Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2265-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2265-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
Claudia Timmreck
Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg,
Germany
Myriam Khodri
Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre-Simon Laplace, Sorbonne Université, IRD/CNRS/MNHN, Paris, France
Anja Schmidt
Department of Geography, University of Cambridge, Cambridge, UK
Department of Chemistry, University of Cambridge, Cambridge, UK
now at: Institute of Atmospheric Physics (IPA), German Aerospace Center (DLR), Oberpfaffenhofen, Germany
now at: Meteorological Institute, Ludwig Maximilian University of Munich, Munich, Germany
Matthew Toohey
Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada
Manabu Abe
Research Institute for Global Change, Japan Agency for Marine-Earth
Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan
Slimane Bekki
Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre-Simon Laplace, Sorbonne Université, CNRS/UVSQ, Paris, France
Jason Cole
Environment and Climate Change Canada, Toronto, ON, Canada
Shih-Wei Fang
Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg,
Germany
Wuhu Feng
School of Earth and Environment, University of Leeds, Leeds, UK
National Centre for Atmospheric Science (NCAS-Climate), University of Leeds, Leeds, UK
Gabriele Hegerl
Geosciences, The University of Edinburgh, Edinburgh, UK
Ben Johnson
Met Office, Exeter, UK
Nicolas Lebas
Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, Institut Pierre-Simon Laplace, Sorbonne Université, IRD/CNRS/MNHN, Paris, France
Allegra N. LeGrande
NASA Goddard Institute for Space Studies, New York, NY, USA
Center for Climate Systems Research, Columbia University, New York, NY, USA
Graham W. Mann
School of Earth and Environment, University of Leeds, Leeds, UK
National Centre for Atmospheric Science (NCAS-Climate), University of Leeds, Leeds, UK
Lauren Marshall
Department of Chemistry, University of Cambridge, Cambridge, UK
Landon Rieger
Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada
Alan Robock
Department of Environmental Sciences, Rutgers University, New
Brunswick, NJ, USA
Sara Rubinetti
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
Kostas Tsigaridis
Center for Climate Systems Research, Columbia University, New York, NY, USA
NASA Goddard Institute for Space Studies, New York, NY, USA
Helen Weierbach
Earth and Environmental Sciences Area, Lawrence Berkeley National
Laboratory, Berkeley, CA, USA
Lamont-Doherty Earth Observatory, Columbia University, New York, NY, USA
Related authors
Hera Guðlaugsdóttir, Yannick Peings, Davide Zanchettin, and Guðrún Magnúsdóttir
EGUsphere, https://doi.org/10.5194/egusphere-2024-1302, https://doi.org/10.5194/egusphere-2024-1302, 2024
Short summary
Short summary
Here we use an Earth System Model to simulate a long-lasting volcanic eruption at 65° N to assess its climate effects. We show a Polar Vortex strengthening in winter 1 and a weakening in winters 2–3 due to surface cooling that further causes an increase in sudden stratospheric warmings. This can cause severe cold weather events in the northern hemisphere. Our motivation is to understand how such eruptions impact the climate system for improving decadal climate predictability.
Matteo Mastropierro, Daniele Peano, and Davide Zanchettin
EGUsphere, https://doi.org/10.5194/egusphere-2024-823, https://doi.org/10.5194/egusphere-2024-823, 2024
Short summary
Short summary
We address how different ESMs represent vegetation productivity, in terms of carbon fluxes, within the Amazon basin. By statistically assessing the role of climatological and model specific factors that influence vegetation, we showed that surface energy fluxes and the implementation of Phosphorous limitation resulted to be the main drivers of model uncertainties in a future scenario. Reducing these uncertainties allows to increase the reliability of tropical land carbon and climate projections
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
O. Bothe, J. H. Jungclaus, and D. Zanchettin
Clim. Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013, https://doi.org/10.5194/cp-9-2471-2013, 2013
O. Bothe, J. H. Jungclaus, D. Zanchettin, and E. Zorita
Clim. Past, 9, 1089–1110, https://doi.org/10.5194/cp-9-1089-2013, https://doi.org/10.5194/cp-9-1089-2013, 2013
J. Segschneider, A. Beitsch, C. Timmreck, V. Brovkin, T. Ilyina, J. Jungclaus, S. J. Lorenz, K. D. Six, and D. Zanchettin
Biogeosciences, 10, 669–687, https://doi.org/10.5194/bg-10-669-2013, https://doi.org/10.5194/bg-10-669-2013, 2013
Ram Singh, Alexander Koch, Allegra N. LeGrande, Kostas Tsigaridis, Riovie D. Ramos, Francis Ludlow, Igor Aleinov, Reto Ruedy, and Jed O. Kaplan
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-219, https://doi.org/10.5194/gmd-2024-219, 2024
Preprint under review for GMD
Short summary
Short summary
This study presents and demonstrates an experimental framework for asynchronous land-atmosphere coupling using the NASA GISS ModelE and LPJ-LMfire models for the 2.5ka period. This framework addresses the limitation of NASA ModelE, which does not have a fully dynamic vegetation model component. It also shows the role of model performance metrics, such as model bias and variability, and the simulated climate is evaluated against the multi-proxy paleoclimate reconstructions for the 2.5ka climate.
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barrett, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2024-3789, https://doi.org/10.5194/egusphere-2024-3789, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Fairbanks is among the most polluted cities with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the sub-micron PM elucidated residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulphur-containing organic aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites with wide-ranging influences.
Magali Verkerk, Thomas J. Aubry, Christopher Smith, Peter O. Hopcroft, Michael Sigl, Jessica E. Tierney, Kevin Anchukaitis, Matthew Osman, Anja Schmidt, and Matthew Toohey
EGUsphere, https://doi.org/10.5194/egusphere-2024-3635, https://doi.org/10.5194/egusphere-2024-3635, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Large volcanic eruptions can trigger global cooling, affecting human societies. Using ice-core records and simple climate model to simulate volcanic effect over the last 8500 years, we show that volcanic eruptions cool climate by 0.12 °C on average. By comparing model results with temperature recorded by tree rings over the last 1000 years, we demonstrate that our models can predict the large-scale cooling caused by volcanic eruptions, and can be used in case of large eruption in the future.
Ryan Hossaini, David Sherry, Zihao Wang, Martyn P. Chipperfield, Wuhu Feng, David E. Oram, Karina E. Adcock, Stephen A. Montzka, Isobel J. Simpson, Andrea Mazzeo, Amber A. Leeson, Elliot Atlas, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 13457–13475, https://doi.org/10.5194/acp-24-13457-2024, https://doi.org/10.5194/acp-24-13457-2024, 2024
Short summary
Short summary
DCE (1,2-dichloroethane) is an industrial chemical used to produce PVC (polyvinyl chloride). We analysed DCE production data to estimate global DCE emissions (2002–2020). The emissions were included in an atmospheric model and evaluated by comparing simulated DCE to DCE measurements in the troposphere. We show that DCE contributes ozone-depleting Cl to the stratosphere and that this has increased with increasing DCE emissions. DCE’s impact on stratospheric O3 is currently small but non-zero.
William J. Collins, Fiona M. O'Connor, Connor R. Barker, Rachael E. Byrom, Sebastian D. Eastham, Øivind Hodnebrog, Patrick Jöckel, Eloise A. Marais, Mariano Mertens, Gunnar Myhre, Matthias Nützel, Dirk Olivié, Ragnhild Bieltvedt Skeie, Laura Stecher, Larry W. Horowitz, Vaishali Naik, Gregory Faluvegi, Ulas Im, Lee T. Murray, Drew Shindell, Kostas Tsigaridis, Nathan Luke Abraham, and James Keeble
EGUsphere, https://doi.org/10.5194/egusphere-2024-3698, https://doi.org/10.5194/egusphere-2024-3698, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
If reductions aren’t implemented to limit emissions of pollutants that produce ozone then we calculate that this will cause a warming of climate. We assess how the future warming from ozone is affected by changing meteorological variables such as clouds and atmospheric temperatures. We find that reductions in high cloud cover tend to slightly reduce the warming from ozone.
Alexei Rozanov, Christine Pohl, Carlo Arosio, Adam Bourassa, Klaus Bramstedt, Elizaveta Malinina, Landon Rieger, and John P. Burrows
Atmos. Meas. Tech., 17, 6677–6695, https://doi.org/10.5194/amt-17-6677-2024, https://doi.org/10.5194/amt-17-6677-2024, 2024
Short summary
Short summary
We developed a new algorithm to retrieve vertical distributions of aerosol extinction coefficients in the stratosphere. The algorithm is applied to measurements of scattered solar light from the spaceborne OMPS-LP (Ozone Mapper and Profiler Suite Limb Profiler) instrument. The retrieval results are compared to data from other spaceborne instruments and used to investigate the evolution of the aerosol plume following the eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
Viktoria F. Sofieva, Alexei Rozanov, Monika Szelag, John P. Burrows, Christian Retscher, Robert Damadeo, Doug Degenstein, Landon A. Rieger, and Adam Bourassa
Earth Syst. Sci. Data, 16, 5227–5241, https://doi.org/10.5194/essd-16-5227-2024, https://doi.org/10.5194/essd-16-5227-2024, 2024
Short summary
Short summary
Climate-related studies need information about the distribution of stratospheric aerosols, which influence the energy balance of the Earth’s atmosphere. In this work, we present a merged dataset of vertically resolved stratospheric aerosol extinction coefficients, which is derived from data of six limb and occultation satellite instruments. The created aerosol climate record covers the period from October 1984 to December 2023. It can be used in various climate-related studies.
Sujan Khanal, Matthew Toohey, Adam Bourassa, C. Thomas McElroy, Christopher Sioris, and Kaley A. Walker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3286, https://doi.org/10.5194/egusphere-2024-3286, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Measurements of stratospheric aerosol from the MAESTRO instrument are compared to other measurements to assess their scientific value. We find that medians of MAESTRO measurements binned by month and latitude show reasonable correlation with other data sets, with notable increases after volcanic eruptions, and that biases in the data can be alleviated through a simple correction technique. Used with care, MAESTRO aerosol measurements provide information that can complement other data sets.
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Jianfei Wu, Wuhu Feng, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 24, 12133–12141, https://doi.org/10.5194/acp-24-12133-2024, https://doi.org/10.5194/acp-24-12133-2024, 2024
Short summary
Short summary
Metal layers occur in the mesosphere and lower thermosphere region 80–120 km from the ablation of cosmic dust. Nonmigrating diurnal tides are persistent global oscillations. We investigate nonmigrating diurnal tidal variations in metal layers using satellite observations and global climate model simulations; these have not been studied previously due to the limitations of measurements. The nonmigrating diurnal tides in temperature are strongly linked to the corresponding change in metal layers.
Thi Nhu Ngoc Do, Kengo Sudo, Akihiko Ito, Louisa Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2313, https://doi.org/10.5194/egusphere-2024-2313, 2024
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth System Models mainly due to partially incorporating CO2 effects and land cover changes rather than climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant-climate interactions.
Matthew Toohey, Yue Jia, Sujan Khanal, and Susann Tegtmeier
EGUsphere, https://doi.org/10.5194/egusphere-2024-2400, https://doi.org/10.5194/egusphere-2024-2400, 2024
Short summary
Short summary
The climate impact of volcanic eruptions depends in part on how long aerosols spend in the stratosphere. We develop a conceptual model for stratospheric aerosol lifetime in terms of production and decay timescales, as well as a lag between injection and decay. We find residence time depends strongly on injection height in the lower stratosphere. We show that the lifetime of stratospheric aerosol from the 1991 Pinatubo eruption is around 22 months, significantly longer than commonly reported.
Chris Wilson, Brian J. Kerridge, Richard Siddans, David P. Moore, Lucy J. Ventress, Emily Dowd, Wuhu Feng, Martyn P. Chipperfield, and John J. Remedios
Atmos. Chem. Phys., 24, 10639–10653, https://doi.org/10.5194/acp-24-10639-2024, https://doi.org/10.5194/acp-24-10639-2024, 2024
Short summary
Short summary
The leaks from the Nord Stream gas pipelines in September 2022 released a large amount of methane (CH4) into the atmosphere. We provide observational data from a satellite instrument that shows a large CH4 plume over the North Sea off the coast of Scandinavia. We use this together with atmospheric models to quantify the CH4 leaked into the atmosphere from the pipelines. We find that 219–427 Gg CH4 was emitted, making this the largest individual fossil-fuel-related CH4 leak on record.
Matilda A. Pimlott, Richard J. Pope, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Wuhu Feng, and Martyn P. Chipperfield
EGUsphere, https://doi.org/10.5194/egusphere-2024-2736, https://doi.org/10.5194/egusphere-2024-2736, 2024
Short summary
Short summary
Globally, lockdowns were implemented to limit the spread of COVID-19, leading to a decrease in emissions of key air pollutants. Here, we use novel satellite data and a chemistry model to investigate the impact of the pandemic on tropospheric ozone (O3), a key pollutant, in 2020. Overall, we found substantial decreases of up to 20 %, 2/3s of which came from emission reductions while 1/3 was due to a decrease in the stratospheric ozone flux into the troposphere.
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-2863, https://doi.org/10.5194/egusphere-2024-2863, 2024
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
Ram Singh, Kostas Tsigaridis, Diana Bull, Laura P. Swiler, Benjamin M. Wagman, and Kate Marvel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2280, https://doi.org/10.5194/egusphere-2024-2280, 2024
Short summary
Short summary
Analysis of post-eruption climate conditions using the impact metrics is crucial for understanding the hydroclimatic responses. We used NASA’s Earth system model to perform the experiments and utilize the moisture-based impact metrics and hydrological variables to investigate the effect of volcanically induced conditions that govern plant productivity. This study demonstrates the Mt. Pinatubo’s impact on drivers of plant productivity and regional and seasonal dependence of different drivers.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Richard J. Pope, Fiona M. O'Connor, Mohit Dalvi, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Brice Barret, Eric Le Flochmoen, Anne Boynard, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, Catherine Wespes, and Richard Rigby
Atmos. Chem. Phys., 24, 9177–9195, https://doi.org/10.5194/acp-24-9177-2024, https://doi.org/10.5194/acp-24-9177-2024, 2024
Short summary
Short summary
Ozone is a potent air pollutant in the lower troposphere, with adverse impacts on human health. Satellite records of tropospheric ozone currently show large-scale inconsistencies in long-term trends. Our detailed study of the potential factors (e.g. satellite errors, where the satellite can observe ozone) potentially driving these inconsistencies found that, in North America, Europe, and East Asia, the underlying trends are typically small with large uncertainties.
Brice Barret, Patrice Medina, Natalie Brett, Roman Pohorsky, Kathy Law, Slimane Bekki, Gilberto J. Fochesatto, Julia Schmale, Steve Arnold, Andrea Baccarini, Mauricio Busetto, Meeta Cesler-Maloney, Barbara D'Anna, Stefano Decesari, Jingqiu Mao, Gianluca Pappaccogli, Joel Savarino, Federico Scoto, and William R. Simpson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2421, https://doi.org/10.5194/egusphere-2024-2421, 2024
Short summary
Short summary
The Fairbanks area experiences severe pollution episodes in winter because of enhanced emissions of pollutants trapped near the surface by strong temperature inversions. Low-cost sensors were deployed onboard a car and a tethered balloon to measure the concentrations of gaseous pollutants (CO, O3, NOx) in Fairbanks during the winter of 2022. Data calibration with reference measurements and machine learning methods enabled to document pollution at the surface and power plant plumes aloft.
Mathew Williams, David T. Milodowski, Thomas Luke Smallman, Kyle G. Dexter, Gabi C. Hegerl, Iain M. McNicol, Michael O'Sullivan, Carla M. Roesch, Casey M. Ryan, Stephen Sitch, and Aude Valade
EGUsphere, https://doi.org/10.5194/egusphere-2024-2497, https://doi.org/10.5194/egusphere-2024-2497, 2024
Short summary
Short summary
Southern African woodlands are important in both regional and global carbon cycles. A new carbon analysis created by combining satellite data with ecosystem modelling shows that the region has a neutral C balance overall, but with important spatial variations. Patterns of biomass and C balance across the region are the outcome of climate controls on production, vegetation-fire interactions, which determine mortality of vegetation, and spatial variations in vegetation function.
Yang Li, Wuhu Feng, Xin Zhou, Yajuan Li, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 8277–8293, https://doi.org/10.5194/acp-24-8277-2024, https://doi.org/10.5194/acp-24-8277-2024, 2024
Short summary
Short summary
The Tibetan Plateau (TP), the highest and largest plateau, experiences strong surface solar UV radiation, whose excess can cause harmful influences on local biota. Hence, it is critical to study TP ozone. We find ENSO, the strongest interannual phenomenon, tends to induce tropospheric temperature change and thus modulate tropopause variability, which in turn favours ozone change over the TP. Our results have implications for a better understanding of the interannual variability of TP ozone.
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024, https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary
Short summary
Knowledge of stratospheric aerosol characteristics is important for understanding chemical and climate aerosol feedbacks. Two particle size distribution parameters, the aerosol extinction coefficient and the effective radius, are obtained from SCIAMACHY limb observations. The aerosol characteristics show good agreement with independent data sets from balloon-borne and satellite observations. This data set expands the limited knowledge of stratospheric aerosol characteristics.
Weiyu Zhang, Kwinten Van Weverberg, Cyril J. Morcrette, Wuhu Feng, Kalli Furtado, Paul R. Field, Chih-Chieh Chen, Andrew Gettelman, Piers M. Forster, Daniel R. Marsh, and Alexandru Rap
EGUsphere, https://doi.org/10.5194/egusphere-2024-1573, https://doi.org/10.5194/egusphere-2024-1573, 2024
Short summary
Short summary
Contrail cirrus is the largest, but also most uncertain contribution of aviation to global warming. We evaluate for the first time the impact of the host climate model on contrail cirrus properties. Substantial differences exist between contrail cirrus formation, persistence, and radiative effects in the host climate models. Reliable contrail cirrus simulations require advanced representation of cloud optical properties and microphysics, which should be better constrained by observations.
