric Research, p. 80, https://doi.org/10.5065/D67W6959, 1993.
Dietrich, H., Wolf, T., Kawohl, T., Wehberg, J., Kändler, G., Mette, T.,
Röder, A., and Böhner, J.: Temporal and spatial high-resolution
climate data from 1961 to 2100 for the German National Forest Inventory
(NFI), Ann. For. Sci., 76, 6, https://doi.org/10.1007/s13595-018-0788-5,
2019.
Douville, H., Royer, J.-F., and Mahfouf, J.-F.: A new snow parameterization
for the Meteo-France climate model Part I: validation in stand-alone
experiments, Clim. Dynam., 12, 21–35,
https://doi.org/10.1007/s003820050092, 1995.
Eira, I. M. G., Jaedicke, C., Magga, O. H., Maynard, N. G.,
Vikhamar-Schuler, D., and Mathiesen, S. D.: Traditional Sámi snow
terminology and physical snow classification – Two ways of knowing, Cold Reg. Sci. Technol., 85, 117–130,
https://doi.org/10.1016/j.coldregions.2012.09.004, 2013.
Essery, R., Morin, S., Lejeune, Y., and B Ménard, C.: A comparison of
1701 snow models using observations from an alpine site, Adv. Water Resour.,
55, 131–148, https://doi.org/10.1016/j.advwatres.2012.07.013, 2013.
Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile, E.,
Boone, A., Dai, Y. J., Essery, R., Fernandez, A., Gusev, Y., Jordan, R.,
Koren, V., Kowalczyk, E., Pyles, R. D., Schlosser, A., Shmakin, A. B.,
Smirnova, T. G., Strasser, U., Verseghy, D., Yamazaki, T., and Yang, Z. L.: SnowMIP – An
Intercomparison of Snow Models: First Results, International Snow Science
Workshop, Penticton, British Columbia, 353–360, https://arc.lib.montana.edu/snow-science/objects/issw-2002-353-360.pdf (last access: 1 June 2021), 2002.
Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile, E.,
Boone, A., Dai, Y.-J., Essery, R., Fernandez, A., Gusev, Y., Jordan, R.,
Koren, V., Kowalczyk, E., Nasonova, N. O., Pyles, R. D., Schlosser, A.,
Shmakin, A. B., Smirnova, T. G., Strasser, U., Verseghy, D., Yamazaki, T., and Yang, Z.-L.: Validation of
the energy budget of an alpine snowpack simulated by several snow models
(Snow MIP project), Ann. Glaciol., 38, 150–158,
https://doi.org/10.3189/172756404781814825, 2004.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: New 1 km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37,
4302–4315, https://doi.org/10.1002/joc.5086, 2017.
Fleming, S. W. and Gupta, H. V.: The physics of river prediction, Phys.
Today, 73, 46–52, https://doi.org/10.1063/PT.3.4523, 2020.
Formozov, A. N.: Snow cover as an integral factor of the environment and its
importance in the ecology of mammals and birds, Boreal Institute for
Northern Studies, The University of Alberta, Edmonton, Alberta, 151 p., https://www.uap.ualberta.ca/titles/276 (last access: 1 June 2021), 1964.
Freudiger, D., Kohn, I., Seibert, J., Stahl, K., and Weiler, M.: Snow
redistribution for the hydrological modeling of alpine catchments, WIRES-Water, 4, e1232,
https://doi.org/10.1002/wat2.1232, 2017.
Fritze, H., Stewart, I. T., and Pebesma, E.: Shifts in Western North
American Snowmelt Runoff Regimes for the Recent Warm Decades, J.
Hydrometeorol., 12, 989–1006, https://doi.org/10.1175/2011JHM1360.1,
2011.
Fyfe, J. C., Derksen, C., Mudryk, L., Flato, G. M., Santer, B. D., Swart, N.
C., Molotch, N. P., Zhang, X., Wan, H., Arora, V. K., Scinocca, J., and
Jiao, Y.: Large near-term projected snowpack loss over the western United
States, Nat. Commun., 8, 14996, https://doi.org/10.1038/ncomms14996, 2017.
