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Abstract. Seasonal snowpack dynamics shape the biophysi-
cal and societal characteristics of many global regions. How-
ever, snowpack accumulation and duration have generally
declined in recent decades, largely due to anthropogenic cli-
mate change. Mechanistic understanding of snowpack spa-
tiotemporal heterogeneity and climate change impacts will
benefit from snow data products that are based on physi-
cal principles, simulated at high spatial resolution, and cover
large geographic domains. Most existing datasets do not meet
these requirements, hindering our ability to understand both
contemporary and changing snow regimes and to develop
adaptation strategies in regions where snowpack patterns and
processes are important components of Earth systems.

We developed a computationally efficient process-based
snow model, SnowClim, that can be run in the cloud. The
model was evaluated and calibrated at Snowpack Teleme-
try (SNOTEL) sites across the western United States (US),
achieving a site-median root-mean-squared error for daily
snow water equivalent (SWE) of 64 mm, bias in peak SWE
of −2.6 mm, and bias in snow duration of −4.5 d when run
hourly. Positive biases were found at sites with mean winter
temperature above freezing where the estimation of precip-
itation phase is prone to errors. The model was applied to
the western US (a domain covering 3.1 million square kilo-
meters) using newly developed forcing data created by sta-
tistically downscaling pre-industrial, historical, and pseudo-
global warming climate data from the Weather Research
and Forecasting (WRF) model. The resulting product is the
SnowClim dataset, a suite of summary climate and snow
metrics, including monthly SWE and snow depth, as well

as annual maximum SWE and snow cover duration, for the
western US at 210 m spatial resolution (Lute et al., 2021).
The physical basis, large extent, and high spatial resolution
of this dataset enable novel analyses of changing hydrocli-
mate and its implications for natural and human systems.

1 Introduction

Seasonal snowpack shapes the climatic, hydrologic, ecolog-
ical, economic, and cultural characteristics of many global
regions. Snow is an important determinant of the surface en-
ergy balance through its effect on land surface albedo, par-
titioning of sensible and latent heat fluxes, near-surface at-
mospheric stability, and horizontal energy transport (Cohen,
1994; Rudisill et al., 2021; Stiegler et al., 2016). Hydro-
logic benefits of snow include natural water storage, delayed
runoff, and cooler stream temperatures (Bales et al., 2006;
Luce et al., 2014b). Ecologically, seasonal snow insulates
flora and snow-dependent fauna, controls mobility and for-
aging opportunities, mediates nutrient cycling, and supple-
ments plant water availability (Formozov, 1964; Grippa et
al., 2005; Jones, 1999). Economically, seasonal snow helps
to synchronize water and energy supply and demand, enables
crop irrigation, fuels a multi-billion-dollar winter recreation
industry in the United States (US) alone, and causes trans-
portation delays and accidents (Burakowski and Magnusson,
2012; Qin et al., 2020; Seeherman and Liu, 2015; Sturm et
al., 2017). Finally, seasonal snow is a defining aspect of many
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cultures globally, shaping language, traditions, and sense of
self (Eira et al., 2013; Mergen, 1997).

In many mountain regions, recent decades have seen less
precipitation falling as snow, lower peak snow water equiv-
alent (SWE), shorter snow duration, and earlier snowmelt
runoff (Choi et al., 2010; Fritze et al., 2011; Knowles et al.,
2006; Mote et al., 2018). These developments are projected
to continue in the coming decades, resulting in substantial
declines (>50 %) in seasonal snowpack for areas such as
the western US and significant impacts to human and nat-
ural systems (Fyfe et al., 2017; Huss et al., 2017; Marshall
et al., 2019a; Siirila-Woodburn et al., 2021). In addition to
these macroscale developments, there are important nuances
to changing snow. Increased atmospheric water vapor due to
warming is expected to enable larger snowfall events (Lute
et al., 2015), which may buffer declines in snowpack (Ku-
mar et al., 2012; Marshall et al., 2020). Changes in atmo-
spheric circulation may affect snow accumulation, for ex-
ample by diminishing orographic precipitation enhancement
(Luce et al., 2013) or altering characteristics of atmospheric
rivers (Dettinger, 2011). Decreasing snow cover will result in
increased hydrologic importance of microclimates that serve
as snow refugia, such as high elevations, deposition zones,
and shaded areas (Marshall et al., 2019b; McLaughlin et al.,
2017). A warmer and moister atmosphere will shift the rela-
tive importance of snowpack energy and mass budget terms,
resulting, for example, in earlier but slower snowmelt (Mus-
selman et al., 2017), changes to the partitioning of snow abla-
tion between runoff and sublimation (Sexstone et al., 2018),
and increasing rain-on-snow risk in regions that retain snow
cover (Musselman et al., 2018).

Understanding these changes and their implications of-
ten requires snow models and modeled snow data products
(hereafter snow data) that satisfy at least one of several cri-
teria. These criteria include that the data (a) are simulated
with physics-based representations of energy and mass trans-
fer processes, (b) are spatially continuous, (c) have a high
spatial resolution, (d) have a large extent, (e) are multivari-
ate, and (f) are multitemporal. To address some questions
about contemporary or future snow, the snow models them-
selves are needed and must be able to synthesize data that
satisfies these criteria. Snow data developed from process-
based equations for radiative and turbulent energy exchanges
as opposed to temperature index approaches are argued to be
necessary for both capturing the spatial variability of energy
fluxes across the landscape and providing physically realistic
simulations of the effects of climate change (Kumar et al.,
2013; Raleigh and Clark, 2014; although see Lute and Luce,
2017). While it is increasingly clear that machine learning
and artificial intelligence can emulate the net effect of phys-
ical processes to, for example, predict streamflow based on
meteorological data (Fleming and Gupta, 2020), the ability
of these approaches to predict snow under a changing cli-
mate has not been thoroughly evaluated. To assess changes
in snowpack across a landscape, spatially continuous data

are needed. In areas of complex terrain, high spatial reso-
lution (<1 km2) data are necessary to resolve the effects of
elevation and shading (Barsugli et al., 2020; Sohrabi et al.,
2019; Winstral et al., 2014), which contribute to snow refu-
gia that are important for species such as wolverine (Bar-
sugli et al., 2020; Curtis et al., 2014). For some applications,
such as water management and species distribution model-
ing, snow data may need to cover large geographic domains.
Multiple snow metrics are needed for diverse applications.
For example, SWE is commonly used for water management
applications, whereas snow depth and density may be most
relevant for wildlife applications at both large (e.g., for ungu-
late movement) and small scales (e.g., for wolverine denning
sites). Finally, historical and future data are necessary to eval-
uate changes over time and to inform long-term planning and
development of adaptation strategies for specific locales.

There are two major hurdles to the development of a snow
dataset that meets all of these criteria: appropriate forcing
data and computational cost. Presently, large-extent climate
datasets only achieve horizontal resolutions of up to 1 km
(e.g., Abatzoglou and Brown, 2012; Fick and Hijmans, 2017;
Thornton et al., 2020) and the finer-resolution datasets cover
limited domains or are restricted to historical periods (Diet-
rich et al., 2019; Holden et al., 2011, 2016). Second, even
with appropriate forcing data, the computational expense of
running snow models has generally forced the selection of
some of these criteria at the expense of others (Winstral et
al., 2014). For example, a temperature index model might
be used for applications requiring rapid results over large
domains (e.g., SNOW-17; Anderson, 2006), a process-based
model might be run at high resolution over watershed-sized
domains (Garen and Marks, 2005; Liston and Elder, 2006),
or a process-based model might be run at coarser resolu-
tion over a larger extent (e.g., SNODAS, National Opera-
tional Hydrologic Remote Sensing Center, 2004; WRF, Ras-
mussen and Liu, 2017; Gergel et al., 2017; Wrzesien et al.,
2018). There is potential for clever computational solutions
and model formulations, such as variable resolution grids, to
alleviate these trade-offs to some extent (Marsh et al., 2020).