Yanlin Li, Tai-Yin Huang, Julio Urbina, Fabio Vargas, and Wuhu Feng
Ann. Geophys., 42, 285–299, https://doi.org/10.5194/angeo-42-285-2024, https://doi.org/10.5194/angeo-42-285-2024, 2024
Short summary
Short summary
This work combines lidar observation data and a new numerical sodium (Na) chemistry model, using data assimilation to study the relation between the mesospheric Na layer and the meteoric input function. Simulation captures the seasonal variability in the Na number density compared with lidar observations over the Colorado State University (CSU) lidar. The estimated global ablated meteoroid material inputs from Andes Lidar Observatory and CSU observations are 83 t d-1 and 53 t d-1, respectively.
Moritz Günther, Hauke Schmidt, Claudia Timmreck, and Matthew Toohey
Atmos. Chem. Phys., 24, 7203–7225, https://doi.org/10.5194/acp-24-7203-2024, https://doi.org/10.5194/acp-24-7203-2024, 2024
Short summary
Short summary
Stratospheric aerosol has been shown to cause pronounced cooling in the tropical Indian and western Pacific oceans. Using a climate model, we show that this arises from enhanced meridional energy export via the stratosphere. The aerosol causes stratospheric heating and thus an acceleration of the Brewer–Dobson circulation that accomplishes this transport. Our findings highlight the importance of circulation adjustments and surface perspectives on forcing for understanding temperature responses.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Tinna L. Gunnarsdottir, Ingrid Mann, Wuhu Feng, Devin R. Huyghebaert, Ingemar Haeggstroem, Yasunobu Ogawa, Norihito Saito, Satonori Nozawa, and Takuya D. Kawahara
Ann. Geophys., 42, 213–228, https://doi.org/10.5194/angeo-42-213-2024, https://doi.org/10.5194/angeo-42-213-2024, 2024
Short summary
Short summary
Several tons of meteoric particles burn up in our atmosphere each day. This deposits a great deal of material that binds with other atmospheric particles and forms so-called meteoric smoke particles. These particles are assumed to influence radar measurements. Here, we have compared radar measurements with simulations of a radar spectrum with and without dust particles and found that dust influences the radar spectrum in the altitude range of 75–85 km.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin Anchukaitis, Gabriele Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-1322, https://doi.org/10.5194/egusphere-2024-1322, 2024
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years, however climate model results and reconstructions of surface cooling using tree-rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1487, https://doi.org/10.5194/egusphere-2024-1487, 2024
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke-amount observations, aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss-rate assumptions vary enormously among models, causing uncertainties that require systematic in-situ measurements to resolve.
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024, https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Short summary
This study presents the first explicit representation of brown carbon aerosols in the GISS ModelE Earth system model (ESM). Model sensitivity to a range of brown carbon parameters and model performance compared to AERONET and MODIS retrievals of total aerosol properties were assessed. A summary of best practices for incorporating brown carbon into ModelE is also included.
Zhihong Zhuo, Herman F. Fuglestvedt, Matthew Toohey, and Kirstin Krüger
Atmos. Chem. Phys., 24, 6233–6249, https://doi.org/10.5194/acp-24-6233-2024, https://doi.org/10.5194/acp-24-6233-2024, 2024
Short summary
Short summary
This work simulated volcanic eruptions with varied eruption source parameters under different initial conditions with a fully coupled Earth system model. We show that initial atmospheric conditions control the meridional distribution of volcanic volatiles and modulate volcanic forcing and subsequent climate and environmental impacts of tropical and Northern Hemisphere extratropical eruptions. This highlights the potential for predicting these impacts as early as the first post-eruption month.
Jean-Paul Vernier, Thomas J. Aubry, Claudia Timmreck, Anja Schmidt, Lieven Clarisse, Fred Prata, Nicolas Theys, Andrew T. Prata, Graham Mann, Hyundeok Choi, Simon Carn, Richard Rigby, Susan C. Loughlin, and John A. Stevenson
Atmos. Chem. Phys., 24, 5765–5782, https://doi.org/10.5194/acp-24-5765-2024, https://doi.org/10.5194/acp-24-5765-2024, 2024
Short summary
Short summary
The 2019 Raikoke eruption (Kamchatka, Russia) generated one of the largest emissions of particles and gases into the stratosphere since the 1991 Mt. Pinatubo eruption. The Volcano Response (VolRes) initiative, an international effort, provided a platform for the community to share information about this eruption and assess its climate impact. The eruption led to a minor global surface cooling of 0.02 °C in 2020 which is negligible relative to warming induced by human greenhouse gas emissions.
Hera Guðlaugsdóttir, Yannick Peings, Davide Zanchettin, and Guðrún Magnúsdóttir
EGUsphere, https://doi.org/10.5194/egusphere-2024-1302, https://doi.org/10.5194/egusphere-2024-1302, 2024
Short summary
Short summary
Here we use an Earth System Model to simulate a long-lasting volcanic eruption at 65° N to assess its climate effects. We show a Polar Vortex strengthening in winter 1 and a weakening in winters 2–3 due to surface cooling that further causes an increase in sudden stratospheric warmings. This can cause severe cold weather events in the northern hemisphere. Our motivation is to understand how such eruptions impact the climate system for improving decadal climate predictability.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Ming Luo, Helen M. Worden, Robert D. Field, Kostas Tsigaridis, and Gregory S. Elsaesser
Atmos. Meas. Tech., 17, 2611–2624, https://doi.org/10.5194/amt-17-2611-2024, https://doi.org/10.5194/amt-17-2611-2024, 2024
Short summary
Short summary
The TROPESS CrIS single-pixel CO profile retrievals are compared to the MOPITT CO products in steps of adjusting them to the common a priori assumptions. The two data sets are found to agree within 5 %. We also demonstrated and analyzed the proper steps in evaluating GISS ModelE CO simulations using satellite CO retrieval products for the western US wildfire events in September 2020.
Alexandra Rivera, Kostas Tsigaridis, Gregory Faluvegi, and Drew Shindell
Geosci. Model Dev., 17, 3487–3505, https://doi.org/10.5194/gmd-17-3487-2024, https://doi.org/10.5194/gmd-17-3487-2024, 2024
Short summary
Short summary
This paper describes and evaluates an improvement to the representation of acetone in the GISS ModelE2.1 Earth system model. We simulate acetone's concentration and transport across the atmosphere as well as its dependence on chemistry, the ocean, and various global emissions. Comparisons of our model’s estimates to past modeling studies and field measurements have shown encouraging results. Ultimately, this paper contributes to a broader understanding of acetone's role in the atmosphere.
Laura Wainman, Lauren R. Marshall, and Anja Schmidt
Clim. Past, 20, 951–968, https://doi.org/10.5194/cp-20-951-2024, https://doi.org/10.5194/cp-20-951-2024, 2024
Short summary
Short summary
The Mt Samalas eruption had global-scale impacts on climate and has been linked to historical events throughout latter half of the 13th century. Using model simulations and multi-proxy data, we constrain the year and season of the eruption to summer 1257 and investigate the regional-scale variability in surface cooling following the eruption. We also evaluate our model-to-proxy comparison framework and discuss current limitations of the approach.
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024, https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Short summary
This paper describes a new experimental protocol for the Geoengineering Model Intercomparison Project (GeoMIP). In it, we describe the details of a new simulation of sunlight reflection using the stratospheric aerosols that climate models are supposed to run, and we explain the reasons behind each choice we made when defining the protocol.
Matteo Mastropierro, Daniele Peano, and Davide Zanchettin
EGUsphere, https://doi.org/10.5194/egusphere-2024-823, https://doi.org/10.5194/egusphere-2024-823, 2024
Short summary
Short summary
We address how different ESMs represent vegetation productivity, in terms of carbon fluxes, within the Amazon basin. By statistically assessing the role of climatological and model specific factors that influence vegetation, we showed that surface energy fluxes and the implementation of Phosphorous limitation resulted to be the main drivers of model uncertainties in a future scenario. Reducing these uncertainties allows to increase the reliability of tropical land carbon and climate projections
Richard J. Pope, Alexandru Rap, Matilda A. Pimlott, Brice Barret, Eric Le Flochmoen, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Anne Boynard, Christian Retscher, Wuhu Feng, Richard Rigby, Sandip S. Dhomse, Catherine Wespes, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 3613–3626, https://doi.org/10.5194/acp-24-3613-2024, https://doi.org/10.5194/acp-24-3613-2024, 2024
Short summary
Short summary
Tropospheric ozone is an important short-lived climate forcer which influences the incoming solar short-wave radiation and the outgoing long-wave radiation in the atmosphere (8–15 km) where the balance between the two yields a net positive (i.e. warming) effect at the surface. Overall, we find that the tropospheric ozone radiative effect ranges between 1.21 and 1.26 W m−2 with a negligible trend (2008–2017), suggesting that tropospheric ozone influences on climate have remained stable with time.
Martyn P. Chipperfield and Slimane Bekki
Atmos. Chem. Phys., 24, 2783–2802, https://doi.org/10.5194/acp-24-2783-2024, https://doi.org/10.5194/acp-24-2783-2024, 2024
Short summary
Short summary
We give a personal perspective on recent issues related to the depletion of stratospheric ozone and some newly emerging challenges. We first provide a brief review of historic work on understanding the ozone layer and review ozone recovery from the effects of halogenated source gases and the Montreal Protocol. We then discuss the recent observations of ozone depletion from Australian fires in early 2020 and the Hunga Tonga–Hunga Ha'apai volcano in January 2022.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Hauke Schmidt, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih-Wei Fang, Diego Jimenez-de la Cuesta, Paul Keil, Lukas Kluft, Clarissa Kroll, Theresa Lang, Ulrike Niemeier, Andrea Schneidereit, Andrew I. L. Williams, and Bjorn Stevens
Geosci. Model Dev., 17, 1563–1584, https://doi.org/10.5194/gmd-17-1563-2024, https://doi.org/10.5194/gmd-17-1563-2024, 2024
Short summary
Short summary
A recent development in numerical simulations of the global atmosphere is the increase in horizontal resolution to grid spacings of a few kilometers. However, the vertical grid spacing of these models has not been reduced at the same rate as the horizontal grid spacing. Here, we assess the effects of much finer vertical grid spacings, in particular the impacts on cloud quantities and the atmospheric energy balance.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, Roberto Grilli, Quentin Fournier, Irène Ventrillard, Nicolas Caillon, and Kathy Law
Atmos. Chem. Phys., 24, 1361–1388, https://doi.org/10.5194/acp-24-1361-2024, https://doi.org/10.5194/acp-24-1361-2024, 2024
Short summary
Short summary
This study reports the first simultaneous records of oxygen (Δ17O) and nitrogen (δ15N) isotopes in nitrogen dioxide (NO2) and nitrate (NO3−). These data are combined with atmospheric observations to explore sub-daily N reactive chemistry and quantify N fractionation effects in an Alpine winter city. The results highlight the necessity of using Δ17O and δ15N in both NO2 and NO3− to avoid biased estimations of NOx sources and fates from NO3− isotopic records in urban winter environments.
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
Ailish M. Graham, Richard J. Pope, Martyn P. Chipperfield, Sandip S. Dhomse, Matilda Pimlott, Wuhu Feng, Vikas Singh, Ying Chen, Oliver Wild, Ranjeet Sokhi, and Gufran Beig
Atmos. Chem. Phys., 24, 789–806, https://doi.org/10.5194/acp-24-789-2024, https://doi.org/10.5194/acp-24-789-2024, 2024
Short summary
Short summary
Our paper uses novel satellite datasets and high-resolution emissions datasets alongside a back-trajectory model to investigate the balance of local and external sources influencing NOx air pollution changes in Delhi. We find in the post-monsoon season that NOx from local and non-local transport emissions contributes most to poor air quality in Delhi. Therefore, air quality mitigation strategies in Delhi and surrounding regions are used to control this issue.
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023, https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from the SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trends since 2000. The study confirms the ozone recovery in the Antarctic and shows a potential sign of quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Helen Weierbach, Allegra N. LeGrande, and Kostas Tsigaridis
Atmos. Chem. Phys., 23, 15491–15505, https://doi.org/10.5194/acp-23-15491-2023, https://doi.org/10.5194/acp-23-15491-2023, 2023
Short summary
Short summary
Volcanic aerosols impact global and regional climate conditions but can vary depending on pre-existing initial climate conditions. We ran an ensemble of volcanic aerosol simulations under varying ENSO and NAO initial conditions to understand how initial climate states impact the modeled response to volcanic forcing. Overall we found that initial NAO conditions can impact the strength of the first winter post-eruptive response but are also affected by the choice of anomaly and sampling routine.
Sam S. Rabin, William J. Sacks, Danica L. Lombardozzi, Lili Xia, and Alan Robock
Geosci. Model Dev., 16, 7253–7273, https://doi.org/10.5194/gmd-16-7253-2023, https://doi.org/10.5194/gmd-16-7253-2023, 2023
Short summary
Short summary
Climate models can help us simulate how the agricultural system will be affected by and respond to environmental change, but to be trustworthy they must realistically reproduce historical patterns. When farmers plant their crops and what varieties they choose will be important aspects of future adaptation. Here, we improve the crop component of a global model to better simulate observed growing seasons and examine the impacts on simulated crop yields and irrigation demand.
Richard J. Pope, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, and Richard Rigby
Atmos. Chem. Phys., 23, 14933–14947, https://doi.org/10.5194/acp-23-14933-2023, https://doi.org/10.5194/acp-23-14933-2023, 2023
Short summary
Short summary
Ozone is a potent air pollutant, and we present the first study to investigate long-term changes in lower tropospheric column ozone (LTCO3) from space. We have constructed a merged LTCO3 dataset from GOME-1, SCIAMACHY and OMI between 1996 and 2017. Comparing LTCO3 between the 1996–2000 and 2013–2017 5-year averages, we find significant positive increases in the tropics/sub-tropics, while in the northern mid-latitudes, we find small-scale differences.
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Short summary
We present a new activity which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of this “Analysis for Development” (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.
Hideo Shiogama, Hiroaki Tatebe, Michiya Hayashi, Manabu Abe, Miki Arai, Hiroshi Koyama, Yukiko Imada, Yu Kosaka, Tomoo Ogura, and Masahiro Watanabe
Earth Syst. Dynam., 14, 1107–1124, https://doi.org/10.5194/esd-14-1107-2023, https://doi.org/10.5194/esd-14-1107-2023, 2023
Short summary
Short summary
We produced one of the largest single model initial-condition ensembles thus far using the MIROC6 coupled atmosphere–ocean global climate model (MIROC6-LE). MIROC6-LE includes historical simulations, eight single forcing historical experiments, five future scenario experiments and three single forcing future experiments with 10- or 50-ensemble members. We describe the experimental design and show initial analyses. This dataset would be useful to a wide range of research communities.
Richard J. Pope, Brian J. Kerridge, Martyn P. Chipperfield, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Matilda A. Pimlott, Wuhu Feng, Edward Comyn-Platt, Garry D. Hayman, Stephen R. Arnold, and Ailish M. Graham
Atmos. Chem. Phys., 23, 13235–13253, https://doi.org/10.5194/acp-23-13235-2023, https://doi.org/10.5194/acp-23-13235-2023, 2023
Short summary
Short summary
In the summer of 2018, Europe experienced several persistent large-scale ozone (O3) pollution episodes. Satellite tropospheric O3 and surface O3 data recorded substantial enhancements in 2018 relative to other years. Targeted model simulations showed that meteorological processes and emissions controlled the elevated surface O3, while mid-tropospheric O3 enhancements were dominated by stratospheric O3 intrusion and advection of North Atlantic O3-rich air masses into Europe.
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Jianchun Bian, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 23, 13029–13047, https://doi.org/10.5194/acp-23-13029-2023, https://doi.org/10.5194/acp-23-13029-2023, 2023
Short summary
Short summary
For the first time a regularized multivariate regression model is used to estimate stratospheric ozone trends. Regularized regression avoids the over-fitting issue due to correlation among explanatory variables. We demonstrate that there are considerable differences in satellite-based and chemical-model-based ozone trends, highlighting large uncertainties in our understanding about ozone variability. We argue that caution is needed when interpreting results with different methods and datasets.
Michael P. Cartwright, Richard J. Pope, Jeremy J. Harrison, Martyn P. Chipperfield, Chris Wilson, Wuhu Feng, David P. Moore, and Parvadha Suntharalingam
Atmos. Chem. Phys., 23, 10035–10056, https://doi.org/10.5194/acp-23-10035-2023, https://doi.org/10.5194/acp-23-10035-2023, 2023
Short summary
Short summary
A 3-D chemical transport model, TOMCAT, is used to simulate global atmospheric carbonyl sulfide (OCS) distribution. Modelled OCS compares well with satellite observations of OCS from limb-sounding satellite observations. Model simulations also compare adequately with surface and atmospheric observations and suitably capture the seasonality of OCS and background concentrations.
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Chenwei Fang, Jim M. Haywood, Ju Liang, Ben T. Johnson, Ying Chen, and Bin Zhu
Atmos. Chem. Phys., 23, 8341–8368, https://doi.org/10.5194/acp-23-8341-2023, https://doi.org/10.5194/acp-23-8341-2023, 2023
Short summary
Short summary
The responses of Asian summer monsoon duration and intensity to air pollution mitigation are identified given the net-zero future. We show that reducing scattering aerosols makes the rainy season longer and stronger across South Asia and East Asia but that absorbing aerosol reduction has the opposite effect. Our results hint at distinct monsoon responses to emission controls that target different aerosols.
Cyril Caram, Sophie Szopa, Anne Cozic, Slimane Bekki, Carlos A. Cuevas, and Alfonso Saiz-Lopez
Geosci. Model Dev., 16, 4041–4062, https://doi.org/10.5194/gmd-16-4041-2023, https://doi.org/10.5194/gmd-16-4041-2023, 2023
Short summary
Short summary
We studied the role of halogenated compounds (containing chlorine, bromine and iodine), emitted by natural processes (mainly above the oceans), in the chemistry of the lower layers of the atmosphere. We introduced this relatively new chemistry in a three-dimensional climate–chemistry model and looked at how this chemistry will disrupt the ozone. We showed that the concentration of ozone decreases by 22 % worldwide and that of the atmospheric detergent, OH, by 8 %.
Alan Robock, Lili Xia, Cheryl S. Harrison, Joshua Coupe, Owen B. Toon, and Charles G. Bardeen
Atmos. Chem. Phys., 23, 6691–6701, https://doi.org/10.5194/acp-23-6691-2023, https://doi.org/10.5194/acp-23-6691-2023, 2023
Short summary
Short summary
A nuclear war could produce a nuclear winter, with catastrophic consequences for global food supplies. Nuclear winter theory helped to end the nuclear arms race in the 1980s, but more than 10 000 nuclear weapons still exist. This means they can be used, by unstable leaders, accidently from technical malfunctions or human error, or by terrorists. Therefore, it is urgent for scientists to study these issues, broadly communicate their results, and work for the elimination of nuclear weapons.