Garen, D. C. and Marks, D.: Spatially distributed energy balance snowmelt
modelling in a mountainous river basin: Estimation of meteorological inputs
and verification of model results, J. Hydrol., 315, 126–153,
https://doi.org/10.1016/j.jhydrol.2005.03.026, 2005.
Gergel, D. R., Nijssen, B., Abatzoglou, J. T., Lettenmaier, D. P., and
Stumbaugh, M. R.: Effects of climate change on snowpack and fire potential
in the western USA, Clim. Change, 141, 287–299,
https://doi.org/10.1007/s10584-017-1899-y, 2017.
Gesch, D. B., Evans, G. A., Oimoen, M. J., and Arundel, S.: The National
Elevation Dataset, American Society for Photogrammetry and Remote Sensing;
USGS Publications Warehouse [data set], American Society for Photogrammetry and Remote Sensing, 83–110,
http://pubs.er.usgs.gov/publication/70201572 (last access: 1 January 2020), 2018.
Grippa, M., Kergoat, L., Le Toan, T., Mognard, N. M., Delbart, N.,
L'Hermitte, J., and Vicente-Serrano, S. M.: The impact of snow depth and
snowmelt on the vegetation variability over central Siberia, Geophys. Res. Lett., 32, L21412, https://doi.org/10.1029/2005GL024286, 2005.
Guan, B., Molotch, N. P., Waliser, D. E., Jepsen, S. M., Painter, T. H., and
Dozier, J.: Snow water equivalent in the Sierra Nevada: Blending snow sensor
observations with snowmelt model simulations, Water Resour. Res., 49,
5029–5046, https://doi.org/10.1002/wrcr.20387, 2013.
Günther, D., Marke, T., Essery, R., and Strasser, U.: Uncertainties in
Snowpack Simulations – Assessing the Impact of Model Structure, Parameter
Choice, and Forcing Data Error on Point-Scale Energy Balance Snow Model
Performance, Water Resour. Res., 55, 2779–2800,
https://doi.org/10.1029/2018WR023403, 2019.
Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R., and Mao, Y.: The Variable Infiltration Capacity model version 5 (VIC-5): infrastructure improvements for new applications and reproducibility, Geosci. Model Dev., 11, 3481–3496, https://doi.org/10.5194/gmd-11-3481-2018, 2018.
Harpold, A. A., Guo, Q., Molotch, N., Brooks, P. D., Bales, R.,
Fernandez-Diaz, J. C., Musselman, K. N., Swetnam, T. L., Kirchner, P.,
Meadows, M. W., Flanagan, J., and Lucas, R.: LiDAR-derived snowpack data
sets from mixed conifer forests across the Western United States, Water Resour. Res., 50, 2749–2755, https://doi.org/10.1002/2013WR013935, 2014.
Havens, S., Marks, D., FitzGerald, K., Masarik, M., Flores, A. N., Kormos,
P., and Hedrick, A.: Approximating Input Data to a Snowmelt Model Using
Weather Research and Forecasting Model Outputs in Lieu of Meteorological
Measurements, J. Hydrometeorol., 20, 847–862,
https://doi.org/10.1175/JHM-D-18-0146.1, 2019.
Helgason, W. and Pomeroy, J.: Problems Closing the Energy Balance over a
Homogeneous Snow Cover during Midwinter, J. Hydrometeorol., 13, 557–572,
https://doi.org/10.1175/JHM-D-11-0135.1, 2012.
Holden, Z. A., Abatzoglou, J. T., Luce, C. H., and Baggett, L. S.: Empirical
downscaling of daily minimum air temperature at very fine resolutions in
complex terrain, Agr. Forest Meteorol., 151, 1066–1073,
https://doi.org/10.1016/j.agrformet.2011.03.011, 2011.
Holden, Z. A., Swanson, A., Klene, A. E., Abatzoglou, J. T., Dobrowski, S.