We suggest that using a blended approach comprising
process-based representations of the most crucial energy
and mass balance fluxes (radiation and turbulent fluxes) and
empirical simplifications for more computationally expen-
sive (e.g., snow surface temperature) and/or typically mi-
nor (e.g., ground heat flux) components, implemented at
high spatial resolution, can reduce computational cost rel-
ative to more process-based approaches and enhance accu-
racy of spatiotemporal snow simulations relative to coarser-
scale implementations. The spatial resolution of the model
implementation is a primary controlling factor on model ac-
curacy in complex terrain, since the topographic smoothing
inherent in coarser implementations can result in poor es-
timates of net shortwave radiation and precipitation-phase
partitioning (Sohrabi et al., 2019). While subgrid parameter-
izations can achieve similarly low errors to fully distributed
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approaches (Luce and Tarboton, 2004), they do not provide
spatially explicit simulations, which are useful for applica-
tions such as species distribution modeling and identification
of topography-related snow refugia. Higher spatial resolu-
tion is especially important in the context of assessing fu-
ture habitat, since snowpack response to climate change is
strongly dependent on elevation and aspect (Barsugli et al.,
2020). In contrast to existing process-based models that are
implemented over large domains (e.g., VIC, Hamman et al.,
2018; WRF, Ikeda et al., 2021), the present model does not
calculate runoff and currently does not consider vegetation
effects. Models that account for vegetation heterogeneity and
dynamics may offer advantages over the present approach for
specific applications.

In this study we developed a computationally efficient
largely process-based snow model called SnowClim that has
a flexible model structure and can be run in the cloud (Lute et
al., 2021). The model retains the most important components
of process-based models, including the complete energy bal-
ance and internal snowpack energetics, while omitting more
computationally expensive components such as horizontal
transport, multiple layers, and iterative solutions for snow
surface temperature. Unlike existing models, this simplified
process-based model is efficient enough to be run over sub-
continental domains at high spatial resolution. We force the
SnowClim model with pre-industrial (1850–1879), histori-
cal (2000–2013), and projected future (2071–2100) meteo-
rological data from the Weather Research and Forecasting
(WRF) model downscaled to correct for terrain effects. We
then applied the model to the western US (a domain cov-
ering 3.1 million square kilometers) to create the SnowClim
dataset, a multivariate, gridded, snow and climate dataset for
three time periods at 210 m spatial resolution. Here we pro-
vide a description of the model and its application to the
western US, including parameterization, calibration, climate
forcing data preparation, and resultant datasets.

2 Model description

2.1 Model overview

The SnowClim model is a fully distributed energy and mass
balance snow model. It simulates the snowpack as a sin-
gle layer but accounts for different surface and pack tem-
peratures (Fig. 1). The effects of vegetation, fractional snow
cover, and snow redistribution via gravitational and wind-
driven processes are currently not represented.

The model has a flexible structure to facilitate uncertainty
analysis and application to new conditions. This flexible
structure includes tunable parameters, a customizable spa-
tiotemporal application, and process modularity. Key param-
eters (Table 2) are user defined (as opposed to hard coded in
the model), allowing for calibration of the model to new con-
ditions and regions as desired. The temporal and spatial reso-

Table 1. Required forcing data for the snow model.

Forcing data Abbreviation

Downward shortwave radiation flux at the surface SW↓
Downward longwave radiation flux at the surface LW↓
Air temperature Ta
Precipitation P

Specific humidity Qa
Wind speed Ua
Air pressure Pair

lution and extent are also user defined, which allows users to
adjust to computational constraints and the requirements of
the project. Finally, key processes such as albedo and turbu-
lent fluxes are modularized to allow evaluation of alternative
process representations.

The required forcings are described in Table 1.
The model can be run in MATLAB (2020b) and re-
quires the Statistics and Machine Learning Toolbox. The
code is available at https://www.hydroshare.org/resource/
dc3a40e067bf416d82d87c664d2edcc7/ (last access: 14 June
2022). The model can be run in the cloud using MATLAB
Online through the HydroShare Platform hosted by the Con-
sortium of Universities for the Advancement of Hydrologic
Science, Inc. (CUAHSI).

2.2 Energy balance

The SnowClim model evaluates the snow cover energy bal-
ance at each time step such that

Qnet = SW↓−SW↑+LW↓−LW↑+H+Ei+Ew+P+G, (1)

where Qnet is the net snow cover energy flux, SW↓ is the
downward shortwave radiation at the surface, SW↑ is the up-
ward shortwave radiation at the surface, LW↓ is the down-
ward longwave radiation at the surface, LW↑ is the upward
longwave radiation at the surface,H is the sensible heat flux,
Ei and Ew are the latent heat fluxes of ice and water, P is the
advected heat flux from precipitation, and G is the ground
heat flux (Fig. 1).

2.2.1 Shortwave radiation

Upward shortwave radiation is equivalent to

SW↑ = SW↓α, (2)

where α is the spectrally integrated snow surface albedo.
Springtime snow model simulations are sensitive to the

specific albedo algorithm (Etchevers et al., 2004; Günther et
al., 2019). The SnowClim model provides three options for
computing snow albedo (albedo_opt). In all options, albedo
decays with time, and the albedo of shallow snowpacks
(<100 mm depth) is diminished to account for the albedo of
the ground surface, assumed to be 0.25 (Walter et al., 2005).
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Figure 1. Snow model conceptual diagram. Solid black arrows indicate mass fluxes, and dashed grey arrows indicate energy fluxes. Fluxes
are described in Sect. 2.

Table 2. Parameters, their abbreviated names, the parameter values used in calibration, and their units. Additional parameter options, includ-
ing the VIC model albedo option, were evaluated in preliminary work but were excluded from the full calibration due to consistently poor
performance.

Parameter Abbreviated name Values used for calibration Units

Albedo algorithm albedo_opt Esserya,c, Tarbotonb –
Momentum roughness length z0 10−3, 10−4, 10−5c

m
Heat and vapor roughness length zh z0/10c m
Maximum albedo albedo_max 0.85c, 0.90 –
Maximum liquid water fraction lw_max 0.1c –
Windless heat exchange coefficient E0 0, 1c, 2 Wm−2K−1

Windless heat exchange coefficient flux application E0_app 1c –
Windless heat exchange coefficient stability condition E0_stability 2c –
Cold content threshold at which to start energy tax cc0 0c, −5000, −10 000 kJm−2

Cold content range to tax cc1 −5000c, −10 000, −15 000, −20 000 kJm−2

Maximum tax to apply to snow cover energy maxtax 0.3, 0.6, 0.9c –
Snow cover energy flux smoothing window smooth_hrs 8, 12, 24c h
Snow surface temperature augmentation Tadd 0, 1, 2c ◦C

a Essery et al. (2013). b Tarboton and Luce, (1996). c Parameter values chosen for the full model run by calibration at SNOTEL sites.

A user-specified maximum albedo parameter (albedo_max)
is used in each method.

The simplest albedo model (Essery et al., 2013; here-
after Essery) is empirical and sets albedo decay as a func-
tion of snowpack temperature. Snow albedo is augmented
based on the occurrence and amount of new snow. Param-
eters other than the maximum albedo (minimum albedo, new
snow threshold, linear and exponential albedo decline rates)
are taken from Douville et al. (1995).

In the second albedo model (Hamman et al., 2018; Liang
et al., 1994; hereafter VIC), snowpacks with new snow depth
>10 mm and non-zero cold content receive the maximum

snow albedo. Other albedo parameters are taken directly
from VIC. Snow albedo decays more rapidly for melting
snowpacks than cold snowpacks (cold content, cc<0).

The final albedo model (Dickinson et al., 1993; Tarboton
and Luce, 1996; hereafter Tarboton) accounts for the wave-
length dependence of albedo by computing separate visible
and near-infrared band albedos as a function of snow surface
age and solar illumination angle using a parameterization of
global radiation (i.e., separate visible and near-infrared radi-
ation are not supplied). The maximum albedo parameter is
set equal to the average of the maximum visible band and
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infrared band albedos. This is the only albedo model of the
three that includes a correction for illumination angle.