Ulla Wandinger, Athena Augusta Floutsi, Holger Baars, Moritz Haarig, Albert Ansmann, Anja Hünerbein, Nicole Docter, David Donovan, Gerd-Jan van Zadelhoff, Shannon Mason, and Jason Cole
Atmos. Meas. Tech., 16, 2485–2510, https://doi.org/10.5194/amt-16-2485-2023, https://doi.org/10.5194/amt-16-2485-2023, 2023
Short summary
Short summary
We introduce an aerosol classification model that has been developed for the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE). The model provides a consistent description of microphysical, optical, and radiative properties of common aerosol types such as dust, sea salt, pollution, and smoke. It is used for aerosol classification and assessment of radiation effects based on the synergy of active and passive observations with lidar, imager, and radiometer of the multi-instrument platform.
Graeme Auld, Gabriele C. Hegerl, and Ioannis Papastathopoulos
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, https://doi.org/10.5194/ascmo-9-45-2023, https://doi.org/10.5194/ascmo-9-45-2023, 2023
Short summary
Short summary
In this paper we consider the problem of detecting changes in the distribution of the annual maximum temperature, during the years 1950–2018, across Europe.
We find that, on average, the temperature that would be expected to be exceeded
approximately once every 100 years in the 1950 climate is expected to be exceeded once every 6 years in the 2018 climate. This is of concern due to the devastating effects on humans and natural systems that are caused by extreme temperatures.
Lucie J. Lücke, Andrew P. Schurer, Matthew Toohey, Lauren R. Marshall, and Gabriele C. Hegerl
Clim. Past, 19, 959–978, https://doi.org/10.5194/cp-19-959-2023, https://doi.org/10.5194/cp-19-959-2023, 2023
Short summary
Short summary
Evidence from tree rings and ice cores provides incomplete information about past volcanic eruptions and the Sun's activity. We model past climate with varying solar and volcanic scenarios and compare it to reconstructed temperature. We confirm that the Sun's influence was small and that uncertain volcanic activity can strongly influence temperature shortly after the eruption. On long timescales, independent data sources closely agree, increasing our confidence in understanding of past climate.
Flossie Brown, Lauren Marshall, Peter H. Haynes, Rolando R. Garcia, Thomas Birner, and Anja Schmidt
Atmos. Chem. Phys., 23, 5335–5353, https://doi.org/10.5194/acp-23-5335-2023, https://doi.org/10.5194/acp-23-5335-2023, 2023
Short summary
Short summary
Large-magnitude volcanic eruptions have the potential to alter large-scale circulation patterns, such as the quasi-biennial oscillation (QBO). The QBO is an oscillation of the tropical stratospheric zonal winds between easterly and westerly directions. Using a climate model, we show that large-magnitude eruptions can delay the progression of the QBO, with a much longer delay when the shear is easterly than when it is westerly. Such delays may affect weather and transport of atmospheric gases.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Alexander D. James, Finn Pace, Sebastien N. F. Sikora, Graham W. Mann, John M. C. Plane, and Benjamin J. Murray
Atmos. Chem. Phys., 23, 2215–2233, https://doi.org/10.5194/acp-23-2215-2023, https://doi.org/10.5194/acp-23-2215-2023, 2023
Short summary
Short summary
Here, we examine whether several materials of meteoric origin can nucleate crystallisation in stratospheric cloud droplets which would affect ozone depletion. We find that material which could fragment on atmospheric entry without melting is unlikely to be present in high enough concentration in the stratosphere to contribute to observed crystalline clouds. Material which ablates completely then forms a new solid known as meteoric smoke can provide enough nucleation to explain observed clouds.
Evelien van Dijk, Ingar Mørkestøl Gundersen, Anna de Bode, Helge Høeg, Kjetil Loftsgarden, Frode Iversen, Claudia Timmreck, Johann Jungclaus, and Kirstin Krüger
Clim. Past, 19, 357–398, https://doi.org/10.5194/cp-19-357-2023, https://doi.org/10.5194/cp-19-357-2023, 2023
Short summary
Short summary
The mid-6th century was one of the coldest periods of the last 2000 years as characterized by great societal changes. Here, we study the effect of the volcanic double event in 536 CE and 540 CE on climate and society in southern Norway. The combined climate and growing degree day models and high-resolution pollen and archaeological records reveal that the northern and western sites are vulnerable to crop failure with possible abandonment of farms, whereas the southeastern site is more resilient.
Anne-Marie Lézine, Maé Catrain, Julián Villamayor, and Myriam Khodri
Clim. Past, 19, 277–292, https://doi.org/10.5194/cp-19-277-2023, https://doi.org/10.5194/cp-19-277-2023, 2023
Short summary
Short summary
Data and climate simulations were used to discuss the West African Little Ice Age (LIA). We show a clear opposition between a dry Sahel–savannah zone and a humid equatorial sector. In the Sahel region, the LIA was characterized by a gradual drying trend starting in 1250 CE after two early warning signals since 1170 CE. A tipping point was reached at 1800 CE. Drying events punctuated the LIA, the largest of which dated to ca. 1600 CE and was also recorded in the savannah zone.
Ram Singh, Kostas Tsigaridis, Allegra N. LeGrande, Francis Ludlow, and Joseph G. Manning
Clim. Past, 19, 249–275, https://doi.org/10.5194/cp-19-249-2023, https://doi.org/10.5194/cp-19-249-2023, 2023
Short summary
Short summary
This work is a modeling effort to investigate the hydroclimatic impacts of a volcanic
quartetduring 168–158 BCE over the Nile River basin in the context of Ancient Egypt's Ptolemaic era (305–30 BCE). The model simulated a robust surface cooling (~ 1.0–1.5 °C), suppressing the African monsoon (deficit of > 1 mm d−1 over East Africa) and agriculturally vital Nile summer flooding. Our result supports the hypothesized relation between volcanic eruptions, hydroclimatic shocks, and societal impacts.
Jennifer Schallock, Christoph Brühl, Christine Bingen, Michael Höpfner, Landon Rieger, and Jos Lelieveld
Atmos. Chem. Phys., 23, 1169–1207, https://doi.org/10.5194/acp-23-1169-2023, https://doi.org/10.5194/acp-23-1169-2023, 2023
Short summary
Short summary
We characterized the influence of volcanic aerosols for the period 1990–2019 and established a volcanic SO2 emission inventory that includes more than 500 eruptions. From limb-based satellite observations of SO2 and extinction, we derive 3D plumes of SO2 perturbations and injected mass by a novel method. We calculate instantaneous radiative forcing with a comprehensive chemisty climate model. Our results show that smaller eruptions can also contribute to the stratospheric aerosol forcing.
Ilaria Quaglia, Claudia Timmreck, Ulrike Niemeier, Daniele Visioni, Giovanni Pitari, Christina Brodowsky, Christoph Brühl, Sandip S. Dhomse, Henning Franke, Anton Laakso, Graham W. Mann, Eugene Rozanov, and Timofei Sukhodolov
Atmos. Chem. Phys., 23, 921–948, https://doi.org/10.5194/acp-23-921-2023, https://doi.org/10.5194/acp-23-921-2023, 2023
Short summary
Short summary
The last very large explosive volcanic eruption we have measurements for is the eruption of Mt. Pinatubo in 1991. It is therefore often used as a benchmark for climate models' ability to reproduce these kinds of events. Here, we compare available measurements with the results from multiple experiments conducted with climate models interactively simulating the aerosol cloud formation.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Florent Tencé, Julien Jumelet, Marie Bouillon, David Cugnet, Slimane Bekki, Sarah Safieddine, Philippe Keckhut, and Alain Sarkissian
Atmos. Chem. Phys., 23, 431–451, https://doi.org/10.5194/acp-23-431-2023, https://doi.org/10.5194/acp-23-431-2023, 2023
Short summary
Short summary
Polar stratospheric clouds (PSCs) are critical precursors to stratospheric ozone depletion, and measurement-driven classifications remain a key to accurate cloud modelling. We present PSC lidar observations conducted at the French Antarctic station Dumont d'Urville between 2007 and 2020. This dataset is analyzed using typical PSC classification schemes. We present a PSC climatology along with a significant and slightly negative 14-year trend of PSC occurences of −4.6 PSC days per decade.
Jörg Franke, Michael N. Evans, Andrew Schurer, and Gabriele C. Hegerl
Clim. Past, 18, 2583–2597, https://doi.org/10.5194/cp-18-2583-2022, https://doi.org/10.5194/cp-18-2583-2022, 2022
Short summary
Short summary
Detection and attribution is a statistical method to evaluate if external factors or random variability have caused climatic changes. We use for the first time a comparison of simulated and observed tree-ring width that circumvents many limitations of previous studies relying on climate reconstructions. We attribute variability in temperature-limited trees to strong volcanic eruptions and for the first time detect a spatial pattern in the growth of moisture-sensitive trees after eruptions.
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022, https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Short summary
The early 19th century was the coldest period over the past 500 years, when strong tropical volcanic events and a solar minimum coincided. This study quantifies potential surface cooling from the solar and volcanic forcing in the early 19th century with large ensemble simulations, and identifies the regions that their impacts cannot be simply additive. The cooling perspective of Arctic amplification exists in both solar and post-volcano period with the albedo feedback as the main contribution.
Elizabeth Klovenski, Yuxuan Wang, Susanne E. Bauer, Kostas Tsigaridis, Greg Faluvegi, Igor Aleinov, Nancy Y. Kiang, Alex Guenther, Xiaoyan Jiang, Wei Li, and Nan Lin
Atmos. Chem. Phys., 22, 13303–13323, https://doi.org/10.5194/acp-22-13303-2022, https://doi.org/10.5194/acp-22-13303-2022, 2022
Short summary
Short summary
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact of including a new isoprene drought stress (yd) parameterization in NASA GISS ModelE called DroughtStress_ModelE, which is specifically tuned for ModelE. Inclusion of yd leads to better simulated isoprene emissions at the MOFLUX site during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO (formaldehyde column), and improved simulated O3 (ozone) during drought.
Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Abel Calle, Sandip S. Dhomse, Victoria E. Cachorro-Revilla, Terry Deshler, Li Zhengyao, Nimmi Sharma, and Louis Elterman
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-272, https://doi.org/10.5194/essd-2022-272, 2022
Revised manuscript not accepted
Short summary
Short summary
Tropospheric and stratospheric aerosol extinction profiles observations from a searchlight at New Mexico, US, were rescued and re-calibrated. Spanning between December 1963 and 1964, they measured the volcanic aerosols from the 1963 Agung eruption. Contemporary and state of the art information were used in the re-calibration. A unique and until the present forgotten/ignored dataset, it contributes current observational and modelling research on the impact of major volcanic eruptions on climate.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Andreas Chrysanthou, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 22, 10635–10656, https://doi.org/10.5194/acp-22-10635-2022, https://doi.org/10.5194/acp-22-10635-2022, 2022
Short summary
Short summary
Chemical transport models forced with (re)analysis meteorological fields are ideally suited for interpreting the influence of important physical processes on the ozone variability. We use TOMCAT forced by ECMWF ERA-Interim and ERA5 reanalysis data sets to investigate the effects of reanalysis forcing fields on ozone changes. Our results show that models forced by ERA5 reanalyses may not yet be capable of reproducing observed changes in stratospheric ozone, particularly in the lower stratosphere.
Matilda A. Pimlott, Richard J. Pope, Brian J. Kerridge, Barry G. Latter, Diane S. Knappett, Dwayne E. Heard, Lucy J. Ventress, Richard Siddans, Wuhu Feng, and Martyn P. Chipperfield
Atmos. Chem. Phys., 22, 10467–10488, https://doi.org/10.5194/acp-22-10467-2022, https://doi.org/10.5194/acp-22-10467-2022, 2022
Short summary
Short summary
We present a new method to derive global information of the hydroxyl radical (OH), an important atmospheric oxidant. OH controls the lifetime of trace gases important to air quality and climate. We use satellite observations of ozone, carbon monoxide, methane and water vapour in a simple expression to derive OH around 3–4 km altitude. The derived OH compares well to model and aircraft OH data. We then apply the method to 10 years of satellite data to study the inter-annual variability of OH.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Evelien van Dijk, Johann Jungclaus, Stephan Lorenz, Claudia Timmreck, and Kirstin Krüger
Clim. Past, 18, 1601–1623, https://doi.org/10.5194/cp-18-1601-2022, https://doi.org/10.5194/cp-18-1601-2022, 2022
Short summary
Short summary
A double volcanic eruption in 536 and 540 CE caused one of the coldest decades during the last 2000 years. We analyzed new climate model simulations from that period and found a cooling of up to 2°C and a sea-ice extent up to 200 km further south. Complex interactions between sea ice and ocean circulation lead to a reduction in the northward ocean heat transport, which makes the sea ice extend further south; this in turn leads to a surface cooling up to 20 years after the eruptions.
Michael Sigl, Matthew Toohey, Joseph R. McConnell, Jihong Cole-Dai, and Mirko Severi
Earth Syst. Sci. Data, 14, 3167–3196, https://doi.org/10.5194/essd-14-3167-2022, https://doi.org/10.5194/essd-14-3167-2022, 2022
Short summary
Short summary
Volcanism is a key driver of climate. Based on ice cores from Greenland and Antarctica, we reconstruct its climate impact potential over the Holocene. By aligning records on a well-dated chronology from Antarctica, we resolve long-standing inconsistencies in the dating of past volcanic eruptions. We reconstruct 850 eruptions (which, in total, injected 7410 Tg of sulfur in the stratosphere) and estimate how they changed the opacity of the atmosphere, a prerequisite for climate model simulations.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Jim M. Haywood, Andy Jones, Ben T. Johnson, and William McFarlane Smith
Atmos. Chem. Phys., 22, 6135–6150, https://doi.org/10.5194/acp-22-6135-2022, https://doi.org/10.5194/acp-22-6135-2022, 2022
Short summary
Short summary
Simulations are presented investigating the influence of moderately absorbing aerosol in the stratosphere to combat the impacts of climate change. A number of detrimental impacts are noted compared to sulfate aerosol, including (i) reduced cooling efficiency, (ii) increased deficits in global precipitation, (iii) delays in the recovery of the stratospheric ozone hole, and (iv) disruption of the stratospheric circulation and the wintertime storm tracks that impact European precipitation.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Henry Bowman, Steven Turnock, Susanne E. Bauer, Kostas Tsigaridis, Makoto Deushi, Naga Oshima, Fiona M. O'Connor, Larry Horowitz, Tongwen Wu, Jie Zhang, Dagmar Kubistin, and David D. Parrish
Atmos. Chem. Phys., 22, 3507–3524, https://doi.org/10.5194/acp-22-3507-2022, https://doi.org/10.5194/acp-22-3507-2022, 2022
Short summary
Short summary
A full understanding of ozone in the troposphere requires investigation of its temporal variability over all timescales. Model simulations show that the northern midlatitude ozone seasonal cycle shifted with industrial development (1850–2014), with an increasing magnitude and a later summer peak. That shift reached a maximum in the mid-1980s, followed by a reversal toward the preindustrial cycle. The few available observations, beginning in the 1970s, are consistent with the model simulations.
Martin J. Osborne, Johannes de Leeuw, Claire Witham, Anja Schmidt, Frances Beckett, Nina Kristiansen, Joelle Buxmann, Cameron Saint, Ellsworth J. Welton, Javier Fochesatto, Ana R. Gomes, Ulrich Bundke, Andreas Petzold, Franco Marenco, and Jim Haywood
Atmos. Chem. Phys., 22, 2975–2997, https://doi.org/10.5194/acp-22-2975-2022, https://doi.org/10.5194/acp-22-2975-2022, 2022
Short summary
Short summary
Using the Met Office NAME dispersion model, supported by satellite- and ground-based remote-sensing observations, we describe the dispersion of aerosols from the 2019 Raikoke eruption and the concurrent wildfires in Alberta Canada. We show how the synergy of dispersion modelling and multiple observation sources allowed observers in the London VAAC to arrive at a more complete picture of the aerosol loading at altitudes commonly used by aviation.
Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Ryan Hossaini, Graham W. Mann, Michelle L. Santee, and Mark Weber
Atmos. Chem. Phys., 22, 903–916, https://doi.org/10.5194/acp-22-903-2022, https://doi.org/10.5194/acp-22-903-2022, 2022
Short summary
Short summary
Solar flux variations associated with 11-year sunspot cycle is believed to exert important external climate forcing. As largest variations occur at shorter wavelengths such as ultra-violet part of the solar spectrum, associated changes in stratospheric ozone are thought to provide direct evidence for solar climate interaction. Until now, most of the studies reported double-peak structured solar cycle signal (SCS), but relatively new satellite data suggest only single-peak-structured SCS.
Gill Plunkett, Michael Sigl, Hans F. Schwaiger, Emma L. Tomlinson, Matthew Toohey, Joseph R. McConnell, Jonathan R. Pilcher, Takeshi Hasegawa, and Claus Siebe
Clim. Past, 18, 45–65, https://doi.org/10.5194/cp-18-45-2022, https://doi.org/10.5194/cp-18-45-2022, 2022
Short summary
Short summary
We report the identification of volcanic ash associated with a sulfate layer in Greenland ice cores previously thought to have been from the Vesuvius 79 CE eruption and which had been used to confirm the precise dating of the Greenland ice-core chronology. We find that the tephra was probably produced by an eruption in Alaska. We show the importance of verifying sources of volcanic signals in ice cores through ash analysis to avoid errors in dating ice cores and interpreting volcanic impacts.
Robert D. Field, Jonathan E. Hickman, Igor V. Geogdzhayev, Kostas Tsigaridis, and Susanne E. Bauer
Atmos. Chem. Phys., 21, 18333–18350, https://doi.org/10.5194/acp-21-18333-2021, https://doi.org/10.5194/acp-21-18333-2021, 2021
Short summary
Short summary
In this study, we examined changes in atmospheric composition over China from satellite measurements during the COVID lockdowns of 2020. We found that interpreting changes in 2020 depended strongly on the background period and whether trends were accounted for. In most cases, pollution levels in 2020 were lower than during the previous few years when pollution levels appear to have stabilized.