Z., Cushman, S. A., Squires, J., Moisen, G. G., and Oyler, J. W.:
Development of high-resolution (250 m) historical daily gridded air
temperature data using reanalysis and distributed sensor networks for the US
Northern Rocky Mountains, Int. J. Climatol., 36, 3620–3632,
https://doi.org/10.1002/joc.4580, 2016.
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague,
J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood, G., Mark, B. G.,
Milner, A. M., Weingartner, R., and Winder, M.: Toward mountains without
permanent snow and ice, Earths Future, 5, 2016EF000514,
https://doi.org/10.1002/2016EF000514, 2017.
Ikeda, K., Rasmussen, R., Liu, C., Newman, A., Chen, F., Barlage, M.,
Gutmann, E., Dudhia, J., Dai, A., Luce, C., and Musselman, K.: Snowfall and
snowpack in the Western U.S. as captured by convection permitting climate
simulations: Current climate and pseudo global warming future climate, Clim. Dynam., 57, 2191–2215, https://doi.org/10.1007/s00382-021-05805-w, 2021.
Jennings, K. S., Kittel, T. G. F., and Molotch, N. P.: Observations and simulations of the seasonal evolution of snowpack cold content and its relation to snowmelt and the snowpack energy budget, The Cryosphere, 12, 1595–1614, https://doi.org/10.5194/tc-12-1595-2018, 2018a.
Jennings, K. S., Winchell, T. S., Livneh, B., and Molotch, N. P.: Spatial
variation of the rain-snow temperature threshold across the Northern
Hemisphere, Nat. Commun., 9, 1148,
https://doi.org/10.1038/s41467-018-03629-7, 2018b.
Jennings, K., Kittel, T., Molotch, N., and Yang, K.: Infilled climate data
for C1, Saddle, and D1, 1990—2019, hourly [data set], Environmental Data
Initiative, https://doi.org/10.6073/pasta/,
2021.
Jones, H. G.: The ecology of snow-covered systems: A brief overview of
nutrient cycling and life in the cold, Hydrol. Process., 13, 13, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2135::AID-HYP862>3.0.CO;2-Y, 1999.
Jordan, R.: A one-dimensional temperature model for a snow cover: Technical
documentation for SNTHERM.89, Special Report 91-16, Cold Regions Research
and Engineering Laboratory,
https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/11677/1/SR-91-16.pdf (last access: 1 June 2021),
1991.
Khu, S. T. and Madsen, H.: Multiobjective calibration with Pareto
preference ordering: An application to rainfall-runoff model calibration,
Water Resour. Res., 41, W03004, https://doi.org/10.1029/2004WR003041, 2005.
Knowles, J. F., Blanken, P. D., Williams, M. W., and Chowanski, K. M.:
Energy and surface moisture seasonally limit evaporation and sublimation
from snow-free alpine tundra, Agr. Forest Meteorol., 157, 106–115,
https://doi.org/10.1016/j.agrformet.2012.01.017, 2012.
Knowles, N., Dettinger, M. D., and Cayan, D. R.: Trends in Snowfall versus
Rainfall in the Western United States, J. Climate, 19, 4545–4559,
https://doi.org/10.1175/JCLI3850.1, 2006.
Kumar, M., Wang, R., and Link, T. E.: Effects of more extreme precipitation
regimes on maximum seasonal snow water equivalent, Geophys. Res.
Lett., 39, 2012GL052972, https://doi.org/10.1029/2012GL052972, 2012.
Kumar, M., Marks, D., Dozier, J., Reba, M., and Winstral, A.: Evaluation of
distributed hydrologic impacts of temperature-index and energy-based snow
models, Adv. Water Resour., 56, 77–89,
https://doi.org/10.1016/j.advwatres.2013.03.006, 2013.
Lee, R.: Morrill Act of 1862 Indigenous Land Parcels Database, High Country
News, https://www.landgrabu.org/ (last access: 1 June 2021), 2020.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res., 99, 14415,
https://doi.org/10.1029/94JD00483, 1994.
Liston, G. E. and Elder, K.: A Distributed Snow-Evolution Modeling System
(SnowModel), J. Hydrometeorol., 7, 1259–1276,
https://doi.org/10.1175/JHM548.1, 2006.