2.2.2 Longwave radiation

Upward longwave radiation is a function of snow surface
temperature (Ts) in degrees Celsius, snow emissivity (ε), and
the Stefan–Boltzmann constant (σ ) such that

LW↑ = εσ (Ts+ 273.15)4+ (1− ε)LW↓. (3)

We assume ε = 0.98 (Armstrong and Brun, 2008). We con-
sider Ts to be a function of the dew point temperature (Td;
Raleigh et al., 2013) such that

Ts =min(0 ◦C,Td+ Tadd), (4)

where Tadd is an augmentation parameter that increases Ts
and improves simulations of sublimation. For further discus-
sion of Ts, see Sect. 2.2.6.

2.2.3 Turbulent fluxes

The turbulent fluxes, H , Ei, and Ew, are estimated using a
Richardson number parameterization of the exchange coeffi-
cient following Essery et al. (2013). The bulk formula are

H =−ρacaCHUa(Ts− Ta), (5)
Ei =−ρaCHUa(Qs−Qa)λs for Ts < 0, (6)
Ew =−ρaCHUa(Qs−Qa)λv for Ts = 0, (7)

where ρa is the air density, ca is the specific heat capacity
of air, CH is the bulk exchange coefficient that accounts for
near-surface atmospheric stability, Ua is the wind speed, Qs
is the specific humidity of the snow surface, and Qa is the
specific humidity of the air (which is a required forcing). The
specific humidity of the snow surface is calculated from Ts.
The exchange coefficient CH is parameterized as a function
of the near-surface atmospheric stability as captured by the
bulk Richardson number (RiB) such that

CH = FH (RiB)CHN, (8)

RiB = (gzu (Ta− Ts))/
(
TaU

2
a

)
, (9)

CHN = k
2
[ln(zu/z0) ]

−1
[ln(zT /zh) ]

−1, (10)
FH (RiB)= 1 for RiB = 0, (11)

FH (RiB)= 1− (3cRiB)/(
1+ 3c2CHN(−RiBzu/z0)

1/2
)

for RiB < 0, (12)

FH (RiB)= [1+ (2cRiB)/(1+RiB)1/2]−1

for RiB > 0, (13)

where g is gravitational acceleration, zu is the height of sim-
ulated wind speeds, zT is the height of simulated air temper-
atures, z0 is the surface roughness length for momentum, zh

is the surface roughness length for heat and water vapor, and
c is a constant assumed to equal 5 (Louis, 1979). Both z0 and
zh are adjustable user-specified parameters (Table 2).

An optional windless exchange coefficient is available
to counter large radiative losses, particularly during stable
conditions (Helgason and Pomeroy, 2012; Jordan, 1991).
Application of the windless exchange coefficient can be
modified through three parameters: E0_value, E0_app, and
E0_stability (Table 2). E0_value is the value of the windless
exchange coefficient (in W m−2). E0_app controls the appli-
cation of the windless heat exchange coefficient to the sensi-
ble and latent heat fluxes: an E0_app value of 1 applies the
coefficient only to the sensible heat flux, whereas an E0_app
value of 2 applies the coefficient to both the sensible and la-
tent heat fluxes. E0_stability controls the type of conditions
where the windless coefficient is applied: an E0_stability
value of 1 applies the coefficient to all conditions, whereas
an E0_stability value of 2 applies the condition only under
stable atmospheric conditions.

2.2.4 Precipitation heat flux

The heat flux of liquid precipitation is

P = cwρwTdPrain, (14)

where cw is the specific heat of water, ρw is the density of
water, and Prain is the rate of liquid precipitation. The heat
flux of solid precipitation (S) is handled separately for diag-
nostic purposes and is added directly to the snowpack cold
content:

S = ciρwTdPsnow, (15)

whereci is the heat capacity of ice and Psnow is the rate of
snowfall.

2.2.5 Ground heat flux

The ground heat flux can be important in controlling
the onset of seasonal snow accumulation, particularly in
warmer environments (e.g., Mazurkiewicz et al., 2008).
Many process-based snow models include or couple with a
soil temperature model to simulate this flux. However, under
most circumstancesG is thought to provide a minor contribu-
tion to the energy budget (DeWalle and Rango, 2008). In the
interest of model efficiency and to avoid uncertainties asso-
ciated with estimating soil temperatures and thermal conduc-
tivities, we use a constantG of 2 W m−2 (Walter et al., 2005),
which is similar to other models (Etchevers et al., 2002).

2.2.6 Enhanced single-layer approach

Single-layer snow models typically provide less physically
realistic snowpack simulations than multilayer models due to
their simplified treatment of energy transfer within the snow-
pack (Blöschl and Kirnbauer, 1991; Waliser et al., 2011).
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Bulk single-layer conceptualizations treat the surface tem-
perature and energy balance as synonymous with the pack
temperature and energy balance, ignoring the contrast be-
tween the surface layer, which is highly sensitive to the
near-surface atmosphere, and the deeper pack, which is char-
acterized by thermal inertia, i.e., cold content. These dis-
tinctions are key to accurate modeling of snowpack heat
fluxes (Blöschl and Kirnbauer, 1991) and snowpack ablation
(Waliser et al., 2011).

To address these shortcomings, advanced single-layer
snow models have differentiated between surface and pack
temperatures, while attempting to maintain the parsimony
of a single-layer model (Tarboton and Luce, 1996; You et
al., 2014). To solve for snow surface temperature these ap-
proaches typically use iterative methods that can be compu-
tationally expensive (Wigmosta et al., 1994) or linearization
approaches (Best et al., 2011).

The present model uses a two-step modification of the net
snow cover energy flux to approximate the conduction of en-
ergy between the surface and the snowpack. This approach
enables separate temperatures and energy balances for sur-
face and pack components while retaining the computational
efficiency necessary to accomplish the modeling objectives
of both large spatial extent and relatively fine resolution. In
this approach, the surface is conceptualized as a skin with
zero depth.

First, we apply a temporal running mean to the net snow
cover energy flux to approximate the attenuation with depth
of the characteristic diurnal variations in energy at the sur-
face, akin to the approach taken by You et al. (2014).
The smoothed energy flux from the surface to the pack at
each time step (Qnet) is calculated as the average net snow
cover energy flux over a period smooth_hrs, which is a tun-
able parameter (Table 2). This approach reduces unrealistic
high-frequency modifications of the cold content and large-
amplitude freeze–thaw cycles during the ablation season.

Second, we apply a progressive tax on the negative net
energy flux to the snowpack to limit the excessive accumula-
tion of cold content that results from all snow cover energy
being directly translated to the pack. The net effect of the
energy tax is to reduce snowpack cold content, resulting in
more accurate cold content simulations relative to observa-
tions (Table A1) and similar to those from other, more com-
plex process-based models (Jennings et al., 2018a). Other
single-layer models have sought to limit cold content; how-
ever, they used approaches that required site-specific calibra-
tion (Blöschl and Kirnbauer, 1991; Braun, 1984). We apply
a progressive tax such that negative energy fluxes to snow-
packs with larger cold content receive larger taxes.

Qpack =Qnet for Qnet ≥ 0

Qpack =Qnet× (1− tax) for Qnet < 0

tax=
cc− cc0

cc1
×maxtax such that 0≤ tax≤maxtax (16)

In Eq. (16),Qnet is the smoothed net snow cover energy flux,
Qpack is the energy flux from the surface to the pack, and cc
is the snowpack cold content, which uses a negative sign con-
vention. cc0, cc1, and maxtax are tunable parameters that de-
fine the maximum (least negative) cold content to which the
tax should be applied, the range of cold content over which
the tax should be applied (cc0 to cc0+cc1), and the maximum
possible tax, respectively (Table 2). Negative energy fluxes to
snowpacks with cold contents less negative than cc0 receive
zero tax, and negative energy fluxes to snowpacks with cold
contents more negative than cc0+ cc1 receive a tax equal to
maxtax.
Qpack is added to the snowpack cold content (cc) at each

time step. Pack temperature (Tpack) can be obtained from
cold content as follows:

Tpack = cc/(ρw× ci×SWE) , (17)

where SWE is the snow water equivalent.