Sandip S. Dhomse, Carlo Arosio, Wuhu Feng, Alexei Rozanov, Mark Weber, and Martyn P. Chipperfield
Earth Syst. Sci. Data, 13, 5711–5729, https://doi.org/10.5194/essd-13-5711-2021, https://doi.org/10.5194/essd-13-5711-2021, 2021
Short summary
Short summary
High-quality long-term ozone profile data sets are key to estimating short- and long-term ozone variability. Almost all the satellite (and chemical model) data sets show some kind of bias with respect to each other. This is because of differences in measurement methodologies as well as simplified processes in the models. We use satellite data sets and chemical model output to generate 42 years of ozone profile data sets using a random-forest machine-learning algorithm that is named ML-TOMCAT.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Jonathan E. Hickman, Niels Andela, Enrico Dammers, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Courtney A. Di Vittorio, Money Ossohou, Corinne Galy-Lacaux, Kostas Tsigaridis, and Susanne E. Bauer
Atmos. Chem. Phys., 21, 16277–16291, https://doi.org/10.5194/acp-21-16277-2021, https://doi.org/10.5194/acp-21-16277-2021, 2021
Short summary
Short summary
Ammonia (NH3) gas emitted from soils and biomass burning contributes to particulate air pollution. We used satellite observations of the atmosphere over Africa to show that declines in NH3 concentrations over South Sudan's Sudd wetland in 2008–2017 are related to variation in wetland extent. We also find NH3 concentrations increased in West Africa as a result of biomass burning and increased in the Lake Victoria region, likely due to agricultural expansion and intensification.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Maria Sand, Bjørn H. Samset, Gunnar Myhre, Jonas Gliß, Susanne E. Bauer, Huisheng Bian, Mian Chin, Ramiro Checa-Garcia, Paul Ginoux, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Philippe Le Sager, Marianne T. Lund, Hitoshi Matsui, Twan van Noije, Dirk J. L. Olivié, Samuel Remy, Michael Schulz, Philip Stier, Camilla W. Stjern, Toshihiko Takemura, Kostas Tsigaridis, Svetlana G. Tsyro, and Duncan Watson-Parris
Atmos. Chem. Phys., 21, 15929–15947, https://doi.org/10.5194/acp-21-15929-2021, https://doi.org/10.5194/acp-21-15929-2021, 2021
Short summary
Short summary
Absorption of shortwave radiation by aerosols can modify precipitation and clouds but is poorly constrained in models. A total of 15 different aerosol models from AeroCom phase III have reported total aerosol absorption, and for the first time, 11 of these models have reported in a consistent experiment the contributions to absorption from black carbon, dust, and organic aerosol. Here, we document the model diversity in aerosol absorption.
Anthony C. Jones, Adrian Hill, Samuel Remy, N. Luke Abraham, Mohit Dalvi, Catherine Hardacre, Alan J. Hewitt, Ben Johnson, Jane P. Mulcahy, and Steven T. Turnock
Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021, https://doi.org/10.5194/acp-21-15901-2021, 2021
Short summary
Short summary
Ammonium nitrate is hard to model because it forms and evaporates rapidly. One approach is to relate its equilibrium concentration to temperature, humidity, and the amount of nitric acid and ammonia gases. Using this approach, we limit the rate at which equilibrium is reached using various condensation rates in a climate model. We show that ammonium nitrate concentrations are highly sensitive to the condensation rate. Our results will help improve the representation of nitrate in climate models.
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021, https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
Elizaveta Malinina, Alexei Rozanov, Ulrike Niemeier, Sandra Wallis, Carlo Arosio, Felix Wrana, Claudia Timmreck, Christian von Savigny, and John P. Burrows
Atmos. Chem. Phys., 21, 14871–14891, https://doi.org/10.5194/acp-21-14871-2021, https://doi.org/10.5194/acp-21-14871-2021, 2021
Short summary
Short summary
In the paper, changes in the stratospheric aerosol loading after the 2018 Ambae eruption were analyzed using OMPS-LP observations. The eruption was also simulated with the MAECHAM5-HAM global climate model. Generally, the model and observations agree very well. We attribute the good consistency of the results to a precisely determined altitude and mass of the volcanic injection, as well as nudging of the meteorological data. The radiative forcing from the eruption was estimated to be −0.13 W m−2.
Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy
Atmos. Chem. Phys., 21, 14019–14037, https://doi.org/10.5194/acp-21-14019-2021, https://doi.org/10.5194/acp-21-14019-2021, 2021
Short summary
Short summary
The Arctic winter/spring 2020 was one of the coldest with a strong and long-lasting vortex, high chlorine activation, severe denitrification, and unprecedented ozone loss. The loss was even equal to the levels of some of the warm Antarctic winters. Total column ozone values below 220 DU for several weeks and ozone loss saturation were observed during the period. These results show an unusual meteorology and warrant dedicated studies on the impact of climate change on ozone loss.
Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Albeht Rodríguez-Vega, Sarah Shallcross, Sandip S. Dhomse, Giorgio Fiocco, and Gerald W. Grams
Earth Syst. Sci. Data, 13, 4407–4423, https://doi.org/10.5194/essd-13-4407-2021, https://doi.org/10.5194/essd-13-4407-2021, 2021
Short summary
Short summary
The first multi-year stratospheric aerosol lidar dataset was recovered and recalibrated. The vertical profile dataset, January 1964 to August 1965 at Lexington, MA, and July to August 1964 at Fairbanks, AK, provides info on volcanic forcing after the 1963 Agung eruption. Applying two-way transmittance correction to the original dataset reveals data variations, with corrected stratospheric aerosol optical depth (sAOD) highest in 1965 with the highest 532 nm sAOD peak at 0.07 in March 1965.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Piero Lionello, David Barriopedro, Christian Ferrarin, Robert J. Nicholls, Mirko Orlić, Fabio Raicich, Marco Reale, Georg Umgiesser, Michalis Vousdoukas, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, https://doi.org/10.5194/nhess-21-2705-2021, https://doi.org/10.5194/nhess-21-2705-2021, 2021
Short summary
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
John G. Virgin, Christopher G. Fletcher, Jason N. S. Cole, Knut von Salzen, and Toni Mitovski
Geosci. Model Dev., 14, 5355–5372, https://doi.org/10.5194/gmd-14-5355-2021, https://doi.org/10.5194/gmd-14-5355-2021, 2021
Short summary
Short summary
Equilibrium climate sensitivity, or the amount of warming the Earth would exhibit a result of a doubling of atmospheric CO2, is a common metric used in assessments of climate models. Here, we compare climate sensitivity between two versions of the Canadian Earth System Model. We find the newest iteration of the model (version 5) to have higher climate sensitivity due to reductions in low-level clouds, which reflect radiation and cool the planet, as the surface warms.
Luke Surl, Tjarda Roberts, and Slimane Bekki
Atmos. Chem. Phys., 21, 12413–12441, https://doi.org/10.5194/acp-21-12413-2021, https://doi.org/10.5194/acp-21-12413-2021, 2021
Short summary
Short summary
Many different chemical reactions happen when the gases from a volcano mix with air, but what effects do they have? We present aircraft measurements which show that there is less ozone within the plume of Etna than outside it. We have also made a computer model of this chemistry. This model can reproduce the effects seen when halogens (bromine and chlorine) are included in the volcanic emissions.
We look closely at the simulation to discover how complicated halogen reactions cause ozone loss.
Johannes de Leeuw, Anja Schmidt, Claire S. Witham, Nicolas Theys, Isabelle A. Taylor, Roy G. Grainger, Richard J. Pope, Jim Haywood, Martin Osborne, and Nina I. Kristiansen
Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021, https://doi.org/10.5194/acp-21-10851-2021, 2021
Short summary
Short summary
Using the NAME dispersion model in combination with high-resolution SO2 satellite data from TROPOMI, we investigate the dispersion of volcanic SO2 from the 2019 Raikoke eruption. NAME accurately simulates the dispersion of SO2 during the first 2–3 weeks after the eruption and illustrates the potential of using high-resolution satellite data to identify potential limitations in dispersion models, which will ultimately help to improve efforts to forecast the dispersion of volcanic clouds.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon
Atmos. Chem. Phys., 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021, https://doi.org/10.5194/acp-21-10477-2021, 2021
Short summary
Short summary
We report an efficient method to collect atmospheric NO2 adapted for multi-isotopic analysis and present the first NO2 triple oxygen and double nitrogen isotope measurements. Atmospheric samplings carried out in Grenoble, France, highlight the NO2 isotopic signature sensitivity to the local NOx emissions and chemical regimes. These preliminary results are very promising for using the combination of Δ17O and δ15N of NO2 as a probe of the atmospheric NOx emissions and chemistry.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Ulas Im, Kostas Tsigaridis, Gregory Faluvegi, Peter L. Langen, Joshua P. French, Rashed Mahmood, Manu A. Thomas, Knut von Salzen, Daniel C. Thomas, Cynthia H. Whaley, Zbigniew Klimont, Henrik Skov, and Jørgen Brandt
Atmos. Chem. Phys., 21, 10413–10438, https://doi.org/10.5194/acp-21-10413-2021, https://doi.org/10.5194/acp-21-10413-2021, 2021
Short summary
Short summary
Future (2015–2050) simulations of the aerosol burdens and their radiative forcing and climate impacts over the Arctic under various emission projections show that although the Arctic aerosol burdens are projected to decrease significantly by 10 to 60 %, regardless of the magnitude of aerosol reductions, surface air temperatures will continue to increase by 1.9–2.6 ℃, while sea-ice extent will continue to decrease, implying reductions of greenhouse gases are necessary to mitigate climate change.
David D. Parrish, Richard G. Derwent, Steven T. Turnock, Fiona M. O'Connor, Johannes Staehelin, Susanne E. Bauer, Makoto Deushi, Naga Oshima, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 21, 9669–9679, https://doi.org/10.5194/acp-21-9669-2021, https://doi.org/10.5194/acp-21-9669-2021, 2021
Short summary
Short summary
The few ozone measurements made before the 1980s indicate that industrial development increased ozone concentrations by a factor of ~ 2 at northern midlatitudes, which are now larger than at southern midlatitudes. This difference was much smaller, and likely reversed, in the pre-industrial atmosphere. Earth system models find similar increases, but not higher pre-industrial ozone in the south. This disagreement may indicate that modeled natural ozone sources and/or deposition loss are inadequate.
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
John Staunton-Sykes, Thomas J. Aubry, Youngsub M. Shin, James Weber, Lauren R. Marshall, Nathan Luke Abraham, Alex Archibald, and Anja Schmidt
Atmos. Chem. Phys., 21, 9009–9029, https://doi.org/10.5194/acp-21-9009-2021, https://doi.org/10.5194/acp-21-9009-2021, 2021
Sarah E. Parker, Sandy P. Harrison, Laia Comas-Bru, Nikita Kaushal, Allegra N. LeGrande, and Martin Werner
Clim. Past, 17, 1119–1138, https://doi.org/10.5194/cp-17-1119-2021, https://doi.org/10.5194/cp-17-1119-2021, 2021
Short summary
Short summary
Regional trends in the oxygen isotope (δ18O) composition of stalagmites reflect several climate processes. We compare stalagmite δ18O records from monsoon regions and model simulations to identify the causes of δ18O variability over the last 12 000 years, and between glacial and interglacial states. Precipitation changes explain the glacial–interglacial δ18O changes in all monsoon regions; Holocene trends are due to a combination of precipitation, atmospheric circulation and temperature changes.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Antara Banerjee, Amy H. Butler, Lorenzo M. Polvani, Alan Robock, Isla R. Simpson, and Lantao Sun
Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, https://doi.org/10.5194/acp-21-6985-2021, 2021
Short summary
Short summary
We find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north. These effects occur due to the strengthening of the Northern Hemisphere stratospheric polar vortex, which shifts the North Atlantic Oscillation to a more positive phase. We find the effects in our simulations to be much more significant than the wintertime effects of large tropical volcanic eruptions which inject much less sulfate aerosol.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Clarissa Alicia Kroll, Sally Dacie, Alon Azoulay, Hauke Schmidt, and Claudia Timmreck
Atmos. Chem. Phys., 21, 6565–6591, https://doi.org/10.5194/acp-21-6565-2021, https://doi.org/10.5194/acp-21-6565-2021, 2021
Short summary
Short summary
Volcanic forcing is counteracted by stratospheric water vapor (SWV) entering the stratosphere as a consequence of aerosol-induced cold-point warming. We find that depending on the emission strength, aerosol profile height and season of the eruption, up to 4 % of the tropical aerosol forcing can be counterbalanced. A power function relationship between cold-point warming/SWV forcing and AOD in the yearly average is found, allowing us to estimate the SWV forcing for comparable eruptions.
Ben Kravitz, Douglas G. MacMartin, Daniele Visioni, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Andy Jones, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Alan Robock, Roland Séférian, and Simone Tilmes
Atmos. Chem. Phys., 21, 4231–4247, https://doi.org/10.5194/acp-21-4231-2021, https://doi.org/10.5194/acp-21-4231-2021, 2021
Short summary
Short summary
This study investigates multi-model response to idealized geoengineering (high CO2 with solar reduction) across two different generations of climate models. We find that, with the exception of a few cases, the results are unchanged between the different generations. This gives us confidence that broad conclusions about the response to idealized geoengineering are robust.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Ulrike Niemeier, Felix Riede, and Claudia Timmreck
Clim. Past, 17, 633–652, https://doi.org/10.5194/cp-17-633-2021, https://doi.org/10.5194/cp-17-633-2021, 2021
Short summary
Short summary
The 13 kyr BP Laacher See eruption impacted local environments, human communities and climate. We have simulated the evolution of its fine ash and sulfur cloud such that it reflects the empirically known ash distribution. In our models, the heating of the ash causes a mesocyclone which changes the dispersion of the cloud itself, resulting in enhanced transport to low latitudes. This may partially explain why no Laacher See ash has yet been found in Greenlandic ice cores.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Rumi Ohgaito, Akitomo Yamamoto, Tomohiro Hajima, Ryouta O'ishi, Manabu Abe, Hiroaki Tatebe, Ayako Abe-Ouchi, and Michio Kawamiya
Geosci. Model Dev., 14, 1195–1217, https://doi.org/10.5194/gmd-14-1195-2021, https://doi.org/10.5194/gmd-14-1195-2021, 2021
Short summary
Short summary
Using the MIROC-ES2L Earth system model, selected time periods of the past were simulated. The ability to simulate the past is also an evaluation of the performance of the model in projecting global warming. Simulations for 21 000, 6000, and 127 000 years ago, and a simulation for 1000 years starting in 850 CE were simulated. The results showed that the model can generally describe past climate change.
Ghassan Taha, Robert Loughman, Tong Zhu, Larry Thomason, Jayanta Kar, Landon Rieger, and Adam Bourassa
Atmos. Meas. Tech., 14, 1015–1036, https://doi.org/10.5194/amt-14-1015-2021, https://doi.org/10.5194/amt-14-1015-2021, 2021
Short summary
Short summary
This work describes the newly released OMPS LP aerosol extinction profile multi-wavelength Version 2.0 algorithm and dataset. It is shown that the V2.0 aerosols exhibit significant improvements in OMPS LP retrieval performance in the Southern Hemisphere and at lower altitudes. The new product is compared to the SAGE III/ISS, OSIRIS and CALIPSO missions and shown to be of good quality and suitable for scientific studies.
Fiona M. O'Connor, N. Luke Abraham, Mohit Dalvi, Gerd A. Folberth, Paul T. Griffiths, Catherine Hardacre, Ben T. Johnson, Ron Kahana, James Keeble, Byeonghyeon Kim, Olaf Morgenstern, Jane P. Mulcahy, Mark Richardson, Eddy Robertson, Jeongbyn Seo, Sungbo Shim, João C. Teixeira, Steven T. Turnock, Jonny Williams, Andrew J. Wiltshire, Stephanie Woodward, and Guang Zeng
Atmos. Chem. Phys., 21, 1211–1243, https://doi.org/10.5194/acp-21-1211-2021, https://doi.org/10.5194/acp-21-1211-2021, 2021
Short summary
Short summary
This paper calculates how changes in emissions and/or concentrations of different atmospheric constituents since the pre-industrial era have altered the Earth's energy budget at the present day using a metric called effective radiative forcing. The impact of land use change is also assessed. We find that individual contributions do not add linearly, and different Earth system interactions can affect the magnitude of the calculated effective radiative forcing.
Andy Jones, Jim M. Haywood, Anthony C. Jones, Simone Tilmes, Ben Kravitz, and Alan Robock
Atmos. Chem. Phys., 21, 1287–1304, https://doi.org/10.5194/acp-21-1287-2021, https://doi.org/10.5194/acp-21-1287-2021, 2021
Short summary
Short summary
Two different methods of simulating a geoengineering scenario are compared using data from two different Earth system models. One method is very idealised while the other includes details of a plausible mechanism. The results from both models agree that the idealised approach does not capture an impact found when detailed modelling is included, namely that geoengineering induces a positive phase of the North Atlantic Oscillation which leads to warmer, wetter winters in northern Europe.
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Short summary
We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
Larry W. Thomason, Mahesh Kovilakam, Anja Schmidt, Christian von Savigny, Travis Knepp, and Landon Rieger
Atmos. Chem. Phys., 21, 1143–1158, https://doi.org/10.5194/acp-21-1143-2021, https://doi.org/10.5194/acp-21-1143-2021, 2021
Short summary
Short summary
Measurements of the impact of volcanic eruptions on stratospheric aerosol loading by space-based instruments show show a fairly well-behaved relationship between the magnitude and the apparent changes to aerosol size over several orders of magnitude. This directly measured relationship provides a unique opportunity to verify the performance of interactive aerosol models used in climate models.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Jonas Gliß, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, Huisheng Bian, Ramiro Checa-Garcia, Mian Chin, Paul Ginoux, Jan J. Griesfeller, Andreas Heckel, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Paolo Laj, Philippe Le Sager, Marianne Tronstad Lund, Cathrine Lund Myhre, Hitoshi Matsui, Gunnar Myhre, David Neubauer, Twan van Noije, Peter North, Dirk J. L. Olivié, Samuel Rémy, Larisa Sogacheva, Toshihiko Takemura, Kostas Tsigaridis, and Svetlana G. Tsyro
Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021, https://doi.org/10.5194/acp-21-87-2021, 2021
Short summary
Short summary
Simulated aerosol optical properties as well as the aerosol life cycle are investigated for 14 global models participating in the AeroCom initiative. Considerable diversity is found in the simulated aerosol species emissions and lifetimes, also resulting in a large diversity in the simulated aerosol mass, composition, and optical properties. A comparison with observations suggests that, on average, current models underestimate the direct effect of aerosol on the atmosphere radiation budget.