Louis, J.-F.: A parametric model of vertical eddy fluxes in the atmosphere,
Bound.-Lay. Meteorol., 17, 187–202, https://doi.org/10.1007/BF00117978,
1979.
Luce, C. H., and Tarboton, D. G.: The application of depletion curves for
parameterization of subgrid variability of snow, Hydrol. Process.,
18, 1409–1422, https://doi.org/10.1002/hyp.1420, 2004.
Luce, C. H., Abatzoglou, J. T., and Holden, Z. A.: The Missing Mountain
Water: Slower Westerlies Decrease Orographic Enhancement in the Pacific
Northwest USA, Science, 342, 1360–1364,
https://doi.org/10.1126/science.1242335, 2013.
Luce, C. H., Lopez-Burgos, V., and Holden, Z.: Sensitivity of snowpack
storage to precipitation and temperature using spatial and temporal analog
models, Water Resour. Res., 50, 9447–9462,
https://doi.org/10.1002/2013WR014844, 2014a.
Luce, C. H., Staab, B., Kramer, M., Wenger, S., Isaak, D., and McConnell,
C.: Sensitivity of summer stream temperatures to climate variability in the
Pacific Northwest, Water Resour. Res., 50, 3428–3443,
https://doi.org/10.1002/2013WR014329, 2014b.
Lute, A. C. and Abatzoglou, J. T.: Best practices for estimating
near-surface air temperature lapse rates, Int. J. Climatol., 41, E110–E125,
https://doi.org/10.1002/joc.6668, 2021.
Lute, A. C. and Luce, C. H.: Are Model Transferability and Complexity
Antithetical? Insights From Validation of a Variable-Complexity Empirical
Snow Model in Space and Time, Water Resour. Res., 53, 8825–8850,
https://doi.org/10.1002/2017WR020752, 2017.
Lute, A. C., Abatzoglou, J. T., and Hegewisch, K. C.: Projected changes in
snowfall extremes and interannual variability of snowfall in the western
United States, Water Resour. Res., 51, 960–972,
https://doi.org/10.1002/2014WR016267, 2015.
Lute, A. C., Abatzoglou, J. T., and Link, T. E.: SnowClim Model and Dataset,
HydroShare [code and data set], https://doi.org/10.4211/hs.acc4f39ad6924a78811750043d59e5d0, 2021.
Marks, D., Domingo, J., Susong, D., Link, T., and Garen, D.: A spatially
distributed energy balance snowmelt model for application in mountain
basins, Hydrol. Process., 13, 1935–1959, https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1935::AID-HYP868>3.0.CO;2-C, 1999.
Marks, D., Winstral, A., Reba, M., Pomeroy, J., and Kumar, M.: An evaluation
of methods for determining during-storm precipitation phase and the
rain/snow transition elevation at the surface in a mountain basin, Adv. Water Resour., 55, 98–110, https://doi.org/10.1016/j.advwatres.2012.11.012, 2013.
Marsh, C. B., Pomeroy, J. W., and Wheater, H. S.: The Canadian Hydrological Model (CHM) v1.0: a multi-scale, multi-extent, variable-complexity hydrological model – design and overview, Geosci. Model Dev., 13, 225–247, https://doi.org/10.5194/gmd-13-225-2020, 2020.
Marsh, P.: Water flux in melting snow covers, in: Advances in Porous Media
Volume 1, edited by: Corapcioglu, M. Y., Elsevier Science Publishing,
Amsterdam, 61–124, ISBN 0444889094, 1991.
Marshall, A. M., Abatzoglou, J. T., Link, T. E., and Tennant, C. J.:
Projected Changes in Interannual Variability of Peak Snowpack Amount and
Timing in the Western United States, Geophys. Res. Lett., 46, 8882–8892,
https://doi.org/10.1029/2019GL083770, 2019a.