2.2.7 Modification for shallow snowpacks

We developed a computationally efficient approach for con-
trolling energy balance instabilities for shallow snowpacks.
Marks et al. (1999) addressed the problem by shifting to pro-
gressively smaller time steps. In the interest of computational
efficiency, we take an alternative approach. When modeled
SWE is less than a threshold value, Tpack is set equal to the
minimum of Ta and 0 ◦C. Cold content is then updated ac-
cording to this new temperature. The threshold for applying
this correction is 15 mm of SWE for every hour in the time
step (e.g., for a model run at a 4 h time step, the tempera-
ture correction would be applied to snowpacks with 60 mm
SWE or less). Constraining Tpack and cold content in this
way is reasonable given that surface and pack temperatures
are likely to be similar for shallow snowpacks and the strong
correspondence between Ts and Ta (Helgason and Pomeroy,
2012).

2.3 Mass balance

The mass balance of the solid and liquid portions of the
snowpack are evaluated at each time step as follows:

Ms =Msnow+Mref−Mmelt+Mdep−Msub, (18)
Ml =Mrain−Mref+Mmelt−Mrunoff+Mcond−Mevap,

(19)

where Ms is the mass of the solid portion of the snowpack,
Msnow is the mass of new snowfall,Mref is the mass of liquid
water in the snowpack that has been refrozen, Mmelt is the
mass of snow that has melted, Mdep is the mass of deposi-
tion, Msub is the mass of sublimation, Ml is the mass of the
liquid in the snowpack,Mrain is the mass of rain added to the
snowpack,Mrunoff is the mass of liquid water that has left the
snowpack as runoff, Mcond is the mass of condensation, and
Mevap is the mass of evaporation (Fig. 1).
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2.3.1 Accumulation

Snowfall is calculated as an air-temperature- and relative-
humidity-dependent fraction of precipitation using the bi-
variate logistic regression model of Jennings et al. (2018b).
We use a non-binary formulation to allow for mixed-phase
precipitation. New snowfall amounts less than 0.1 mm wa-
ter equivalent per hour are set to 0. Rainfall is the difference
between precipitation and snowfall. The temperature of new
snowfall is set equal to the minimum of the dew point tem-
perature and freezing point (0 ◦C), whereas the temperature
of rainfall is set equal to the maximum of the dew point tem-
perature and the freezing point (Marks et al., 2013; Raleigh
et al., 2013).

The density of new snowfall is calculated as a function of
air temperature (Anderson, 1976) using constants identified
by Oleson et al. (2004). Compaction of the snowpack is mod-
eled as a function of SWE and snowpack temperature follow-
ing Anderson (1976) and using constants from Boone (2002)
for the ISBA-ES snow model. Snow depth is a function of
SWE and density and is updated following changes in either
variable.

2.3.2 Melt

Positive net energy flux must satisfy the snowpack cold con-
tent before melt can occur. Melt is equivalent to the minimum
of the current SWE and the potential melt,

meltpot =Qpack/(λf× ρw) for Qpack > 0, (20)

where λf is the latent heat of freezing.

2.3.3 Liquid water content

Rainfall, melt, and condensation are added to, and evapora-
tion is subtracted from, the snowpack liquid water content.
Snowpack liquid water content in excess of the liquid water
holding capacity of the snowpack contributes to runoff. The
liquid water holding capacity of the snowpack is the prod-
uct of snow depth and the maximum liquid water fraction
(lw_max, Table 2). Liquid water content below this threshold
but greater than the minimum liquid water content (equiva-
lent to 1 % of snow depth; Marsh, 1991) is allowed to drain
at a rate of 100 mm h−1 (based on values in DeWalle and
Rango, 2008).

2.3.4 Refreezing

Excess cold content can be used to refreeze liquid water in
the snowpack. The amount of water refrozen is the minimum
of the total liquid water content of the snowpack and the po-

tential refreezing,

refreezepot =−cc/(λf× ρw) for cc< 0, (21)
Mref =min

(
refreezepot,Ml

)
for cc< 0. (22)

Energy released by refreezing is added to the snowpack cold
content, and the refrozen mass is added to the SWE, increas-
ing the snowpack density (we assume no change in snow
depth).

2.3.5 Sublimation and condensation

Latent heat transfer results in sublimation or evaporation
from (or deposition or condensation onto) the snowpack,
such that

Msub =−Ei/(λs× ρw) for Ei < 0 and Ts < 0, (23)
Mevap =−Ew/(λv× ρw) for Ew < 0 and Ts = 0, (24)
Mdep =−Ei/(λs× ρw) for Ei > 0 and Ts < 0, (25)
Mcond =−Ew/(λv× ρw) for Ew > 0 and Ts = 0, (26)

where λs is the latent heat of sublimation and λv is the latent
heat of vaporization.

3 Model application to the western United States

The SnowClim model was evaluated and calibrated at a col-
lection of automated snow stations across montane portions
of the western US and further applied to the broader western
US to create the SnowClim dataset. We describe the prepara-
tion and downscaling of the meteorological forcing data, the
model calibration, and the model simulations for the western
US. The model was calibrated at Snowpack Telemetry (SNO-
TEL) sites and model performance at these sites was used to
select the parameters and temporal resolution at which to run
the model over the full domain.

3.1 Spatial resolution

To balance the competing ambitions of high spatial resolu-
tion and computational feasibility over the western US do-
main, we used variable spatial resolutions. Regions of com-
plex terrain were modeled at 210 m (hereafter “fine”). This
high resolution enhances the model’s ability to capture the
effects of elevation, aspect, and slope on snowpack in com-
plex terrain. Regions of less complex terrain were modeled
at 1050 m (hereafter “coarse”). Terrain complexity was as-
sessed for each coarse grid cell by examining the elevations
and downscaled shortwave radiation values for the 25 colo-
cated fine grid cells. If the elevation difference across the fine
cells was less than 50 m and the maximum percent difference
in shortwave radiation was less than 10 %, then snow simu-
lations were completed at coarse resolution. Otherwise, sim-
ulations were completed at fine resolution. This resulted in
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Table 3. WRF data used to derive forcing data for the snow model.

WRF data Abbreviation

Downward shortwave radiation flux at the surface SW↓
Downward longwave radiation flux at the surface LW↓
Mean air temperature Ta
Precipitation P

Wind speed Ua
Air pressure Pair
Water vapor mixing ratio (kg/kg) Q

approximately 30 % of the domain (920 605 grid cells) be-
ing modeled at coarse resolution (Fig. B1), with the remain-
der (64 310 454 grid cells) being modeled at fine resolution.
Grid cells were defined using the 1 arcsec National Elevation
Dataset Digital Elevation Model (DEM; Gesch et al., 2018)
and aggregated to either 210 or 1050 m.

3.2 Forcing data preparation

Hourly meteorological data from the Weather Research and
Forecasting model (WRF; Rasmussen and Liu, 2017) were
downscaled to force the snow model (Table 3). Forcing data
were developed for a historical period, future period, and
pre-industrial period. The raw WRF data consisted of 4 km
spatial resolution hourly simulations for 1 October 2000 to
30 September 2013 that used initial and boundary condi-
tions from ERA-Interim (Dee et al., 2011), herein referred
to as the historical period. A pseudo-global warming run was
also performed by perturbing ERA-Interim by average dif-
ferences from a suite of climate models participating in the
Fifth Coupled Model Intercomparison Project (CMIP5; Tay-
lor et al., 2012) between 1976–2005 and 2071–2100 under
the high-warming RCP 8.5 scenario (Rasmussen and Liu,
2017). Pre-industrial forcing data were developed by perturb-
ing the downscaled historical WRF data by monthly climato-
logical differences in climate between pre-industrial (1850–
1879) and the historical period using a pattern-scaling ap-
proach (Mitchell, 2003) based on spatially varying differ-
ences in variables from the CMIP5 models.