Kine Onsum Moseid, Michael Schulz, Trude Storelvmo, Ingeborg Rian Julsrud, Dirk Olivié, Pierre Nabat, Martin Wild, Jason N. S. Cole, Toshihiko Takemura, Naga Oshima, Susanne E. Bauer, and Guillaume Gastineau
Atmos. Chem. Phys., 20, 16023–16040, https://doi.org/10.5194/acp-20-16023-2020, https://doi.org/10.5194/acp-20-16023-2020, 2020
Short summary
Short summary
In this study we compare solar radiation at the surface from observations and Earth system models from 1961 to 2014. We find that the models do not reproduce the so-called
global dimmingas found in observations. Only model experiments with anthropogenic aerosol emissions display any dimming at all. The discrepancies between observations and models are largest in China, which we suggest is in part due to erroneous aerosol precursor emission inventories in the emission dataset used for CMIP6.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Juan-Carlos Antuña-Marrero, Graham W. Mann, Philippe Keckhut, Sergey Avdyushin, Bruno Nardi, and Larry W. Thomason
Earth Syst. Sci. Data, 12, 2843–2851, https://doi.org/10.5194/essd-12-2843-2020, https://doi.org/10.5194/essd-12-2843-2020, 2020
Short summary
Short summary
We report the recovery of lidar measurements of the 1991 Pinatubo eruption. Two Soviet ships crossing the tropical Atlantic in July–September 1991 and January–February 1992 measured the vertical profile of the Pinatubo cloud at different points in its spatio-temporal evolution. The datasets provide valuable new information on the eruption's impacts on climate, with the SAGE-II satellite measurements not able to measure most of the lower half of the Pinatubo cloud in the tropics in this period.
Sandip S. Dhomse, Graham W. Mann, Juan Carlos Antuña Marrero, Sarah E. Shallcross, Martyn P. Chipperfield, Kenneth S. Carslaw, Lauren Marshall, N. Luke Abraham, and Colin E. Johnson
Atmos. Chem. Phys., 20, 13627–13654, https://doi.org/10.5194/acp-20-13627-2020, https://doi.org/10.5194/acp-20-13627-2020, 2020
Short summary
Short summary
We confirm downward adjustment of SO2 emission to simulate the Pinatubo aerosol cloud with aerosol microphysics models. Similar adjustment is also needed to simulate the El Chichón and Agung volcanic cloud, indicating potential missing removal or vertical redistribution process in models. Important inhomogeneities in the CMIP6 forcing datasets after Agung and El Chichón eruptions are difficult to reconcile. Quasi-biennial oscillation plays an important role in modifying stratospheric warming.
Debbie O'Sullivan, Franco Marenco, Claire L. Ryder, Yaswant Pradhan, Zak Kipling, Ben Johnson, Angela Benedetti, Melissa Brooks, Matthew McGill, John Yorks, and Patrick Selmer
Atmos. Chem. Phys., 20, 12955–12982, https://doi.org/10.5194/acp-20-12955-2020, https://doi.org/10.5194/acp-20-12955-2020, 2020
Short summary
Short summary
Mineral dust is an important component of the climate system, and we assess how well it is predicted by two operational models. We flew an aircraft in the dust layers in the eastern Atlantic, and we also make use of satellites. We show that models predict the dust layer too low and that it predicts the particles to be too small. We believe that these discrepancies may be overcome if models can be constrained with operational observations of dust vertical and size-resolved distribution.
Benjamin Birner, Martyn P. Chipperfield, Eric J. Morgan, Britton B. Stephens, Marianna Linz, Wuhu Feng, Chris Wilson, Jonathan D. Bent, Steven C. Wofsy, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Chem. Phys., 20, 12391–12408, https://doi.org/10.5194/acp-20-12391-2020, https://doi.org/10.5194/acp-20-12391-2020, 2020
Short summary
Short summary
With new high-precision observations from nine aircraft campaigns and 3-D chemical transport modeling, we show that the argon-to-nitrogen ratio (Ar / N2) in the lowermost stratosphere provides a useful constraint on the “age of air” (the time elapsed since entry of an air parcel into the stratosphere). Therefore, Ar / N2 in combination with traditional age-of-air indicators, such as CO2 and N2O, could provide new insights into atmospheric mixing and transport.
Landon A. Rieger, Jason N. S. Cole, John C. Fyfe, Stephen Po-Chedley, Philip J. Cameron-Smith, Paul J. Durack, Nathan P. Gillett, and Qi Tang
Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, https://doi.org/10.5194/gmd-13-4831-2020, 2020
Short summary
Short summary
Recently, the stratospheric aerosol forcing dataset used as an input to the Coupled Model Intercomparison Project phase 6 was updated. This work explores the impact of those changes on the modelled historical climates in the CanESM5 and EAMv1 models. Temperature differences in the stratosphere shortly after the Pinatubo eruption are found to be significant, but surface temperatures and precipitation do not show a significant change.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Matt Amos, Paul J. Young, J. Scott Hosking, Jean-François Lamarque, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Markus Kunze, Marion Marchand, David A. Plummer, David Saint-Martin, Kengo Sudo, Simone Tilmes, and Yousuke Yamashita
Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020, https://doi.org/10.5194/acp-20-9961-2020, 2020
Short summary
Short summary
We present an updated projection of Antarctic ozone hole recovery using an ensemble of chemistry–climate models. To do so, we employ a method, more advanced and skilful than the current multi-model mean standard, which is applicable to other ensemble analyses. It calculates the performance and similarity of the models, which we then use to weight the model. Calculating model similarity allows us to account for models which are constructed from similar components.
Robert J. Allen, Steven Turnock, Pierre Nabat, David Neubauer, Ulrike Lohmann, Dirk Olivié, Naga Oshima, Martine Michou, Tongwen Wu, Jie Zhang, Toshihiko Takemura, Michael Schulz, Kostas Tsigaridis, Susanne E. Bauer, Louisa Emmons, Larry Horowitz, Vaishali Naik, Twan van Noije, Tommi Bergman, Jean-Francois Lamarque, Prodromos Zanis, Ina Tegen, Daniel M. Westervelt, Philippe Le Sager, Peter Good, Sungbo Shim, Fiona O'Connor, Dimitris Akritidis, Aristeidis K. Georgoulias, Makoto Deushi, Lori T. Sentman, Jasmin G. John, Shinichiro Fujimori, and William J. Collins
Atmos. Chem. Phys., 20, 9641–9663, https://doi.org/10.5194/acp-20-9641-2020, https://doi.org/10.5194/acp-20-9641-2020, 2020
Christopher J. Smith, Ryan J. Kramer, Gunnar Myhre, Kari Alterskjær, William Collins, Adriana Sima, Olivier Boucher, Jean-Louis Dufresne, Pierre Nabat, Martine Michou, Seiji Yukimoto, Jason Cole, David Paynter, Hideo Shiogama, Fiona M. O'Connor, Eddy Robertson, Andy Wiltshire, Timothy Andrews, Cécile Hannay, Ron Miller, Larissa Nazarenko, Alf Kirkevåg, Dirk Olivié, Stephanie Fiedler, Anna Lewinschal, Chloe Mackallah, Martin Dix, Robert Pincus, and Piers M. Forster
Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, https://doi.org/10.5194/acp-20-9591-2020, 2020
Short summary
Short summary
The spread in effective radiative forcing for both CO2 and aerosols is narrower in the latest CMIP6 (Coupled Model Intercomparison Project) generation than in CMIP5. For the case of CO2 it is likely that model radiation parameterisations have improved. Tropospheric and stratospheric radiative adjustments to the forcing behave differently for different forcing agents, and there is still significant diversity in how clouds respond to forcings, particularly for total anthropogenic forcing.
Yajuan Li, Martyn P. Chipperfield, Wuhu Feng, Sandip S. Dhomse, Richard J. Pope, Faquan Li, and Dong Guo
Atmos. Chem. Phys., 20, 8627–8639, https://doi.org/10.5194/acp-20-8627-2020, https://doi.org/10.5194/acp-20-8627-2020, 2020
Short summary
Short summary
The Tibetan Plateau (TP) exerts important thermal and dynamical effects on atmospheric circulation, climate change as well as the ozone distribution. In this study, we use updated observations and model simulations to investigate the ozone trends and variations over the TP. Wintertime TP ozone variations are largely controlled by tropical to high-latitude transport processes, whereas summertime concentrations are a combined effect of photochemical decay and tropical processes.
Prodromos Zanis, Dimitris Akritidis, Aristeidis K. Georgoulias, Robert J. Allen, Susanne E. Bauer, Olivier Boucher, Jason Cole, Ben Johnson, Makoto Deushi, Martine Michou, Jane Mulcahy, Pierre Nabat, Dirk Olivié, Naga Oshima, Adriana Sima, Michael Schulz, Toshihiko Takemura, and Konstantinos Tsigaridis
Atmos. Chem. Phys., 20, 8381–8404, https://doi.org/10.5194/acp-20-8381-2020, https://doi.org/10.5194/acp-20-8381-2020, 2020
Short summary
Short summary
In this work, we use Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations from 10 Earth system models (ESMs) and general circulation models (GCMs) to study the fast climate responses on pre-industrial climate, due to present-day aerosols. All models carried out two sets of simulations: a control experiment with all forcings set to the year 1850 and a perturbation experiment with all forcings identical to the control, except for aerosols with precursor emissions set to the year 2014.
Simone Tilmes, Douglas G. MacMartin, Jan T. M. Lenaerts, Leo van Kampenhout, Laura Muntjewerf, Lili Xia, Cheryl S. Harrison, Kristen M. Krumhardt, Michael J. Mills, Ben Kravitz, and Alan Robock
Earth Syst. Dynam., 11, 579–601, https://doi.org/10.5194/esd-11-579-2020, https://doi.org/10.5194/esd-11-579-2020, 2020
Short summary
Short summary
This paper introduces new geoengineering model experiments as part of a larger model intercomparison effort, using reflective particles to block some of the incoming solar radiation to reach surface temperature targets. Outcomes of these applications are contrasted based on a high greenhouse gas emission pathway and a pathway with strong mitigation and negative emissions after 2040. We compare quantities that matter for societal and ecosystem impacts between the different scenarios.
Keren Mezuman, Kostas Tsigaridis, Gregory Faluvegi, and Susanne E. Bauer
Geosci. Model Dev., 13, 3091–3118, https://doi.org/10.5194/gmd-13-3091-2020, https://doi.org/10.5194/gmd-13-3091-2020, 2020
Short summary
Short summary
Fires affect the composition of the atmosphere and Earth’s radiation balance by emitting a suite of reactive gases and particles. An interactive fire module in an Earth system model (ESM) allows us to study the natural and anthropogenic drivers, feedbacks, and interactions of open fires. To do so, we have developed pyrE, the NASA GISS interactive fire emissions module.
The main motivation behind this work is to have fire emissions reacting to climate change and anthropogenic activities.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Daniele Visioni, Giovanni Pitari, Vincenzo Rizi, Marco Iarlori, Irene Cionni, Ilaria Quaglia, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando Garcia, Patrick Joeckel, Douglas Kinnison, Jean-François Lamarque, Marion Marchand, Martine Michou, Olaf Morgenstern, Tatsuya Nagashima, Fiona M. O'Connor, Luke D. Oman, David Plummer, Eugene Rozanov, David Saint-Martin, Robyn Schofield, John Scinocca, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Holger Tost, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-525, https://doi.org/10.5194/acp-2020-525, 2020
Preprint withdrawn
Short summary
Short summary
In this work we analyse the trend in ozone profiles taken at L'Aquila (Italy, 42.4° N) for seventeen years, between 2000 and 2016 and compare them against already available measured ozone trends. We try to understand and explain the observed trends at various heights in light of the simulations from seventeen different model, highlighting the contribution of changes in circulation and chemical ozone loss during this time period.
Tomohiro Hajima, Michio Watanabe, Akitomo Yamamoto, Hiroaki Tatebe, Maki A. Noguchi, Manabu Abe, Rumi Ohgaito, Akinori Ito, Dai Yamazaki, Hideki Okajima, Akihiko Ito, Kumiko Takata, Koji Ogochi, Shingo Watanabe, and Michio Kawamiya
Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, https://doi.org/10.5194/gmd-13-2197-2020, 2020
Short summary
Short summary
We developed a new Earth system model (ESM) named MIROC-ES2L. This model is based on a state-of-the-art climate model and includes carbon–nitrogen cycles for the land and multiple biogeochemical cycles for the ocean. The model's performances on reproducing historical climate and biogeochemical changes are confirmed to be reasonable, and the new model is likely to be an
optimisticmodel in projecting future climate change among ESMs in the Coupled Model Intercomparison Project Phase 6.
William T. Morgan, James D. Allan, Stéphane Bauguitte, Eoghan Darbyshire, Michael J. Flynn, James Lee, Dantong Liu, Ben Johnson, Jim Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 20, 5309–5326, https://doi.org/10.5194/acp-20-5309-2020, https://doi.org/10.5194/acp-20-5309-2020, 2020
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different environments in the Amazon basin during the 2012 biomass burning season. Smoke from fires builds up and has a significant impact on weather, climate, health and natural ecosystems. Our goal was to quantify changes in the properties of the smoke emitted by fires as it is transported through the atmosphere. We found that the major control on the properties of the smoke was due to differences in the fires themselves.
Alma Hodzic, Pedro Campuzano-Jost, Huisheng Bian, Mian Chin, Peter R. Colarco, Douglas A. Day, Karl D. Froyd, Bernd Heinold, Duseong S. Jo, Joseph M. Katich, John K. Kodros, Benjamin A. Nault, Jeffrey R. Pierce, Eric Ray, Jacob Schacht, Gregory P. Schill, Jason C. Schroder, Joshua P. Schwarz, Donna T. Sueper, Ina Tegen, Simone Tilmes, Kostas Tsigaridis, Pengfei Yu, and Jose L. Jimenez
Atmos. Chem. Phys., 20, 4607–4635, https://doi.org/10.5194/acp-20-4607-2020, https://doi.org/10.5194/acp-20-4607-2020, 2020
Short summary
Short summary
Organic aerosol (OA) is a key source of uncertainty in aerosol climate effects. We present the first pole-to-pole OA characterization during the NASA Atmospheric Tomography aircraft mission. OA has a strong seasonal and zonal variability, with the highest levels in summer and over fire-influenced regions and the lowest ones in the southern high latitudes. We show that global models predict the OA distribution well but not the relative contribution of OA emissions vs. chemical production.
Clara Orbe, David A. Plummer, Darryn W. Waugh, Huang Yang, Patrick Jöckel, Douglas E. Kinnison, Beatrice Josse, Virginie Marecal, Makoto Deushi, Nathan Luke Abraham, Alexander T. Archibald, Martyn P. Chipperfield, Sandip Dhomse, Wuhu Feng, and Slimane Bekki
Atmos. Chem. Phys., 20, 3809–3840, https://doi.org/10.5194/acp-20-3809-2020, https://doi.org/10.5194/acp-20-3809-2020, 2020
Short summary
Short summary
Atmospheric composition is strongly influenced by global-scale winds that are not always properly simulated in computer models. A common approach to correct for this bias is to relax or
nudgeto the observed winds. Here we systematically evaluate how well this technique performs across a large suite of chemistry–climate models in terms of its ability to reproduce key aspects of both the tropospheric and stratospheric circulations.
Simon Michel, Didier Swingedouw, Marie Chavent, Pablo Ortega, Juliette Mignot, and Myriam Khodri
Geosci. Model Dev., 13, 841–858, https://doi.org/10.5194/gmd-13-841-2020, https://doi.org/10.5194/gmd-13-841-2020, 2020
Short summary
Short summary
Natural archives such as sediments, ice, tree rings or speleothems provide indirect observations of past climate at local and regional scales. In this paper, we provide a computational device to properly make evaluated reconstructions of climate indices using these paleo-data. It provides optimizing cross-validation algorithms and four regression methods that are applied to the reconstruction of the North Atlantic Oscillation index and compared in this study.
Zhipeng Qu, Yi Huang, Paul A. Vaillancourt, Jason N. S. Cole, Jason A. Milbrandt, Man-Kong Yau, Kaley Walker, and Jean de Grandpré
Atmos. Chem. Phys., 20, 2143–2159, https://doi.org/10.5194/acp-20-2143-2020, https://doi.org/10.5194/acp-20-2143-2020, 2020
Short summary
Short summary
This study aims to better understand the mechanism of transport of water vapour through the mid-latitude tropopause. The results affirm the strong influence of overshooting convection on lower-stratospheric water vapour and highlight the importance of both dynamics and cloud microphysics in simulating water vapour distribution in the region of the upper troposphere–lower stratosphere.
Thomas J. Fauchez, Martin Turbet, Eric T. Wolf, Ian Boutle, Michael J. Way, Anthony D. Del Genio, Nathan J. Mayne, Konstantinos Tsigaridis, Ravi K. Kopparapu, Jun Yang, Francois Forget, Avi Mandell, and Shawn D. Domagal Goldman
Geosci. Model Dev., 13, 707–716, https://doi.org/10.5194/gmd-13-707-2020, https://doi.org/10.5194/gmd-13-707-2020, 2020
Short summary
Short summary
Atmospheric characterization of rocky exoplanets orbiting within the habitable zone of nearby M dwarf stars is around the corner with the James Webb Space Telescope (JWST), expected to be launch in 2021.
Global climate models (GCMs) are powerful tools to model exoplanet atmospheres and to predict their habitability. However, intrinsic differences between the models can lead to various predictions. This paper presents an experiment protocol to evaluate these differences.
Joelle Dionne, Knut von Salzen, Jason Cole, Rashed Mahmood, W. Richard Leaitch, Glen Lesins, Ian Folkins, and Rachel Y.-W. Chang
Atmos. Chem. Phys., 20, 29–43, https://doi.org/10.5194/acp-20-29-2020, https://doi.org/10.5194/acp-20-29-2020, 2020
Short summary
Short summary
Low clouds persist in the summer Arctic, with important consequences for the radiation budget. We found that the ability of precipitation parameterizations to reproduce observed cloud properties was more variable than their ability to represent radiative effects. Our results show that cloud properties and their parameterizations affect the radiative effects of clouds.