Marshall, A. M., Link, T. E., Abatzoglou, J. T., Flerchinger, G. N., Marks,
D. G., and Tedrow, L.: Warming Alters Hydrologic Heterogeneity: Simulated
Climate Sensitivity of Hydrology-Based Microrefugia in the Snow-to-Rain
Transition Zone, Water Resour. Res., 55, 2122–2141,
https://doi.org/10.1029/2018WR023063, 2019b.
Marshall, A. M., Link, T. E., Robinson, A. P., and Abatzoglou, J. T.: Higher
Snowfall Intensity is Associated with Reduced Impacts of Warming Upon Winter
Snow Ablation, Geophys. Res. Lett., 47, e2019GL086409,
https://doi.org/10.1029/2019GL086409, 2020.
Mazurkiewicz, A. B., Callery, D. G., and McDonnell, J. J.: Assessing the
controls of the snow energy balance and water available for runoff in a
rain-on-snow environment, J. Hydrol., 354, 1–14,
https://doi.org/10.1016/j.jhydrol.2007.12.027, 2008.
McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E.,
and Thompson, S. E.: Hydrologic refugia, plants, and climate change, Glob.
Change Biol., 23, 2941–2961, https://doi.org/10.1111/gcb.13629, 2017.
Mergen, B.: Snow in America, Weatherwise, 50, 18–26,
https://doi.org/10.1080/00431672.1997.9926090, 1997.
Mitchell, T. D.: Pattern Scaling: An Examination of the Accuracy of the
Technique for Describing Future Climates, Clim. Change, 60, 217–242,
2003.
Molotch, N. P. and Bales, R. C.: Scaling snow observations from the point
to the grid element: Implications for observation network design, Water Resour. Res., 41, W11421, https://doi.org/10.1029/2005WR004229, 2005.
Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic
declines in snowpack in the western US, npj Climate and Atmospheric Science,
1, 2, https://doi.org/10.1038/s41612-018-0012-1, 2018.
Mott, R., Vionnet, V., and Grünewald, T.: The Seasonal Snow Cover
Dynamics: Review on Wind-Driven Coupling Processes, Front. Earth Sci., 6, 197, https://doi.org/10.3389/feart.2018.00197, 2018.
Musselman, K. N., Molotch, N. P., and Brooks, P. D.: Effects of vegetation
on snow accumulation and ablation in a mid-latitude sub-alpine forest,
Hydrol. Process., 22, 2767–2776, https://doi.org/10.1002/hyp.7050, 2008.
Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., and Rasmussen, R.:
Slower snowmelt in a warmer world, Nat. Clim. Change, 7, 214–219,
https://doi.org/10.1038/nclimate3225, 2017.
Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F., Liu,
C., Barlage, M., and Rasmussen, R.: Projected increases and shifts in
rain-on-snow flood risk over western North America, Nat. Clim. Change, 8,
808–812, https://doi.org/10.1038/s41558-018-0236-4, 2018.
National Operational Hydrologic Remote Sensing Center: Snow Data
Assimilation System (SNODAS) Data Products at NSIDC, Version 1, NSIDC:
National Snow and Ice Data Center [data set],
https://doi.org/10.7265/N5TB14TC, 2004.
Oleson, K., Dai, Y., Bonan, G., Bosilovichm, M., Dickinson, R., Dirmeyer,
P., Hoffman, F., Houser, P., Levis, S., Niu, G.-Y., Thornton, P.,
Vertenstein, M., Yang, Z.-L., and Zeng, X.: Technical Description of the
Community Land Model (CLM), NCAR/TN-461+STR NCAR Technical Note,
UCAR/NCAR, Boulder, CO, USA, University Corporation for Atmospheric Research, https://doi.org/10.5065/D6N877R0, 2004.
Pomeroy, J. W., Gray, D. M., and Landine, P. G.: The Prairie Blowing Snow
Model: Characteristics, validation, operation, J. Hydrol., 144, 165–192,
https://doi.org/10.1016/0022-1694(93)90171-5, 1993.
Praskievicz, S.: Downscaling climate-model output in mountainous terrain
using local topographic lapse rates for hydrologic modeling of
climate-change impacts, Phys. Geogr., 39, 99–117,
https://doi.org/10.1080/02723646.2017.1378555, 2018.