Spatial downscaling for all variables except shortwave ra-
diation was accomplished using moving window lapse rates
(i.e., the change in the variable with elevation). Lapse rate
downscaling has been shown to perform well relative to
other statistical downscaling approaches in mountainous ter-
rain (Praskievicz, 2018; Wang et al., 2012). We estimated
monthly lapse rates for each grid cell and each variable, ex-
cept for temperature, for which we estimated hourly lapse
rates for each grid cell. Windows of 7×7 WRF grid cells (or
28× 28 km) were used to balance the competing objectives
of sufficient data points and the ability to capture local phe-
nomena (Lute and Abatzoglou, 2021). Lapse rate corrections
were applied hourly using the elevation difference between
the WRF grid cell and the target DEM grid cell. For air pres-

sure, lapse rates were calculated from and applied to tempo-
rally averaged WRF data. Grid cells not classified as land by
WRF were excluded from lapse rate calculations.

For precipitation, a modified version of the methods above
was used. Prior to calculating lapse rates, WRF precip-
itation was bias corrected to monthly 4 km precipitation
from PRISM (PRISM Climate Group, 2015) by calculat-
ing monthly correction ratios, i.e., the ratio of total monthly
PRISM precipitation to total monthly WRF precipitation.
Correction ratios were set to 1 (no correction) when monthly
WRF precipitation was 0 or when the ratio was infinite.
Monthly precipitation lapse rates were divided by the num-
ber of hours with precipitation each month in the underly-
ing WRF data, and hours with zero precipitation were main-
tained in the downscaled data to avoid precipitation every
hour due to non-zero monthly lapse rates.

Shortwave radiation was downscaled to the target DEM
using the insol package in R (Corripio, 2015) following the
approach of Lute and Abatzoglou (2021), which preserves
the atmospheric effects (e.g., cloud cover) captured by WRF
and also accounts for slope, aspect, self-shading, and shad-
ing by adjacent terrain. Parameters required by the algorithm,
including visibility, RH, and temperature, were assumed to
be constant. Terrain corrections were calculated for the mid-
point of each hour of the middle day of each month, aggre-
gated to the desired temporal resolution using a weighting
scheme based on the amount of solar radiation each hour,
and then interpolated to the full time period.

For model calibration at SNOTEL sites (see Sect. 3.3.2),
the above downscaling procedures were applied, but values
were adjusted based on the elevation difference between the
SNOTEL site and the colocated WRF grid cell based on cal-
culated lapse rates. Downscaled WRF precipitation was bias
corrected to SNOTEL sites by applying a monthly correction
factor consisting of the ratio of the total SNOTEL precip-
itation to the total WRF precipitation similar to Havens et
al. (2019). We note that such bias correction approaches may
not address issues of precipitation undercatch at SNOTEL
sites.

Additional variables needed to force the snow model, in-
cluding specific humidity, relative humidity, and dew point
temperature, were derived from the downscaled WRF water
vapor mixing ratio, air temperature, and air pressure data us-
ing standard methods. Dew point temperatures exceeding the
air temperature were set equal to the air temperature.

3.3 Model calibration

3.3.1 Calibration methods

The model was calibrated at SNOTEL sites across the moun-
tains of the western US to select a single best parameter set
across all sites. While the SNOTEL network may not be per-
fectly representative of the broader domain (Molotch and
Bales, 2005), it represents the best available ground obser-
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Figure 2. Performance metrics for an hourly model run with the selected parameterization.

Figure 3. Time series of observed and modeled SWE at the Summit Ranch, Colorado, SNOTEL site. Out of all 170 SNOTEL sites, errors at
this site were closest to the all-station median errors reported in the text.
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Figure 4. Snow model performance for different time steps using the parameter set selected in calibration of the hourly model. Points
represent median values across 170 SNOTEL sites.

Table 4. Spatial correlations (R2) between observations at SNO-
TEL sites and SnowClim simulations for various snow metrics over
the model calibration period 1 October 2000–30 September 2013.

Metric Coefficient of determination (R2)

Maximum SWE 0.91
Day of maximum SWE 0.78
Snow duration 0.86
Number of snow cover days 0.89
Day of snow melt out 0.80

vation dataset for calibration purposes due to the number of
sites, range of hydroclimate conditions monitored, length of
record, and relatively consistent observational methods and
equipment across sites. A total of 170 SNOTEL sites were
selected meeting the following requirements:

1. an elevation difference of less than 75 m relative to the
colocated WRF grid cell,

2. a dataset missing no more than 1 % of daily precipita-
tion and SWE observations between October and May
in every water year between 1 October 2000 and 30
September 2013,

3. a site located more than 25 km from any other SNOTEL
site.

Missing SWE values were infilled using linear interpolation
across time. Missing precipitation values were infilled us-

Table 5. Summary climate and snow variables included in the
SnowClim dataset. Summary variables are available for pre-
industrial, historical, and future time periods.

Climate variables

Monthly temperature (min, max, and mean)
Monthly precipitation
Monthly solar radiation
Monthly dew point temperature
Annual number of freeze/thaw cycles

Snow variables

Monthly SWE (min, max, mean)
Monthly snow depth (min, max, mean)
Monthly snow cover days
Monthly snowfall
Annual size and date of maximum SWE
Annual size and date of largest snowfall event
Annual snow duration
Date of first and last snow
Number of days without snow between first and last snow

ing an inverse distance weighted average of the values at the
three closest sites.

Calibration consisted of running the model across all
SNOTEL sites for each possible combination of parameters
listed in Table 2. Model performance was assessed using
the mean absolute percent error (MAPE) of annual maxi-
mum SWE (maxswe), the MAPE of annual snow duration,
and the root-mean-squared error (RMSE) of daily SWE at
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each site. Snow duration was defined as the duration (in
days) of the longest period of consecutive days with SWE
>0. RMSE was computed for days when observed SWE ex-
ceeded 10 mm. Additionally, we used the mean error (ME)
and mean percent error (MPE) of maxswe and duration to
visualize calibration errors. The optimal parameter set was
selected using Pareto preference ordering (Khu and Madsen,
2005) based on the median of each statistic across stations.

The model was subsequently evaluated for different run
time steps (1, 2, 3, 4, 6, 8, 12, and 24 h). Separate model
calibration for each time step selected similar parameter sets
to the hourly run, and thus the hourly parameter set was used
for all time steps. Model performance was again assessed as
described above.

3.3.2 Calibration results

Snow model calibration via Pareto optimization selected
a single best parameter set (Table 2). The station median
MAPE of maxswe, MAPE of snow duration, and daily
RMSE for this parameter set were 15.9 %, 8.43 %, and
64.0 mm, respectively. The spatial distribution of ME and
MPE in maxswe and duration lacked strong coherent spatial
patterns (Fig. 2), and spatial correlations (R2) for a variety
of snow metrics exceeded 0.75 (Table 4), suggesting that the
model captured major climate-related effects and sources of
large-scale spatial snow variability. The largest negative bi-
ases were found at drier sites with relatively shallow or inter-
mittent snowpacks (Fig. B2). The largest positive biases were
found at sites with mean winter temperatures at or above
freezing, where snow accumulation is very sensitive to the
partitioning of precipitation into rain vs. snow (Fig. B2). A
time series of observed and modeled SWE at one site with
error values close to the station median values illustrates the
model performance on a daily scale (Fig. 3). The model also
captured key components of interannual snowpack variabil-
ity over the short historical period; the station median cor-
relation coefficients for maxswe and for snow duration were
0.93 and 0.70, respectively. The station correlations did not
demonstrate any clear geographic or climatic patterns. This
lends confidence to the model’s ability to accurately simulate
snow dynamics across a range of climates. The parameter
sensitivity of the model is shown in Fig. B3.