Neil C. Swart, Jason N. S. Cole, Viatcheslav V. Kharin, Mike Lazare, John F. Scinocca, Nathan P. Gillett, James Anstey, Vivek Arora, James R. Christian, Sarah Hanna, Yanjun Jiao, Warren G. Lee, Fouad Majaess, Oleg A. Saenko, Christian Seiler, Clint Seinen, Andrew Shao, Michael Sigmond, Larry Solheim, Knut von Salzen, Duo Yang, and Barbara Winter
Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, https://doi.org/10.5194/gmd-12-4823-2019, 2019
Short summary
Short summary
The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial-scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and quantifies the model performance. CanESM5 simulations contribute to the Coupled Model Intercomparison Project phase 6 (CMIP6) and will be employed for climate science applications in Canada.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Short summary
The role of hydroxyl radical changes in methane trends is debated, hindering our understanding of the methane cycle. This study quantifies how uncertainties in the hydroxyl radical may influence methane abundance in the atmosphere based on the inter-model comparison of hydroxyl radical fields and model simulations of CH4 abundance with different hydroxyl radical scenarios during 2000–2016. We show that hydroxyl radical changes could contribute up to 54 % of model-simulated methane biases.
Ingo Wohltmann, Ralph Lehmann, Georg A. Gottwald, Karsten Peters, Alain Protat, Valentin Louf, Christopher Williams, Wuhu Feng, and Markus Rex
Geosci. Model Dev., 12, 4387–4407, https://doi.org/10.5194/gmd-12-4387-2019, https://doi.org/10.5194/gmd-12-4387-2019, 2019
Short summary
Short summary
We present a trajectory-based model for simulating the transport of air parcels by convection. Our model extends the approach of existing models by explicitly simulating vertical updraft velocities inside the clouds and the time that an air parcel spends inside the convective event.
Ulrike Niemeier, Claudia Timmreck, and Kirstin Krüger
Atmos. Chem. Phys., 19, 10379–10390, https://doi.org/10.5194/acp-19-10379-2019, https://doi.org/10.5194/acp-19-10379-2019, 2019
Short summary
Short summary
In 1963 Mt. Agung, Indonesia, showed unrest for several months. During this period,
two medium-sized eruptions injected SO2 into the stratosphere. Recent volcanic emission datasets include only one large eruption phase. Therefore, we compared model experiments, with (a) one larger eruption and (b) two eruptions as observed. The evolution of the volcanic cloud differs significantly between the two experiments. Both climatic eruptions should be taken into account.
Kévin Lamy, Thierry Portafaix, Béatrice Josse, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Laura Revell, Hideharu Akiyoshi, Slimane Bekki, Michaela I. Hegglin, Patrick Jöckel, Oliver Kirner, Ben Liley, Virginie Marecal, Olaf Morgenstern, Andrea Stenke, Guang Zeng, N. Luke Abraham, Alexander T. Archibald, Neil Butchart, Martyn P. Chipperfield, Glauco Di Genova, Makoto Deushi, Sandip S. Dhomse, Rong-Ming Hu, Douglas Kinnison, Michael Kotkamp, Richard McKenzie, Martine Michou, Fiona M. O'Connor, Luke D. Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Eugene Rozanov, David Saint-Martin, Kengo Sudo, Taichu Y. Tanaka, Daniele Visioni, and Kohei Yoshida
Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, https://doi.org/10.5194/acp-19-10087-2019, 2019
Short summary
Short summary
In this study, we simulate the ultraviolet radiation evolution during the 21st century on Earth's surface using the output from several numerical models which participated in the Chemistry-Climate Model Initiative. We present four possible futures which depend on greenhouse gases emissions. The role of ozone-depleting substances, greenhouse gases and aerosols are investigated. Our results emphasize the important role of aerosols for future ultraviolet radiation in the Northern Hemisphere.
Matthew J. Rowlinson, Alexandru Rap, Stephen R. Arnold, Richard J. Pope, Martyn P. Chipperfield, Joe McNorton, Piers Forster, Hamish Gordon, Kirsty J. Pringle, Wuhu Feng, Brian J. Kerridge, Barry L. Latter, and Richard Siddans
Atmos. Chem. Phys., 19, 8669–8686, https://doi.org/10.5194/acp-19-8669-2019, https://doi.org/10.5194/acp-19-8669-2019, 2019
Short summary
Short summary
Wildfires and meteorology have a substantial effect on atmospheric concentrations of greenhouse gases such as methane and ozone. During the 1997 El Niño event, unusually large fire emissions indirectly increased global methane through carbon monoxide emission, which decreased the oxidation capacity of the atmosphere. There were also large regional changes to tropospheric ozone concentrations, but contrasting effects of fire and meteorology resulted in a small change to global radiative forcing.
Hiroaki Tatebe, Tomoo Ogura, Tomoko Nitta, Yoshiki Komuro, Koji Ogochi, Toshihiko Takemura, Kengo Sudo, Miho Sekiguchi, Manabu Abe, Fuyuki Saito, Minoru Chikira, Shingo Watanabe, Masato Mori, Nagio Hirota, Yoshio Kawatani, Takashi Mochizuki, Kei Yoshimura, Kumiko Takata, Ryouta O'ishi, Dai Yamazaki, Tatsuo Suzuki, Masao Kurogi, Takahito Kataoka, Masahiro Watanabe, and Masahide Kimoto
Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, https://doi.org/10.5194/gmd-12-2727-2019, 2019
Short summary
Short summary
For a deeper understanding of a wide range of climate science issues, the latest version of the Japanese climate model, called MIROC6, was developed. The climate model represents observed mean climate and climate variations well, for example tropical precipitation, the midlatitude westerlies, and the East Asian monsoon, which influence human activity all over the world. The improved climate simulations could add reliability to climate predictions under global warming.
George S. Fanourgakis, Maria Kanakidou, Athanasios Nenes, Susanne E. Bauer, Tommi Bergman, Ken S. Carslaw, Alf Grini, Douglas S. Hamilton, Jill S. Johnson, Vlassis A. Karydis, Alf Kirkevåg, John K. Kodros, Ulrike Lohmann, Gan Luo, Risto Makkonen, Hitoshi Matsui, David Neubauer, Jeffrey R. Pierce, Julia Schmale, Philip Stier, Kostas Tsigaridis, Twan van Noije, Hailong Wang, Duncan Watson-Parris, Daniel M. Westervelt, Yang Yang, Masaru Yoshioka, Nikos Daskalakis, Stefano Decesari, Martin Gysel-Beer, Nikos Kalivitis, Xiaohong Liu, Natalie M. Mahowald, Stelios Myriokefalitakis, Roland Schrödner, Maria Sfakianaki, Alexandra P. Tsimpidi, Mingxuan Wu, and Fangqun Yu
Atmos. Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, https://doi.org/10.5194/acp-19-8591-2019, 2019
Short summary
Short summary
Effects of aerosols on clouds are important for climate studies but are among the largest uncertainties in climate projections. This study evaluates the skill of global models to simulate aerosol, cloud condensation nuclei (CCN) and cloud droplet number concentrations (CDNCs). Model results show reduced spread in CDNC compared to CCN due to the negative correlation between the sensitivities of CDNC to aerosol number concentration (air pollution) and updraft velocity (atmospheric dynamics).
Sophie Szopa, Rémi Thiéblemont, Slimane Bekki, Svetlana Botsyun, and Pierre Sepulchre
Clim. Past, 15, 1187–1203, https://doi.org/10.5194/cp-15-1187-2019, https://doi.org/10.5194/cp-15-1187-2019, 2019
Short summary
Short summary
The stratospheric ozone layer plays a key role in atmospheric thermal structure and circulation. Here, with a chemistry–climate model, we evaluate the potential role of stratospheric ozone chemistry in the case of Eocene hot conditions. Our results suggest that using stratospheric ozone calculated by the modeled Eocene conditions instead of the commonly specified preindustrial ozone distribution could change the simulated global surface air temperature by as much as 14 %.
Elizaveta Malinina, Alexei Rozanov, Landon Rieger, Adam Bourassa, Heinrich Bovensmann, John P. Burrows, and Doug Degenstein
Atmos. Meas. Tech., 12, 3485–3502, https://doi.org/10.5194/amt-12-3485-2019, https://doi.org/10.5194/amt-12-3485-2019, 2019
Short summary
Short summary
This paper covers the problems related to the derivation of aerosol extinction coefficients and Ångström exponents from space-borne instruments working in limb and occultation viewing geometries. Aerosol extinction coefficients and Ångström exponents were calculated from the SCIAMACHY aerosol particle size data set. The results were compared with the data from SAGE II and OSIRIS. The Ångström exponent in the tropical regions and its dependency on particle size parameters are discussed.
Victor Brovkin, Stephan Lorenz, Thomas Raddatz, Tatiana Ilyina, Irene Stemmler, Matthew Toohey, and Martin Claussen
Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, https://doi.org/10.5194/bg-16-2543-2019, 2019
Short summary
Short summary
Mechanisms of atmospheric CO2 growth by 20 ppm from 6000 BCE to the pre-industrial period are still uncertain. We apply the Earth system model MPI-ESM-LR for two transient simulations of the climate–carbon cycle. An additional process, e.g. carbonate accumulation on shelves, is required for consistency with ice-core CO2 data. Our simulations support the hypothesis that the ocean was a source of CO2 until the late Holocene when anthropogenic CO2 sources started to affect atmospheric CO2.
Jamie M. Kelly, Ruth M. Doherty, Fiona M. O'Connor, Graham W. Mann, Hugh Coe, and Dantong Liu
Geosci. Model Dev., 12, 2539–2569, https://doi.org/10.5194/gmd-12-2539-2019, https://doi.org/10.5194/gmd-12-2539-2019, 2019
Short summary
Short summary
This study develops the representation of secondary organic aerosol (SOA) within a global chemistry–climate model (UKCA). Both dry and wet deposition within the UKCA model are extended to consider precursors of SOA. The oxidation mechanism describing SOA formation is also extended by adding a reaction intermediate, with SOA yields that are dependent on oxidant concentrations.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Toni Mitovski, Jason N. S. Cole, Norman A. McFarlane, Knut von Salzen, and Guang J. Zhang
Geosci. Model Dev., 12, 2107–2117, https://doi.org/10.5194/gmd-12-2107-2019, https://doi.org/10.5194/gmd-12-2107-2019, 2019
Short summary
Short summary
Changes in the large-scale environment during convective precipitation events simulated by the Canadian Atmospheric Model (CanAM4.3) are compared against those simulated by the super-parameterized Community Atmosphere Model (spCAM5). Compared to spCAM5, CanAM4.3 underestimates the frequency of extreme convective precipitation and the duration of convective events are 50 % shorter. The dependence of precipitation on changes in the large-scale environment differs between CanAM4.3 and spCAM5.
Lorenzo M. Polvani, Antara Banerjee, and Anja Schmidt
Atmos. Chem. Phys., 19, 6351–6366, https://doi.org/10.5194/acp-19-6351-2019, https://doi.org/10.5194/acp-19-6351-2019, 2019
Short summary
Short summary
This study provides compelling new evidence that the surface winter warming observed over the Northern Hemisphere continents following the 1991 eruption of Mt. Pinatubo was, very likely, completely unrelated to the eruption. This result has implications for earlier eruptions, as the evidence presented here demonstrates that the surface signal of even the very largest known eruptions may be swamped by the internal variability at high latitudes.
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA7/GL7, which includes new aerosol and snow schemes and addresses the four critical errors identified in GA6. GA7/GL7 will underpin the UK's contributions to CMIP6, and hence their documentation is important.
Eoghan Darbyshire, William T. Morgan, James D. Allan, Dantong Liu, Michael J. Flynn, James R. Dorsey, Sebastian J. O'Shea, Douglas Lowe, Kate Szpek, Franco Marenco, Ben T. Johnson, Stephane Bauguitte, Jim M. Haywood, Joel F. Brito, Paulo Artaxo, Karla M. Longo, and Hugh Coe
Atmos. Chem. Phys., 19, 5771–5790, https://doi.org/10.5194/acp-19-5771-2019, https://doi.org/10.5194/acp-19-5771-2019, 2019
Short summary
Short summary
A novel analysis of aerosol and gas-phase vertical profiles shows a marked regional pollution contrast: composition is driven by the fire regime and vertical distribution is driven by thermodynamics. These drivers ought to be well represented in simulations to ensure realistic prediction of climate and air quality impacts. The BC : CO ratio in haze and plumes increases with altitude – long-range transport or fire stage coupled to plume dynamics may be responsible. Further enquiry is advocated.
Elisa Carboni, Tamsin A. Mather, Anja Schmidt, Roy G. Grainger, Melissa A. Pfeffer, Iolanda Ialongo, and Nicolas Theys
Atmos. Chem. Phys., 19, 4851–4862, https://doi.org/10.5194/acp-19-4851-2019, https://doi.org/10.5194/acp-19-4851-2019, 2019
Short summary
Short summary
The 2014–2015 Holuhraun eruption was the largest in Iceland for 200 years, emitting huge quantities of gas into the troposphere, at times overwhelming European anthropogenic emissions. Infrared Atmospheric sounding Interferometer data are used to derive the first time series of daily sulfur dioxide mass and vertical distribution over the eruption period. A scheme is used to estimate sulfur dioxide fluxes, the total erupted mass, and how long the sulfur dioxide remains in the atmosphere.
Tao Yuan, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Chem. Phys., 19, 3769–3777, https://doi.org/10.5194/acp-19-3769-2019, https://doi.org/10.5194/acp-19-3769-2019, 2019
Short summary
Short summary
The Na layer in the upper atmosphere is very sensitive to solar radiation and varies considerably during sunrise and sunset. In this paper, we use the lidar observations and an advanced model to investigate this process. We found that the variation is mostly due to the changes in several photochemical reactions involving Na compounds, especially NaHCO3. We also reveal that the Fe layer in the same region changes more quickly than the Na layer due to a faster reaction rate of FeOH to sunlight.
Evgenia Galytska, Alexey Rozanov, Martyn P. Chipperfield, Sandip. S. Dhomse, Mark Weber, Carlo Arosio, Wuhu Feng, and John P. Burrows
Atmos. Chem. Phys., 19, 767–783, https://doi.org/10.5194/acp-19-767-2019, https://doi.org/10.5194/acp-19-767-2019, 2019
Short summary
Short summary
In this study we analysed ozone changes in the tropical mid-stratosphere as observed by the SCIAMACHY instrument during 2004–2012. We used simulations from TOMCAT model with different chemical and dynamical forcings to reveal primary causes of ozone changes. We also considered measured NO2 and modelled NOx, NOx, and N2O data. With modelled AoA data we identified seasonal changes in the upwelling speed and explained how those changes affect N2O chemistry which leads to observed ozone changes.
Debora Griffin, Kaley A. Walker, Ingo Wohltmann, Sandip S. Dhomse, Markus Rex, Martyn P. Chipperfield, Wuhu Feng, Gloria L. Manney, Jane Liu, and David Tarasick
Atmos. Chem. Phys., 19, 577–601, https://doi.org/10.5194/acp-19-577-2019, https://doi.org/10.5194/acp-19-577-2019, 2019
Short summary
Short summary
Ozone in the stratosphere is important to protect the Earth from UV radiation. Using measurements taken by the Atmospheric Chemistry Experiment satellite between 2005 and 2013, we examine different methods to calculate the ozone loss in the high Arctic and establish the altitude at which most of the ozone is destroyed. Our results show that the different methods agree within the uncertainties. Recommendations are made on which methods are most appropriate to use.
Joe McNorton, Chris Wilson, Manuel Gloor, Rob J. Parker, Hartmut Boesch, Wuhu Feng, Ryan Hossaini, and Martyn P. Chipperfield
Atmos. Chem. Phys., 18, 18149–18168, https://doi.org/10.5194/acp-18-18149-2018, https://doi.org/10.5194/acp-18-18149-2018, 2018
Short summary
Short summary
Since 2007 atmospheric methane (CH4) has been unexpectedly increasing following a 6-year hiatus. We have used an atmospheric model to attribute regional sources and global sinks of CH4 using observations for the 2003–2015 period. Model results show the renewed growth is best explained by decreased atmospheric removal, decreased biomass burning emissions, and an increased energy sector (mainly from Africa–Middle East and Southern Asia–Oceania) and wetland emissions (mainly from northern Eurasia).
Tommaso Galeazzo, Slimane Bekki, Erwan Martin, Joël Savarino, and Stephen R. Arnold
Atmos. Chem. Phys., 18, 17909–17931, https://doi.org/10.5194/acp-18-17909-2018, https://doi.org/10.5194/acp-18-17909-2018, 2018
Short summary
Short summary
Volcanic sulfur can have climatic impacts for the planet via sulfate aerosol formation, leading also to pollution events. We provide model constraints on tropospheric volcanic sulfate formation, with implications for its lifetime and impacts on regional air quality. Oxygen isotope investigations from our model suggest that in the poor tropospheric plumes of halogens, the O2/TMI sulfur oxidation pathway might significantly control sulfate production. The produced sulfate has no isotopic anomaly.
Hamish Gordon, Paul R. Field, Steven J. Abel, Mohit Dalvi, Daniel P. Grosvenor, Adrian A. Hill, Ben T. Johnson, Annette K. Miltenberger, Masaru Yoshioka, and Ken S. Carslaw
Atmos. Chem. Phys., 18, 15261–15289, https://doi.org/10.5194/acp-18-15261-2018, https://doi.org/10.5194/acp-18-15261-2018, 2018
Short summary
Short summary
Smoke from African fires is frequently transported across the Atlantic Ocean, where it interacts with clouds. We simulate the interaction of the smoke with the clouds, and the consequences of this for the solar radiation the clouds reflect. The simulations use a new regional configuration of the UK Met Office climate model. Our simulations indicate that the properties of the clouds, in particular their height and reflectivity, and the fractional cloud cover, are strongly affected by the smoke.