PRISM Climate Group: PRISM Climate Data, Oregon State University [data set],
http://prism.oregonstate.edu (last access: 1 August 2020), 2015.
Qin, Y., Abatzoglou, J. T., Siebert, S., Huning, L. S., AghaKouchak, A.,
Mankin, J. S., Hong, C., Tong, D., Davis, S. J., and Mueller, N. D.:
Agricultural risks from changing snowmelt, Nat. Clim. Change, 10, 459–465,
https://doi.org/10.1038/s41558-020-0746-8, 2020.
Raleigh, M. S. and Clark, M. P.: Are temperature-index models appropriate
for assessing climate change impacts on snowmelt?, In: Proceedings of the
Western Snow Conference, Western Snow Conference, Durango, CO, USA, 14–17 April 2014, https://westernsnowconference.org/sites/westernsnowconference.org/PDFs/2014Raleigh.pdf (last access: 1 June 2021), 2014.
Raleigh, M. S., Landry, C. C., Hayashi, M., Quinton, W. L., and Lundquist,
J. D.: Approximating snow surface temperature from standard temperature and
humidity data: New possibilities for snow model and remote sensing
evaluation, Water Resour. Res., 49, 8053–8069,
https://doi.org/10.1002/2013WR013958, 2013.
Rasmussen, R. and Liu, C.: High Resolution WRF Simulations of the Current
and Future Climate of North America, Research Data Archive at the National
Center for Atmospheric Research, Computational and Information Systems
Laboratory [data set], https://doi.org/10.5065/D6V40SXP, 2017.
Rudisill, W., Flores, A., and McNamara, J.: The Impact of Initial Snow
Conditions on the Numerical Weather Simulation of a Northern Rockies
Atmospheric River, J. Hydrometeorol., 22, 155–167,
https://doi.org/10.1175/JHM-D-20-0018.1, 2021.
Seeherman, J. and Liu, Y.: Effects of extraordinary snowfall on traffic
safety, Accident. Anal. Prev., 81, 194–203,
https://doi.org/10.1016/j.aap.2015.04.029, 2015.
Sexstone, G. A., Clow, D. W., Fassnacht, S. R., Liston, G. E., Hiemstra, C.
A., Knowles, J. F., and Penn, C. A.: Snow Sublimation in Mountain
Environments and Its Sensitivity to Forest Disturbance and Climate Warming,
Water Resour. Res., 54, 1191–1211, https://doi.org/10.1002/2017WR021172,
2018.
Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S.,
Szinai, J., Tague, C., Nico, P. S., Feldman, D. R., Jones, A. D., Collins,
W. D., and Kaatz, L.: A low-to-no snow future and its impacts on water
resources in the western United States, Nature Reviews Earth and
Environment, 2, 800–819, https://doi.org/10.1038/s43017-021-00219-y, 2021.
Slater, A. G., Schlosser, C. A., Desborough, C. E., Pitman, A. J.,
Henderson-Sellers, A., Robock, A., Vinnikov, K. Y., Mitchell, K., Boone, A.,
Braden, H., Chen, F., Cox, P. M., Rosnay, P. D., Dickinson, R. E., Gusev, Y.
M., Habets, F., Kim, J., Koren, V., Kowalczyk, E. A., Nasonova, O. N., Noilhan, J., Schaake, S., Shmakin, A. B., Smirnova, T. G., Verseghy, D., Wetzel, P., Xue, Y., Yang, Z. L., and Zeng, Q.:
The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d),
J. Hydrometeorol., 2, 19, https://doi.org/10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2, 2001.
Sohrabi, M. M., Tonina, D., Benjankar, R., Kumar, M., Kormos, P., Marks, D.,
and Luce, C.: On the role of spatial resolution on snow estimates using a
process-based snow model across a range of climatology and elevation, Hydrol. Process., 33, 1260–1275, https://doi.org/10.1002/hyp.13397, 2019.