Model performance deteriorated as temporal resolution
coarsened from 1 to 12 h but improved slightly for the 24 h
time step (Fig. 4). Model performance was somewhat sen-
sitive to the hours used for aggregation; other aggregation
windows showed continuous performance deterioration with
coarsening temporal resolution (not shown). The sensitivity
of model performance to the aggregation window is likely
related to how diurnal energy fluxes, particularly shortwave
radiation, are aggregated. A time step of 4 h was selected for
the full western US model run to balance the objectives of
computational efficiency and model performance. The sta-
tion median MAPE of maxswe, MAPE of snow duration,

and RMSE for the 4 h time step were 17.6 %, 8.31 %, and
69.5 mm, respectively. We note that simulations without the
modification for shallow snowpacks (Sect. 2.2.7) degraded
more consistently and significantly with coarsening tempo-
ral resolution (Fig. B4).

3.4 Model results for the western United States

The SnowClim model was applied to the western US (con-
tiguous US west of 104◦W) using the parameters identified
above, a temporal resolution of 4 h, and a variable spatial res-
olution as described previously (210–1050 m horizontal reso-
lution). The model was run in parallel on a high-performance
standalone server (Dell Poweredge R730) with 34 cores and
128 GB RAM. The compute time for downscaling the cli-
mate forcings and executing the snow model was 10 and
2.5 d, respectively, for the historical period. For reference,
the model took less than 0.03 s per site year when run using
a single core across the 170 SNOTEL sites.

Large-scale spatial patterns of climatologies and changes
in maxswe and snow duration (Figs. 5 and 6) were broadly
similar to those from existing products developed from a
wide range of modeling approaches (Luce et al., 2014; Lute
et al., 2015; Ikeda et al., 2021). Historical maxswe was
112 mm, spatially averaged across the full western US do-
main, and locations with historical maxswe <50 mm were
found in the warmer southern and southwestern regions and
in the northeastern portion of the domain where winters
are relatively dry (Fig. 5a). Under the future scenario, spa-
tially averaged maxswe declined to 54 mm, and the areas
with maxswe <50 mm expanded to encompass many lower-
elevation areas (Fig. 5b). Historical snow duration averaged
83 d, spatially averaged across the full western US domain
(Fig. 5c), but declined to 43 d in the future scenario (Fig. 5d).
There were only a handful of locations with increases in
maxswe or duration in the future period compared with the
historical period, and these increases were small (Fig. 6). The
largest relative declines in maxswe and duration were found
at low elevations. On average, maxswe decreased by 49 %
across locations with at least 50 mm maxswe historically, and
snow duration decreased by 61 % across locations with his-
torical snow duration greater than zero. Summaries of histor-
ical and future maxswe and duration by four-digit hydrologic
unit code (HUC) are provided in Table B1.

Compared to existing large extent, multitemporal, process-
based snow datasets such as that from the 4 km WRF runs
(Rasmussen and Liu, 2017), SnowClim provided a much
more nuanced picture of changing snow, particularly in ar-
eas of complex terrain. For example, Fig. 7 shows relative
changes in maxswe for the Uinta Mountains in northeastern
Utah as simulated directly by the 4 km WRF product and by
SnowClim. SnowClim captured effects of elevation and as-
pect, including greater percent reductions in maxswe at lower
elevations and on south-facing aspects, similar to Barsugli et
al. (2020). Nuanced results such as these are only possible
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Figure 5. (a) Historical and (b) future maxswe (mm), (c) historical and (d) future snow duration (days). Historical values are averages over
the period 2000–2013. Future values represent averages during the period 2071–2100 under RCP 8.5. In (a) and (b), white land areas denote
areas that had less than 50 mm maxswe. In (c) and (d), white land areas denote areas where snow duration was 0. Note the nonlinear color
scale in panels (a) and (b).

with high-resolution snow modeling that explicitly simulates
spatiotemporal variations in the dominant snow cover energy
fluxes.

Comparison of SnowClim snow depth with a snapshot
of finer-resolution lidar-based observations further highlights
some of the strengths and limitations of SnowClim. For ex-
ample, in the Boulder Creek Watershed, Colorado, Snow-
Clim captured the broad-scale spatial patterns of snow depth
that are present in lidar-derived depth observations (de-
scribed in Harpold et al., 2014) aggregated from the origi-

nal 1 m resolution to the resolution of SnowClim on 20 May
2010 (Fig. 8). However, SnowClim snow depth was less spa-
tially variable, particularly in the higher-elevation western
portion of the domain. Evaluations such as this are particu-
larly challenging as they simultaneously evaluate the spatial
and temporal fidelity of the forcing data, the snow model, and
in particular the snow density algorithm. The muted spatial
variability in SnowClim can be attributed to a combination
of factors, chief of which may be the lack of wind–snow in-
teraction in the current SnowClim model formulation. Snow
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Figure 6. (a) Absolute and (b) percent change in maxswe between historical and future periods. (c) Absolute and (d) percent change in snow
duration between historical and future periods. In (d), small boxes in Utah and Colorado indicate the regions highlighted in Figs. 7 and 8,
respectively.

redistribution by wind and blowing snow sublimation have
a significant effect on snowpack heterogeneity in this region
(Knowles et al., 2012; Sexstone et al., 2018; Winstral et al.,
2002); one study showed that a model incorporating wind re-
distribution captured 8 %–23 % more of the spatial variability
in snow depth than a model without these processes (Winstral
et al., 2002). In order to better simulate snowpack in windy
environments such as the alpine area shown here, incorpora-
tion of blowing snow transport and sublimation into future
SnowClim model formulations should be considered.

4 Discussion and conclusion

Through the development of a new computationally efficient
snow model, SnowClim, and novel forcing data, we have
overcome the two major hurdles to achieving snow data that
meets the criteria outlined in Sect. 1. SnowClim’s distinctive
balance of mostly process-based and some empirical com-
ponents allows it to capture contrasts in radiative loading in
complex terrain, timing and rate of ablation, and responses to
future climate, while maintaining computational efficiency.
The SnowClim dataset is spatially continuous across the
western US at sub-kilometer resolution in complex terrain,
enabling both high-resolution and large-extent analyses. In
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Figure 7. Example of simulations of changing maxswe for a portion of the Uinta Mountains, Utah (location is marked in Fig. 6). The
elevation (m) of the domain is shown in (a). The percent change (%) in maxswe between historical and late 21st century periods as simulated
by a 4 km WRF product (Rasmussen and Liu, 2017) is shown in (b), and the same metric but from the SnowClim dataset is shown in (c).

Figure 8. Snow depth on 20 May 2010 in the Boulder Creek Watershed area indicated in Fig. 6 from (a) lidar (described in Harpold et al.,
2014) and (b) SnowClim.

particular, the SnowClim model and dataset highlight the ef-
fects of elevation and aspect on snowpack in a changing cli-
mate. The inclusion of multiple snow variables and compat-
ible climate variables across multiple time periods will em-
power analyses of hydroclimatic responses to changing cli-
mate and complement existing coarser-resolution products.