John M. C. Plane, Wuhu Feng, Juan Carlos Gómez Martín, Michael Gerding, and Shikha Raizada
Atmos. Chem. Phys., 18, 14799–14811, https://doi.org/10.5194/acp-18-14799-2018, https://doi.org/10.5194/acp-18-14799-2018, 2018
Short summary
Short summary
Meteoric ablation creates layers of metal atoms in the atmosphere around 90 km. Although Ca and Na have similar elemental abundances in most minerals found in the solar system, surprisingly the Ca abundance in the atmosphere is less than 1 % that of Na. This study uses a detailed chemistry model of Ca, largely based on laboratory kinetics measurements, in a whole-atmosphere model to show that the depletion is caused by inefficient ablation of Ca and the formation of stable molecular reservoirs.
Chloe Y. Gao, Susanne E. Bauer, and Kostas Tsigaridis
Atmos. Chem. Phys., 18, 14243–14251, https://doi.org/10.5194/acp-18-14243-2018, https://doi.org/10.5194/acp-18-14243-2018, 2018
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Christoph Brühl, Jennifer Schallock, Klaus Klingmüller, Charles Robert, Christine Bingen, Lieven Clarisse, Andreas Heckel, Peter North, and Landon Rieger
Atmos. Chem. Phys., 18, 12845–12857, https://doi.org/10.5194/acp-18-12845-2018, https://doi.org/10.5194/acp-18-12845-2018, 2018
Short summary
Short summary
Use of multi-instrument satellite data is important to get consistent simulations of aerosol radiative forcing by a complex chemistry climate model, here with a main focus on the lower stratosphere. The satellite data at different wavelengths together with the patterns in the simulated size distribution point to a significant contribution from moist mineral dust lifted to the tropopause region by the Asian summer monsoon.
Tao Li, Chao Ban, Xin Fang, Jing Li, Zhaopeng Wu, Wuhu Feng, John M. C. Plane, Jiangang Xiong, Daniel R. Marsh, Michael J. Mills, and Xiankang Dou
Atmos. Chem. Phys., 18, 11683–11695, https://doi.org/10.5194/acp-18-11683-2018, https://doi.org/10.5194/acp-18-11683-2018, 2018
Short summary
Short summary
A total of 154 nights of observations by the USTC Na temperature and wind lidar (32° N, 117° E) suggest significant seasonal variability in the mesopause. Chemistry plays an important role in Na atom formation. More than half of the observed gravity wave (GW) momentum flux (MF), whose divergence determines the GW forcing, is induced by short-period (10 min–2 h) waves. The anticorrelation between MF and zonal wind (U) suggests strong filtering of short-period GWs by semiannual oscillation U.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
Maarten Krol, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, Philippe Bousquet, Prabir Patra, Dmitry Belikov, Shamil Maksyutov, Sandip Dhomse, Wuhu Feng, and Martyn P. Chipperfield
Geosci. Model Dev., 11, 3109–3130, https://doi.org/10.5194/gmd-11-3109-2018, https://doi.org/10.5194/gmd-11-3109-2018, 2018
Short summary
Short summary
The TransCom inter-comparison project regularly carries out studies to quantify errors in simulated atmospheric transport. This paper presents the first results of an age of air (AoA) inter-comparison of six global transport models. Following a protocol, six models simulated five tracers from which atmospheric transport times can easily be deduced. Results highlight that inter-model differences associated with atmospheric transport are still large and require further analysis.
Duoying Ji, Songsong Fang, Charles L. Curry, Hiroki Kashimura, Shingo Watanabe, Jason N. S. Cole, Andrew Lenton, Helene Muri, Ben Kravitz, and John C. Moore
Atmos. Chem. Phys., 18, 10133–10156, https://doi.org/10.5194/acp-18-10133-2018, https://doi.org/10.5194/acp-18-10133-2018, 2018
Short summary
Short summary
We examine extreme temperature and precipitation under climate-model-simulated solar dimming and stratospheric aerosol injection geoengineering schemes. Both types of geoengineering lead to lower minimum temperatures at higher latitudes and greater cooling of minimum temperatures and maximum temperatures over land compared with oceans. Stratospheric aerosol injection is more effective in reducing tropical extreme precipitation, while solar dimming is more effective over extra-tropical regions.
Claudia Timmreck, Graham W. Mann, Valentina Aquila, Rene Hommel, Lindsay A. Lee, Anja Schmidt, Christoph Brühl, Simon Carn, Mian Chin, Sandip S. Dhomse, Thomas Diehl, Jason M. English, Michael J. Mills, Ryan Neely, Jianxiong Sheng, Matthew Toohey, and Debra Weisenstein
Geosci. Model Dev., 11, 2581–2608, https://doi.org/10.5194/gmd-11-2581-2018, https://doi.org/10.5194/gmd-11-2581-2018, 2018
Short summary
Short summary
The paper describes the experimental design of the Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP). ISA-MIP will improve understanding of stratospheric aerosol processes, chemistry, and dynamics and constrain climate impacts of background aerosol variability and small and large volcanic eruptions. It will help to asses the stratospheric aerosol contribution to the early 21st century global warming hiatus period and the effects from hypothetical geoengineering schemes.
Jens-Uwe Grooß, Rolf Müller, Reinhold Spang, Ines Tritscher, Tobias Wegner, Martyn P. Chipperfield, Wuhu Feng, Douglas E. Kinnison, and Sasha Madronich
Atmos. Chem. Phys., 18, 8647–8666, https://doi.org/10.5194/acp-18-8647-2018, https://doi.org/10.5194/acp-18-8647-2018, 2018
Short summary
Short summary
We investigate a discrepancy between model simulations and observations of HCl in the dark polar stratosphere. In early winter, the less-well-studied period of the onset of chlorine activation, observations show a much faster depletion of HCl than simulations of three models. This points to some unknown process that is currently not represented in the models. Various hypotheses for potential causes are investigated that partly reduce the discrepancy. The impact on polar ozone depletion is low.
Stephanie A. P. Blake, Sophie C. Lewis, Allegra N. LeGrande, and Ron L. Miller
Clim. Past, 14, 811–824, https://doi.org/10.5194/cp-14-811-2018, https://doi.org/10.5194/cp-14-811-2018, 2018
Short summary
Short summary
We studied the impact of the six largest tropical eruptions in reference to
Australian precipitation, the Indian Ocean Dipole (IOD), and El Niño–Southern Oscillation (ENSO). Volcanic forcing increased the likelihood of El Niños and positive IODs (pIOD) and caused positive rainfall anomalies over north-west (NW) and south-east (SE) Australia. Larger sulfate loading caused more persistent pIOD and El Niños, enhanced precipitation over NW Australia, and dampened precipitation over SE Australia.
Richard J. Pope, Martyn P. Chipperfield, Stephen R. Arnold, Norbert Glatthor, Wuhu Feng, Sandip S. Dhomse, Brian J. Kerridge, Barry G. Latter, and Richard Siddans
Atmos. Chem. Phys., 18, 8389–8408, https://doi.org/10.5194/acp-18-8389-2018, https://doi.org/10.5194/acp-18-8389-2018, 2018
Landon A. Rieger, Elizaveta P. Malinina, Alexei V. Rozanov, John P. Burrows, Adam E. Bourassa, and Doug A. Degenstein
Atmos. Meas. Tech., 11, 3433–3445, https://doi.org/10.5194/amt-11-3433-2018, https://doi.org/10.5194/amt-11-3433-2018, 2018
Short summary
Short summary
This paper compares aerosol extinction records from two limb scattering instruments, OSIRIS and SCIAMACHY, to that from the occultation instrument SAGE II. Differences are investigated through modelling and retrieval studies and important sources of systematic errors are quantified. It is found that the largest biases come from uncertainties in the aerosol size distribution and the aerosol particle concentration at altitudes above 30 km.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Sebastian Illing, Christopher Kadow, Holger Pohlmann, and Claudia Timmreck
Earth Syst. Dynam., 9, 701–715, https://doi.org/10.5194/esd-9-701-2018, https://doi.org/10.5194/esd-9-701-2018, 2018
Jamie M. Kelly, Ruth M. Doherty, Fiona M. O'Connor, and Graham W. Mann
Atmos. Chem. Phys., 18, 7393–7422, https://doi.org/10.5194/acp-18-7393-2018, https://doi.org/10.5194/acp-18-7393-2018, 2018
Short summary
Short summary
The global secondary organic aerosol (SOA) budget is highly uncertain with global models typically underpredicting observed SOA concentrations. Using a global chemistry-climate model, the impacts of biogenic, anthropogenic, and biomass burning VOC emissions on the global SOA budget and model agreement with observed SOA concentrations are quantified.
Dunya Alraddawi, Alain Sarkissian, Philippe Keckhut, Olivier Bock, Stefan Noël, Slimane Bekki, Abdenour Irbah, Mustapha Meftah, and Chantal Claud
Atmos. Meas. Tech., 11, 2949–2965, https://doi.org/10.5194/amt-11-2949-2018, https://doi.org/10.5194/amt-11-2949-2018, 2018
Short summary
Short summary
The current study provides intercomparisons of various water vapour measurements in the Arctic. It compares ground-based GPS observations with satellite measurements in the infrared (IR), near-infrared (NIR) and visible (VIS) through a specific method allowing us to quantify their uncertainties and limits.
Unlike IR, satellite observations in NIR and VIS bands are mostly sensible to cloud cover during summer and to albedo variability over canopy or polluted snow-covered surfaces in winter.
Daniel T. McCoy, Paul R. Field, Anja Schmidt, Daniel P. Grosvenor, Frida A.-M. Bender, Ben J. Shipway, Adrian A. Hill, Jonathan M. Wilkinson, and Gregory S. Elsaesser
Atmos. Chem. Phys., 18, 5821–5846, https://doi.org/10.5194/acp-18-5821-2018, https://doi.org/10.5194/acp-18-5821-2018, 2018
Short summary
Short summary
Here we use a combination of global convection-permitting models, satellite observations and the Holuhraun volcanic eruption to demonstrate that aerosol enhances the cloud liquid content and brightness of midlatitude cyclones. This is important because the strength of anthropogenic radiative forcing is uncertain, leading to uncertainty in the climate sensitivity consistent with observed temperature record.
Daniel J. Zawada, Landon A. Rieger, Adam E. Bourassa, and Douglas A. Degenstein
Atmos. Meas. Tech., 11, 2375–2393, https://doi.org/10.5194/amt-11-2375-2018, https://doi.org/10.5194/amt-11-2375-2018, 2018
Short summary
Short summary
The Ozone Mapping and Profiler Suite Limb Profiler measures scattered sunlight, which is then inverted to obtain vertical profiles of ozone in the atmosphere. We have developed a new algorithm for inverting the data which is better suited for areas with large horizontal ozone gradients, such as the polar vortex. Data from the full currently 5-year mission have been processed and are publicly available.
Amy K. Hodgson, William T. Morgan, Sebastian O'Shea, Stéphane Bauguitte, James D. Allan, Eoghan Darbyshire, Michael J. Flynn, Dantong Liu, James Lee, Ben Johnson, Jim M. Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 18, 5619–5638, https://doi.org/10.5194/acp-18-5619-2018, https://doi.org/10.5194/acp-18-5619-2018, 2018
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different biomass burning environments in the Amazon Basin in September and October 2012. In this paper, we focus on smoke sampled very close to fresh fires (only 600–900 m above the fires and smoke that was 4–6 min old) to examine the chemical components that make up the smoke and their abundance. We found substantial differences in the emitted smoke that are due to the fuel type and combustion processes driving the fires.
Gillian D. Thornhill, Claire L. Ryder, Eleanor J. Highwood, Len C. Shaffrey, and Ben T. Johnson
Atmos. Chem. Phys., 18, 5321–5342, https://doi.org/10.5194/acp-18-5321-2018, https://doi.org/10.5194/acp-18-5321-2018, 2018
Short summary
Short summary
We investigated the impact on the regional climate of different amounts of smoke emission (aerosol) from the burning of vegetation in South America using a climate model. We looked at differences between high and low smoke emissions and found impacts from the higher smoke emissions on the amount of cloud cover, solar radiation reaching the surface, wind patterns and rainfall. This means the local climate may be affected if there is more deforestation and more smoke from burning of vegetation.
Larry W. Thomason, Nicholas Ernest, Luis Millán, Landon Rieger, Adam Bourassa, Jean-Paul Vernier, Gloria Manney, Beiping Luo, Florian Arfeuille, and Thomas Peter
Earth Syst. Sci. Data, 10, 469–492, https://doi.org/10.5194/essd-10-469-2018, https://doi.org/10.5194/essd-10-469-2018, 2018
Short summary
Short summary
We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979 to 2014) and is now extended through 2016. GloSSAC focuses on the the SAGE series of instruments through mid-2005 and on OSIRIS and CALIPSO after that time.
Thibaut Lurton, Fabrice Jégou, Gwenaël Berthet, Jean-Baptiste Renard, Lieven Clarisse, Anja Schmidt, Colette Brogniez, and Tjarda J. Roberts
Atmos. Chem. Phys., 18, 3223–3247, https://doi.org/10.5194/acp-18-3223-2018, https://doi.org/10.5194/acp-18-3223-2018, 2018
Short summary
Short summary
We quantify the chemical and microphysical effects of volcanic SO2 and HCl from the June 2009 Sarychev Peak eruption using a comprehensive aerosol–chemistry model combined with in situ measurements and satellite retrievals. Our results suggest that previous studies underestimated the eruption's atmospheric and climatic impact, mainly because previous model-to-satellite comparisons had to make assumptions about the aerosol size distribution and were based on biased satellite retrievals of AOD.
Jingqiu Mao, Annmarie Carlton, Ronald C. Cohen, William H. Brune, Steven S. Brown, Glenn M. Wolfe, Jose L. Jimenez, Havala O. T. Pye, Nga Lee Ng, Lu Xu, V. Faye McNeill, Kostas Tsigaridis, Brian C. McDonald, Carsten Warneke, Alex Guenther, Matthew J. Alvarado, Joost de Gouw, Loretta J. Mickley, Eric M. Leibensperger, Rohit Mathur, Christopher G. Nolte, Robert W. Portmann, Nadine Unger, Mika Tosca, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2615–2651, https://doi.org/10.5194/acp-18-2615-2018, https://doi.org/10.5194/acp-18-2615-2018, 2018
Short summary
Short summary
This paper is aimed at discussing progress in evaluating, diagnosing, and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
Adam E. Bourassa, Chris Z. Roth, Daniel J. Zawada, Landon A. Rieger, Chris A. McLinden, and Douglas A. Degenstein
Atmos. Meas. Tech., 11, 489–498, https://doi.org/10.5194/amt-11-489-2018, https://doi.org/10.5194/amt-11-489-2018, 2018
Short summary
Short summary
OSIRIS satellite measurements of ozone in the stratosphere are corrected for slowly varying errors. These changes make the OSIRIS data compare better with other satellite measurements over the long term and make an impact on our understanding of the recovery of the ozone layer.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Matthew Toohey and Michael Sigl
Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, https://doi.org/10.5194/essd-9-809-2017, 2017
Short summary
Short summary
Based on ice core sulfate records from Greenland and Antarctica, the eVolv2k database provides volcanic stratospheric sulfur injection estimates from 500 BCE to 1900 CE along with reconstructed aerosol optical properties needed for climate model simulations. The eVolv2k database constitutes a significant update to prior ice-core-based volcanic forcing reconstructions for climate models, improving the accuracy of volcanic forcing, especially before 1250 CE, and extending the record by 1000 years.
Huisheng Bian, Mian Chin, Didier A. Hauglustaine, Michael Schulz, Gunnar Myhre, Susanne E. Bauer, Marianne T. Lund, Vlassis A. Karydis, Tom L. Kucsera, Xiaohua Pan, Andrea Pozzer, Ragnhild B. Skeie, Stephen D. Steenrod, Kengo Sudo, Kostas Tsigaridis, Alexandra P. Tsimpidi, and Svetlana G. Tsyro
Atmos. Chem. Phys., 17, 12911–12940, https://doi.org/10.5194/acp-17-12911-2017, https://doi.org/10.5194/acp-17-12911-2017, 2017
Short summary
Short summary
Atmospheric nitrate contributes notably to total aerosol mass in the present day and is likely to be more important over the next century, with a projected decline in SO2 and NOx emissions and increase in NH3 emissions. This paper investigates atmospheric nitrate using multiple global models and measurements. The study is part of the AeroCom phase III activity. The study is the first attempt to look at global atmospheric nitrate simulation at physical and chemical process levels.
Maria Sand, Bjørn H. Samset, Yves Balkanski, Susanne Bauer, Nicolas Bellouin, Terje K. Berntsen, Huisheng Bian, Mian Chin, Thomas Diehl, Richard Easter, Steven J. Ghan, Trond Iversen, Alf Kirkevåg, Jean-François Lamarque, Guangxing Lin, Xiaohong Liu, Gan Luo, Gunnar Myhre, Twan van Noije, Joyce E. Penner, Michael Schulz, Øyvind Seland, Ragnhild B. Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Fangqun Yu, Kai Zhang, and Hua Zhang
Atmos. Chem. Phys., 17, 12197–12218, https://doi.org/10.5194/acp-17-12197-2017, https://doi.org/10.5194/acp-17-12197-2017, 2017
Short summary
Short summary
The role of aerosols in the changing polar climate is not well understood and the aerosols are poorly constrained in the models. In this study we have compared output from 16 different aerosol models with available observations at both poles. We show that the model median is representative of the observations, but the model spread is large. The Arctic direct aerosol radiative effect over the industrial area is positive during spring due to black carbon and negative during summer due to sulfate.
Lili Xia, Peer J. Nowack, Simone Tilmes, and Alan Robock
Atmos. Chem. Phys., 17, 11913–11928, https://doi.org/10.5194/acp-17-11913-2017, https://doi.org/10.5194/acp-17-11913-2017, 2017
Short summary
Short summary
Ozone is a key air pollutant. We model two geoengineering schemes, stratospheric sulfur injection and solar irradiance reduction, to compare their impacts on atmospheric ozone concentrations. With the nearly identical global mean surface temperature reduction, solar dimming increases global average surface ozone concentration, while sulfate injection decreases it. This difference is due to different stratosphere–troposphere exchange of ozone and tropospheric ozone chemistry in the two scenarios.
Christoph Kleinschmitt, Olivier Boucher, Slimane Bekki, François Lott, and Ulrich Platt
Geosci. Model Dev., 10, 3359–3378, https://doi.org/10.5194/gmd-10-3359-2017, https://doi.org/10.5194/gmd-10-3359-2017, 2017
Short summary
Short summary
Stratospheric aerosols play an important role in the climate system by affecting the Earth's radiative budget. In this article we present the newly developed LMDZ-S3A model and assess its performance against observations in periods of low and high aerosol loading. The model may serve as a tool to study the climate impacts of volcanic eruptions, as well as the deliberate injection of aerosols into the stratosphere, which has been proposed as a method of geoengineering to abate global warming.