Stiegler, C., Lund, M., Christensen, T. R., Mastepanov, M., and Lindroth, A.: Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem, The Cryosphere, 10, 1395–1413, https://doi.org/10.5194/tc-10-1395-2016, 2016.
Sturm, M., Goldstein, M. A., and Parr, C.: Water and life from snow: A
trillion dollar science question, Water Resour. Res., 53, 3534–3544,
https://doi.org/10.1002/2017WR020840, 2017.
Tarboton, D. G. and Luce, C. H.: Utah Energy Balance Snow Accumulation and
Melt Model (UEB): Computer model technical description and user guide, Utah
Water Research Laboratory and USDA Forest Service Rocky Mountain Research
Station,
https://www.fs.fed.us/rm/boise/publications/watershed/rmrs_1996_tarbotond001.pdf (last access: 1 June 2021), 1996.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thornton, M.M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S., and Wilson,
B. E.: Daymet: Daily Surface Weather Data on a 1 km Grid for North America,
Version 4, ORNL DACC [data set], https://doi.org/10.3334/ORNLDAAC/1840,
2020.
Waliser, D., Kim, J., Xue, Y., Chao, Y., Eldering, A., Fovell, R., Hall, A.,
Li, Q., Liou, K. N., McWilliams, J., Kapnick, S., Vasic, R., De Sale, F.,
and Yu, Y.: Simulating cold season snowpack: Impacts of snow albedo and
multi-layer snow physics, Clim. Change, 109, 95–117,
https://doi.org/10.1007/s10584-011-0312-5, 2011.
Walter, T. M., Brooks, E. S., McCool, D. K., King, L. G., Molnau, M., and
Boll, J.: Process-based snowmelt modeling: Does it require more input data
than temperature-index modeling?, J. Hydrol., 300, 65–75,
https://doi.org/10.1016/j.jhydrol.2004.05.002, 2005.
Wang, T., Hamann, A., Spittlehouse, D. L., and Murdock, T. Q.:
ClimateWNA – High-Resolution Spatial Climate Data for Western North America,
J. Appl. Meteorol. Clim., 51, 16–29,
https://doi.org/10.1175/JAMC-D-11-043.1, 2012.
Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A distributed
hydrology-vegetation model for complex terrain, Water Resour. Res., 30,
1665–1679, https://doi.org/10.1029/94WR00436, 1994.
Winstral, A., Elder, K., and Davis, R. E.: Spatial Snow Modeling of
Wind-Redistributed Snow Using Terrain-Based Parameters, J. Hydrometeorol.,
3, 524–538, https://doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2, 2002.
Winstral, A., Marks, D., and Gurney, R.: Simulating wind-affected snow
accumulations at catchment to basin scales, Adv. Water Resour., 55, 64–79,
https://doi.org/10.1016/j.advwatres.2012.08.011, 2013.
Winstral, A., Marks, D., and Gurney, R.: Assessing the Sensitivities of a
Distributed Snow Model to Forcing Data Resolution, J. Hydrometeorol., 15,
1366–1383, https://doi.org/10.1175/JHM-D-13-0169.1, 2014.
Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Kapnick, S. B., Zhang, Y.,
Guo, J., and Shum, C. K.: A New Estimate of North American Mountain Snow
Accumulation From Regional Climate Model Simulations, Geophys. Res. Lett.,
45, 1423–1432, https://doi.org/10.1002/2017GL076664, 2018.
You, J., Tarboton, D. G., and Luce, C. H.: Modeling the snow surface temperature with a one-layer energy balance snowmelt model, Hydrol. Earth Syst. Sci., 18, 5061–5076, https://doi.org/10.5194/hess-18-5061-2014, 2014.
Short summary
We developed a snow model that can be used to quantify snowpack over large areas with a high degree of spatial detail. We ran the model over the western United States, creating a snow and climate dataset for three time periods. Compared to observations of snowpack, the model captured the key aspects of snow across time and space. The model and dataset will be useful in understanding historical and future changes in snowpack, with relevance to water resources, agriculture, and ecosystems.
We developed a snow model that can be used to quantify snowpack over large areas with a high...