The SnowClim model excludes some processes that might
be included in more complex, computationally expensive
large-scale models (e.g., VIC, WRF) such as vegetation-
related processes, blowing snow transport and sublimation,
and gravitational redistribution. In some contexts, these
processes may be necessary for accurate modeling of the
snowpack (Freudiger et al., 2017; Musselman et al., 2008;
Pomeroy et al., 1993). The western US SnowClim dataset
was calibrated at SNOTEL sites, which are often in forest

clearings, and it is therefore expected to be relatively accu-
rate in similar environments. However, user judgment should
be applied when using the model or dataset in vegetated ar-
eas. Given the complexity of vegetation–snow processes, in-
corporation of vegetation effects may add significant compu-
tational expense and is hindered by the need for vegetation-
related data and parameters that are expected to change be-
tween the time periods considered here. Future vegetation
change is subject to large uncertainty stemming from distur-
bance regimes and species composition pathways. However,
incorporation of an optional vegetation routine to be used
when data and computational resources are available is a log-
ical next step. Approaches for incorporating blowing snow
transport either require (i) high-resolution wind fields input
to semi-empirical or 3D turbulent-diffusion models (sum-
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marized in Mott et al., 2018), requiring more sophisticated
downscaling of wind fields than what was done here and sub-
stantially increasing computational cost, or (ii) require cal-
ibration of terrain parameters (e.g., Winstral et al., 2013),
which would be possible but both challenging and computa-
tionally intensive for a large-scale model such as SnowClim.
Simple algorithms do exist for modeling gravitational redis-
tribution of snow (Bernhardt and Schulz, 2010); however,
incorporation of either blowing snow transport or avalanch-
ing would necessitate restructuring of the model as a semi-
distributed or fully distributed model with spatial interaction,
which by itself would likely reduce the computational effi-
ciency of the model. The model also includes simplified rep-
resentations of the ground heat flux and snow surface temper-
ature, which may be better captured by more process-based
approaches. In particular, a more nuanced treatment of the
ground heat flux may be desired in warmer snow climates
(Mazurkiewicz et al., 2008).

Contrasts between modeled and observed snow metrics
stem from several factors, including (but not limited to) un-
certainties in climate forcings, SNOTEL-site-specific factors
that the model neglects such as fine-scale topographic and
vegetation patterns, and errors in model specification such
as process representation and calibration. Despite these fac-
tors, errors at SNOTEL sites from the hourly SnowClim
model run were relatively small and compared well with
errors reported for other gridded snow products. Ikeda et
al. (2021) evaluated the snow simulations from the same
4 km WRF model runs that we used to source our raw cli-
mate forcings (Rasmussen and Liu, 2017). Relative to SNO-
TEL sites, they found a −26.2 % bias in maxswe. In con-
trast, the SnowClim model achieves a maxswe bias of only
0.15 %. Wrzesien et al. (2018) compared maxswe at SNO-
TEL sites to maxswe from 9 km WRF simulations. Across
sites, they found a correlation coefficient of 0.55 and a bias
of −89 mm. SnowClim achieves a correlation coefficient of
0.94 and bias of −11 mm. In the Californian Sierra Nevada,
Guan et al. (2013) blended modeled, remotely sensed, and
observed data to capture SWE at six sites. Their method
achieved a SWE RMSE of 205 mm compared to snow sur-
veys. The SnowClim mean RMSE of daily SWE was 77 mm
across all sites and 166 mm at Sierra Nevada sites. While
errors at SNOTEL sites were generally low, the model did
tend to overestimate maxswe and duration at some warm
and wet sites and underestimate these metrics at dry sites
(Fig. B2). Further evaluation of the parameters used here
in more marginal snow environments would lend additional
confidence to the application of SnowClim data in these
areas. While the model’s excellent performance relative to
SNOTEL observations is in part due to the fact that the model
was calibrated to SNOTEL data, the model could be cali-
brated to other observations for application in other contexts.

The flexible, modularized structure of the SnowClim
model lends itself to calibration, parameter sensitivity assess-
ment, and experimentation. In the western US, model perfor-

mance was particularly sensitive to the choice of albedo al-
gorithm and snow surface temperature parameterization, in
line with previous findings (Etchevers et al., 2004; Günther
et al., 2019; Slater et al., 2001; Fig. B3). Given the impor-
tance of impurities (e.g., tree litter, dust, and black carbon)
on snow albedo and consequently snow melt (Waliser et al.,
2011), a future step will be to add albedo algorithms that ac-
count for these effects. The modular structure of SnowClim
would make this relatively straightforward.

Given the multifaceted importance of snow and ongoing
snowpack changes due to climate change, there is a need for
models that can accurately and efficiently simulate snow to
generate spatially extensive, high-resolution datasets to meet
the diverse requirements of different applications. We antic-
ipate that the SnowClim model and data will be powerful
tools for researchers and managers across a range of disci-
plines, including ecology and wildlife biology, recreation,
transportation, hazard planning, and glacier and hydrologic
modeling. The SnowClim model and data will be particularly
useful for applications requiring high spatial resolution data,
such as species distribution and refugia modeling, and will
complement the existing array of snow models and datasets
by providing a novel balance of process-based elements and
computational efficiency.
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Appendix A

We compared observed cold content and cold content sim-
ulated using SnowClim (both with and without the tax ap-
proach) at two sites in the Niwot Ridge Long-Term Ecolog-
ical Research site (LTER), Colorado: an alpine site (Saddle)
and a subalpine site (C1). The cold content observations are
presented in Jennings et al. (2018).

For the comparison, we ran SnowClim at each of the sites
using hourly observed climate forcings from the sites (Jen-
nings et al., 2021) for water years 2001–2013. The model
was first run with the cold content tax described in Sect. 2.2.6
(i.e., as reported in this paper). Following this, an additional
run was performed in which the tax approach was turned off.
The goal of this experiment was to evaluate how well the
model simulates cold content relative to observations and to
determine whether the tax approach improved cold content
simulations compared to the same model without the tax ap-
proach. The same parameters from the western US run were
used for modeling these sites, and the model was not recali-
brated. Simulated cold content was smoothed using a 2-week
moving mean to provide a more robust comparison to obser-
vations, which were collected at weekly to monthly intervals.
Peak (minimum) cold content values were averaged across
years to get a peak cold content value for each site and model
run, and these were compared with the peak cold content val-
ues from observations reported in Jennings et al. (2018), Ta-
ble 1.

Despite scale discrepancies between point observations
and 210 m grid cells, SnowClim peak cold content compares
well with observations when the tax approach is used. In con-
trast, when the tax approach is not used and all negative en-
ergy fluxes are directly added to the pack cold content, cold
content becomes an order of magnitude greater than the ob-
servations.

Table A1. Comparison of peak seasonal cold content values from observations, SnowClim simulations including the tax approach described
in Sect. 2.2.6, and SnowClim simulations without the tax approach at two sites from the Niwot Ridge Long-Term Ecological Research site
in Colorado.

Site Observed peak CC SnowClim peak CC w/ tax SnowClim peak CC w/o tax

Subalpine (C1) −2.5 MJ m−2 −4.1 MJ m−2 −27.0 MJ m−2
Alpine (Saddle) −6.5 MJ m−2 −8.7 MJ m−2 −161.0 MJ m−2
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Appendix B

Figure B1. Map of the 3.1 million square kilometer modeling domain with locations modeled at 210 m spatial resolution shown in blue.

https://doi.org/10.5194/gmd-15-5045-2022 Geosci. Model Dev., 15, 5045–5071, 2022



5062 A. C. Lute et al.: SnowClim v1.0: high-resolution snow model and data

Figure B2. Performance of the best hourly model at SNOTEL sites in temperature–precipitation space. Each point represents a SNOTEL
site.

Figure B3. Parameter sensitivity of hourly model performance.
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Figure B4. Performance of the snow model without shallow snow correction for different time steps using the parameter set selected in
calibration of the hourly model with shallow snow correction. Points represent median values across 170 SNOTEL sites.
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Table B1. Summary of snow metrics by four-digit HUC. Total and modeled areas are in square kilometers, maxswe has units of millimeters,
and snow duration has units of days. Values are averaged over all modeled grid cells within each HUC. Total snow metric values (in the last
row) are averaged across all grid cells across the western US modeling domain, and total changes are computed from these total snow metric
values.

Four-digit HUC name Total Modeled Historical Future Historical Future Absolute Percent Absolute Change
HUC area area maxswe maxswe snow snow change change change snow percent snow

duration duration maxswe maxswe duration duration

901 Souris 26 321 1100 24 15 90 50 −9 −37 −40 −45
904 Saskatchewan River 17 604 1748 623 442 228 176 −181 −29 −53 −23
1002 Missouri Headwaters 36 350 36 350 216 138 171 116 −79 −36 −55 −32
1003 Missouri-Marias 51 423 51 423 76 48 109 69 −28 −37 −40 −36
1004 Missouri-Musselshell 60 830 60 830 30 17 76 40 −13 −44 −36 −47
1005 Milk 59 844 38 732 21 13 66 35 −8 −38 −31 −47
1006 Missouri-Poplar 34 275 28 125 18 11 66 31 −7 −40 −36 −54
1007 Upper Yellowstone 37 453 37 453 191 137 140 96 −54 −28 −44 −32
1008 Big Horn 59 250 59 250 87 56 116 71 −30 −35 −45 −39
1009 Powder-Tongue 48 695 48 695 27 13 80 34 −14 −51 −46 −57
1010 Lower Yellowstone 35 982 35 982 15 7 57 25 −8 −54 −32 −56
1011 Missouri-Little Missouri 41 312 26 872 21 8 68 27 −13 −60 −41 −60
1012 Cheyenne 61 764 44 105 29 14 87 36 −15 −51 −50 −58
1013 Missouri-Oahe 39 533 6792 18 7 56 21 −11 −61 −35 −63
1014 Missouri-White 17 839 1738 21 10 63 24 −10 −51 −39 −62
1015 Niobrara 17 280 4959 18 9 67 18 −9 −48 −49 −73
1018 North Platte 78 925 68 121 78 51 121 67 −26 −34 −54 −45
1019 South Platte 61 585 54 444 47 30 91 41 −18 −37 −50 −55
1025 Republican 34 705 2048 13 6 42 8 −7 −51 −34 −81
1102 Upper Arkansas 64 555 50 655 40 27 67 33 −13 −34 −34 −50
1104 Upper Cimarron 20 693 3041 20 13 37 13 −7 −36 −24 −64
1108 Upper Canadian 32 307 31 937 24 14 45 19 −9 −40 −26 −58
1109 Lower Canadian 23 149 4348 14 8 22 8 −6 −42 −14 −65
1110 North Canadian 20 259 1518 19 12 24 12 −7 −37 −12 −50
1112 Red Headwaters 20 120 1170 13 7 24 9 −5 −41 −15 −61
1205 Brazos Headwaters 33 307 5234 9 3 16 1 −6 −68 −15 −94
1208 Upper Colorado 39 084 5265 8 2 7 0 −6 −74 −7 −96
1301 Rio Grande Headwaters 19 715 19 715 154 110 123 86 −44 −28 −37 −30
1302 Rio Grande-Elephant Butte 70 248 70 248 45 25 50 22 −21 −46 −28 −56
1303 Rio Grande-Mimbres 56 317 28 836 7 1 7 1 −5 −81 −6 −85
1304 Rio Grande-Amistad 73 020 4701 4 0 3 0 −3 −92 −3 −100
1305 Rio Grande Closed Basins 45 513 38 932 10 3 14 3 −7 −68 −11 −78
1306 Upper Pecos 60 947 60 947 13 6 18 5 −7 −51 −13 −73
1307 Lower Pecos 53 426 14 078 3 1 1 0 −2 −72 −1 −97
1401 Colorado Headwaters 25 480 25 480 269 183 173 125 −86 −32 −49 −28
1402 Gunnison 20 791 20 791 232 162 154 108 −70 −30 −46 −30
1403 Upper Colorado-Dolores 21 662 21 662 111 61 101 53 −50 −45 −47 −47
1404 Great Divide-Upper Green 53 758 53 758 81 55 95 55 −26 −32 −39 −42
1405 White-Yampa 34 342 34 342 176 110 136 84 −67 −38 −52 −38
1406 Lower Green 37 701 37 701 115 70 105 62 −45 −39 −43 −41
1407 Upper Colorado-Dirty Devil 35 265 35 265 43 20 54 22 −23 −54 −33 −60
1408 San Juan 64 570 64 570 74 41 61 26 −32 −44 −35 −58
1501 Lower Colorado-Lake Mead 78 401 78 401 33 11 44 13 −22 −67 −31 −71
1502 Little Colorado 70 078 70 078 22 6 36 7 −15 −71 −29 −80
1503 Lower Colorado 53 742 44 549 4 1 6 0 −3 −80 −5 −97
1504 Upper Gila 39 347 39 347 20 5 26 6 −16 −77 −20 −78
1505 Middle Gila 46 573 43 759 4 0 4 0 −3 −88 −3 −93
1506 Salt 34 899 34 899 50 13 53 15 −38 −75 −38 −71
1507 Lower Gila 39 046 39 046 2 0 3 0 −2 −85 −3 −96
1508 Sonora 62 266 12 927 2 0 2 0 −2 −84 −2 −87
1601 Bear 19 464 19 464 214 113 152 95 −101 −47 −57 −37
1602 Great Salt Lake 74 295 74 295 92 40 90 40 −51 −56 −50 −55
1603 Escalante Desert-Sevier Lake 42 670 42 670 89 42 105 51 −47 −53 −54 −51
1604 Black Rock Desert-Humboldt 74 178 74 178 61 23 93 40 −38 −62 −54 −58
1605 Central Lahontan 32 838 32 838 91 42 73 36 −48 −53 −37 −50
1606 Central Nevada Desert Basins 123 606 123 606 37 15 71 30 −22 −60 −42 −58
1701 Kootenai-Pend Oreille-Spokane 134 753 94 016 394 204 173 114 −190 −48 −59 −34
1702 Upper Columbia 102 909 57 668 212 104 114 58 −107 −51 −56 −49
1703 Yakima 15 928 15 928 318 129 118 62 −189 −59 −56 −48
1704 Upper Snake 92 909 92 909 201 124 135 84 −77 −39 −52 −38
1705 Middle Snake 95 797 95 797 163 75 108 53 −87 −54 −55 −51
1706 Lower Snake 90 765 90 765 334 175 160 100 −159 −48 −60 −38
1707 Middle Columbia 77 449 77 449 147 46 90 36 −101 −69 −54 −60
1708 Lower Columbia 16 121 15 815 335 80 106 40 −256 −76 −66 −62
1709 Willamette 29 699 29 699 218 51 80 30 −168 −77 −50 −63
1710 Oregon-Washington Coastal 65 238 59 592 136 27 72 18 −109 −80 −54 −75
1711 Puget Sound 52 957 36 404 510 167 120 59 −343 −67 −61 −51
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Table B1. Continued.

Four-digit HUC name Total Modeled Historical Future Historical Future Absolute Percent Absolute Change
HUC area area maxswe maxswe snow snow change change change snow percent snow

duration duration maxswe maxswe duration duration

1712 Oregon Closed Basins 45 143 45 143 72 26 93 37 −46 −64 −57 −61
1801 Klamath-Northern California Coastal 67 762 64 619 189 52 95 39 −137 −73 −57 −59
1802 Sacramento 72 013 72 013 188 58 84 40 −130 −69 −44 −53
1803 Tulare-Buena Vista Lakes 42 498 42 498 103 57 47 29 −46 −45 −18 −38
1804 San Joaquin 40 984 40 984 192 105 63 40 −87 −45 −22 −35
1805 San Francisco Bay 13 910 11 448 1 0 0 0 −1 −97 0 −99
1806 Central California Coastal 34 287 29 377 5 0 3 0 −4 −90 −3 −91
1807 Southern California Coastal 35 865 28 785 17 3 14 2 −14 −83 −11 −82
1808 North Lahontan 11 791 11 791 90 32 112 51 −58 −64 −60 −54
1809 Northern Mojave-Mono Lake 73 268 73 268 21 10 20 9 −10 −50 −12 −57
1810 Southern Mojave-Salton Sea 44 247 41 522 3 0 2 0 −3 −84 −2 −83

Total Western US 3 794 897 3 100 511 108 52 80 42 −56 −52 −39 −48
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