Rémi Thiéblemont, Marion Marchand, Slimane Bekki, Sébastien Bossay, Franck Lefèvre, Mustapha Meftah, and Alain Hauchecorne
Atmos. Chem. Phys., 17, 9897–9916, https://doi.org/10.5194/acp-17-9897-2017, https://doi.org/10.5194/acp-17-9897-2017, 2017
Martin P. Langowski, Christian von Savigny, John P. Burrows, Didier Fussen, Erin C. M. Dawkins, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Meas. Tech., 10, 2989–3006, https://doi.org/10.5194/amt-10-2989-2017, https://doi.org/10.5194/amt-10-2989-2017, 2017
Short summary
Short summary
Meteoric metals form metal layers in the upper atmosphere anandplay a role in the formation of middle-atmospheric clouds and aerosols. However, the total metal influx rate is not well known. Global Na datasets from measurements and a model are available, which had not been compared yet on a global scale until this paper. Overall the agreement is good, and many differences between measurements are also found in the model simulations. However, the modeled layer altitude is too low.
Sarah A. Monks, Stephen R. Arnold, Michael J. Hollaway, Richard J. Pope, Chris Wilson, Wuhu Feng, Kathryn M. Emmerson, Brian J. Kerridge, Barry L. Latter, Georgina M. Miles, Richard Siddans, and Martyn P. Chipperfield
Geosci. Model Dev., 10, 3025–3057, https://doi.org/10.5194/gmd-10-3025-2017, https://doi.org/10.5194/gmd-10-3025-2017, 2017
Short summary
Short summary
The TOMCAT chemical transport model has been updated with the chemical degradation of ethene, propene, toluene, butane and monoterpenes. The tropospheric chemical mechanism is documented and the model is evaluated against surface, balloon, aircraft and satellite data. The model is generally able to capture the main spatial and seasonal features of carbon monoxide, ozone, volatile organic compounds and reactive nitrogen. However,
some model biases are found that require further investigation.
Cristen Adams, Adam E. Bourassa, Chris A. McLinden, Chris E. Sioris, Thomas von Clarmann, Bernd Funke, Landon A. Rieger, and Douglas A. Degenstein
Atmos. Chem. Phys., 17, 8063–8080, https://doi.org/10.5194/acp-17-8063-2017, https://doi.org/10.5194/acp-17-8063-2017, 2017
Short summary
Short summary
We measured the relationship between volcanic aerosol and trace gases in the stratosphere using the OSIRIS and MIPAS satellite instruments between 2002 and 2014. We found that levels of stratospheric NO2 and N2O5 both decreased significantly in the presence of volcanic aerosol. These decreases were consistent with the modeling results.
Kevin M. Smalley, Andrew E. Dessler, Slimane Bekki, Makoto Deushi, Marion Marchand, Olaf Morgenstern, David A. Plummer, Kiyotaka Shibata, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 17, 8031–8044, https://doi.org/10.5194/acp-17-8031-2017, https://doi.org/10.5194/acp-17-8031-2017, 2017
Short summary
Short summary
This paper explains a new way to evaluate simulated lower-stratospheric water vapor. We use a multivariate linear regression to predict 21st century lower stratospheric water vapor within 12 chemistry climate models using tropospheric warming, the Brewer–Dobson circulation, and the quasi-biennial oscillation as predictors. This methodology produce strong fits to simulated water vapor, and potentially represents a superior method to evaluate model trends in lower-stratospheric water vapor.
Wenshou Tian, Yuanpu Li, Fei Xie, Jiankai Zhang, Martyn P. Chipperfield, Wuhu Feng, Yongyun Hu, Sen Zhao, Xin Zhou, Yun Yang, and Xuan Ma
Atmos. Chem. Phys., 17, 6705–6722, https://doi.org/10.5194/acp-17-6705-2017, https://doi.org/10.5194/acp-17-6705-2017, 2017
Short summary
Short summary
Although the principal mechanisms responsible for the formation of the Antarctic ozone hole are well understood, the factors or processes that generate interannual variations in ozone levels in the southern high-latitude stratosphere remain under debate. This study finds that the SST variations across the East Asian marginal seas (5° S–35° N, 100–140° E) could modulate the southern high-latitude stratospheric ozone interannual changes.
Alina Fiehn, Birgit Quack, Helmke Hepach, Steffen Fuhlbrügge, Susann Tegtmeier, Matthew Toohey, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 6723–6741, https://doi.org/10.5194/acp-17-6723-2017, https://doi.org/10.5194/acp-17-6723-2017, 2017
Short summary
Short summary
Halogenated very short-lived substances (VSLSs) are naturally produced in the ocean and emitted to the atmosphere. In the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise in the west Indian Ocean, we found an important source region of halogenated VSLSs during the Asian summer monsoon. Modeling the transport from the ocean to the stratosphere we found two main pathways, one over the Indian Ocean and one over northern India.
Stefanie Unterguggenberger, Stefan Noll, Wuhu Feng, John M. C. Plane, Wolfgang Kausch, Stefan Kimeswenger, Amy Jones, and Sabine Moehler
Atmos. Chem. Phys., 17, 4177–4187, https://doi.org/10.5194/acp-17-4177-2017, https://doi.org/10.5194/acp-17-4177-2017, 2017
Short summary
Short summary
This study focuses on the analysis of astronomical medium-resolution spectra from the VLT in Chile to measure airglow pseudo-continuum emission of FeO in the optical regime. Compared to OH or Na emissions, this emission is difficult to measure. Using 3.5 years of spectroscopic data, we found annual and semi-annual variations of the FeO emission. Furthermore, we used WACCM to determine the quantum yield of the FeO-producing Fe + O3 reaction in the atmosphere, which has not been done before.
Christopher E. Sioris, Landon A. Rieger, Nicholas D. Lloyd, Adam E. Bourassa, Chris Z. Roth, Douglas A. Degenstein, Claude Camy-Peyret, Klaus Pfeilsticker, Gwenaël Berthet, Valéry Catoire, Florence Goutail, Jean-Pierre Pommereau, and Chris A. McLinden
Atmos. Meas. Tech., 10, 1155–1168, https://doi.org/10.5194/amt-10-1155-2017, https://doi.org/10.5194/amt-10-1155-2017, 2017
Short summary
Short summary
A new OSIRIS NO2 retrieval algorithm is described and validated using > 40 balloon-based profile measurements. The validation results indicate a slight improvement relative to the existing operational algorithm in terms of the bias versus the balloon data, particularly in the lower stratosphere. The implication is that this new algorithm should replace the operational one. The motivation was to combine spectral fitting and the SaskTRAN radiative transfer model to achieve an improved product.
Jochen Stutz, Bodo Werner, Max Spolaor, Lisa Scalone, James Festa, Catalina Tsai, Ross Cheung, Santo F. Colosimo, Ugo Tricoli, Rasmus Raecke, Ryan Hossaini, Martyn P. Chipperfield, Wuhu Feng, Ru-Shan Gao, Eric J. Hintsa, James W. Elkins, Fred L. Moore, Bruce Daube, Jasna Pittman, Steven Wofsy, and Klaus Pfeilsticker
Atmos. Meas. Tech., 10, 1017–1042, https://doi.org/10.5194/amt-10-1017-2017, https://doi.org/10.5194/amt-10-1017-2017, 2017
Short summary
Short summary
A new limb-scanning Differential Optical Absorption Spectroscopy (DOAS) instrument was developed for NASA’s Global Hawk unmanned aerial system during the Airborne Tropical TRopopause EXperiment to study trace gases in the tropical tropopause layer. A new technique that uses in situ and DOAS O3 observations together with radiative transfer calculations allows the retrieval of mixing ratios from the slant column densities of BrO and NO2 at high accuracies of 0.5 ppt and 15 ppt, respectively.
Hiroki Kashimura, Manabu Abe, Shingo Watanabe, Takashi Sekiya, Duoying Ji, John C. Moore, Jason N. S. Cole, and Ben Kravitz
Atmos. Chem. Phys., 17, 3339–3356, https://doi.org/10.5194/acp-17-3339-2017, https://doi.org/10.5194/acp-17-3339-2017, 2017
Short summary
Short summary
This study analyses shortwave radiation (SW) in the G4 experiment of the Geoengineering Model Intercomparison Project. G4 involves stratospheric injection of 5 Tg yr−1 of SO2 against the RCP4.5 scenario. The global mean forcing of the sulphate geoengineering has an inter-model variablity of −3.6 to −1.6 W m−2, implying a high uncertainty in modelled processes of sulfate aerosols. Changes in water vapour and cloud amounts due to the SO2 injection weaken the forcing at the surface by around 50 %.
Céline Planche, Graham W. Mann, Kenneth S. Carslaw, Mohit Dalvi, John H. Marsham, and Paul R. Field
Atmos. Chem. Phys., 17, 3371–3384, https://doi.org/10.5194/acp-17-3371-2017, https://doi.org/10.5194/acp-17-3371-2017, 2017
Short summary
Short summary
A convection-permitting limited area model with prognostic aerosol microphysics is applied to investigate how concentrations of cloud condensation nuclei (CCN) in the marine boundary layer are affected by high-resolution dynamical and thermodynamic fields at sub-climate model scale. We gain new insight into the way primary sea-salt and secondary sulfate particles contribute to the overall CCN variance, and find a marked difference in the variability of super- and sub-micron CCN.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Chloe Y. Gao, Kostas Tsigaridis, and Susanne E. Bauer
Geosci. Model Dev., 10, 751–764, https://doi.org/10.5194/gmd-10-751-2017, https://doi.org/10.5194/gmd-10-751-2017, 2017
Olaf Morgenstern, Michaela I. Hegglin, Eugene Rozanov, Fiona M. O'Connor, N. Luke Abraham, Hideharu Akiyoshi, Alexander T. Archibald, Slimane Bekki, Neal Butchart, Martyn P. Chipperfield, Makoto Deushi, Sandip S. Dhomse, Rolando R. Garcia, Steven C. Hardiman, Larry W. Horowitz, Patrick Jöckel, Beatrice Josse, Douglas Kinnison, Meiyun Lin, Eva Mancini, Michael E. Manyin, Marion Marchand, Virginie Marécal, Martine Michou, Luke D. Oman, Giovanni Pitari, David A. Plummer, Laura E. Revell, David Saint-Martin, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Taichu Y. Tanaka, Simone Tilmes, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, https://doi.org/10.5194/gmd-10-639-2017, 2017
Short summary
Short summary
We present a review of the make-up of 20 models participating in the Chemistry–Climate Model Initiative (CCMI). In comparison to earlier such activities, most of these models comprise a whole-atmosphere chemistry, and several of them include an interactive ocean module. This makes them suitable for studying the interactions of tropospheric air quality, stratospheric ozone, and climate. The paper lays the foundation for other studies using the CCMI simulations for scientific analysis.
Sergey M. Khaykin, Sophie Godin-Beekmann, Philippe Keckhut, Alain Hauchecorne, Julien Jumelet, Jean-Paul Vernier, Adam Bourassa, Doug A. Degenstein, Landon A. Rieger, Christine Bingen, Filip Vanhellemont, Charles Robert, Matthew DeLand, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 1829–1845, https://doi.org/10.5194/acp-17-1829-2017, https://doi.org/10.5194/acp-17-1829-2017, 2017
Short summary
Short summary
The article is devoted to the long-term evolution and variability of stratospheric aerosol, which plays an important role in climate change and the ozone layer. We use 22-year long continuous observations using laser radar soundings in southern France and satellite-based observations to distinguish between natural aerosol variability (caused by volcanic eruptions) and human-induced change in aerosol concentration. An influence of growing pollution above Asia on stratospheric aerosol is found.
Tamás Kovács, Wuhu Feng, Anna Totterdill, John M. C. Plane, Sandip Dhomse, Juan Carlos Gómez-Martín, Gabriele P. Stiller, Florian J. Haenel, Christopher Smith, Piers M. Forster, Rolando R. García, Daniel R. Marsh, and Martyn P. Chipperfield
Atmos. Chem. Phys., 17, 883–898, https://doi.org/10.5194/acp-17-883-2017, https://doi.org/10.5194/acp-17-883-2017, 2017
Short summary
Short summary
Sulfur hexafluoride (SF6) is a very potent greenhouse gas, which is present in the atmosphere only through its industrial use, for example as an electrical insulator. To estimate accurately the impact of SF6 emissions on climate we need to know how long it persists in the atmosphere before being removed. Previous estimates of the SF6 lifetime indicate a large degree of uncertainty. Here we use a detailed atmospheric model to calculate a current best estimate of the SF6 lifetime.
Corey J. Gabriel, Alan Robock, Lili Xia, Brian Zambri, and Ben Kravitz
Atmos. Chem. Phys., 17, 595–613, https://doi.org/10.5194/acp-17-595-2017, https://doi.org/10.5194/acp-17-595-2017, 2017
Short summary
Short summary
The National Center for Atmospheric Research CESM-CAM4-CHEM global climate model was modified to simulate a scheme in which the albedo of the ocean surface is raised over the subtropical ocean gyres in the Southern Hemisphere. Global mean surface temperature in G4Foam is 0.6K lower than RCP6.0, with statistically significant cooling relative to RCP6.0 south of 30° N and an increase in rainfall over land, most pronouncedly during the JJA season, relative to both G4SSA and RCP6.0.
Martyn P. Chipperfield, Qing Liang, Matthew Rigby, Ryan Hossaini, Stephen A. Montzka, Sandip Dhomse, Wuhu Feng, Ronald G. Prinn, Ray F. Weiss, Christina M. Harth, Peter K. Salameh, Jens Mühle, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Paul B. Krummel, Paul J. Fraser, L. Paul Steele, James D. Happell, Robert C. Rhew, James Butler, Shari A. Yvon-Lewis, Bradley Hall, David Nance, Fred Moore, Ben R. Miller, James W. Elkins, Jeremy J. Harrison, Chris D. Boone, Elliot L. Atlas, and Emmanuel Mahieu
Atmos. Chem. Phys., 16, 15741–15754, https://doi.org/10.5194/acp-16-15741-2016, https://doi.org/10.5194/acp-16-15741-2016, 2016
Short summary
Short summary
Carbon tetrachloride (CCl4) is a compound which, when released into the atmosphere, can cause depletion of the stratospheric ozone layer. Its emissions are controlled under the Montreal Protocol, and its atmospheric abundance is slowly decreasing. However, this decrease is not as fast as expected based on estimates of its emissions and its atmospheric lifetime. We have used an atmospheric model to look at the uncertainties in the CCl4 lifetime and to examine the impact on its atmospheric decay.
Wayne K. Hocking, Reynold E. Silber, John M. C. Plane, Wuhu Feng, and Marcial Garbanzo-Salas
Ann. Geophys., 34, 1119–1144, https://doi.org/10.5194/angeo-34-1119-2016, https://doi.org/10.5194/angeo-34-1119-2016, 2016
Short summary
Short summary
Meteoroids entering the atmosphere produce trails of ionized particles which can be detected with radar. The weakest ones are called underdense (the most common), the strongest are called overdense, and intermediate ones are transitional. Meteor radar signatures are used to determine atmospheric parameters like temperature and winds. We present new results which show the effect of ozone on the transitional trail lifetimes, which may eventually allow radar to measure mesospheric ozone.
Ben T. Johnson, James M. Haywood, Justin M. Langridge, Eoghan Darbyshire, William T. Morgan, Kate Szpek, Jennifer K. Brooke, Franco Marenco, Hugh Coe, Paulo Artaxo, Karla M. Longo, Jane P. Mulcahy, Graham W. Mann, Mohit Dalvi, and Nicolas Bellouin
Atmos. Chem. Phys., 16, 14657–14685, https://doi.org/10.5194/acp-16-14657-2016, https://doi.org/10.5194/acp-16-14657-2016, 2016
Short summary
Short summary
Biomass burning is a large source of carbonaceous aerosols, which scatter and absorb solar radiation, and modify cloud properties. We evaluate the simulation of biomass burning aerosol processes and properties in the HadGEM3 climate model using observations, including those from the South American Biomass Burning Analysis. We find that modelled aerosol optical depths are underestimated unless aerosol emissions (Global Fire Emission Database v3) are increased by a factor of 1.6–2.0.
Manabu Abe, Toru Nozawa, Tomoo Ogura, and Kumiko Takata
Atmos. Chem. Phys., 16, 14343–14356, https://doi.org/10.5194/acp-16-14343-2016, https://doi.org/10.5194/acp-16-14343-2016, 2016
Short summary
Short summary
This study has investigated the effect of retreating sea ice on Arctic cloud cover in historical simulations by the coupled atmosphere–ocean general circulation model, MIROC5. This study show that MIROC5 simulates retreating Arctic sea ice in September during the late 20th Century, which causes an increase in Arctic cloud cover in October. Sensitivity experiments using the atmospheric component of MIROC5 also proved that the increase in Arctic cloud cover is due to the retreating sea ice.
Matthew Toohey, Bjorn Stevens, Hauke Schmidt, and Claudia Timmreck
Geosci. Model Dev., 9, 4049–4070, https://doi.org/10.5194/gmd-9-4049-2016, https://doi.org/10.5194/gmd-9-4049-2016, 2016
Short summary
Short summary
Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. The Easy Volcanic Aerosol (EVA) volcanic forcing generator provides a tool whereby the optical properties of volcanic aerosols can be included in climate model simulations in a self-consistent, complete, and flexible manner. EVA is based on satellite observations of the 1991 Pinatubo eruption but can be applied to any real or hypothetical eruption of interest.
François Benduhn, Graham W. Mann, Kirsty J. Pringle, David O. Topping, Gordon McFiggans, and Kenneth S. Carslaw
Geosci. Model Dev., 9, 3875–3906, https://doi.org/10.5194/gmd-9-3875-2016, https://doi.org/10.5194/gmd-9-3875-2016, 2016
Short summary
Short summary
We present a new mathematical formalism that serves to represent exchanges of inorganic matter between the atmosphere gas phase and the aerosol aqueous phase. In a global modelling framework, taking into account these processes may help represent many important features more accurately, such as the formation of cloud droplets or the radiative properties of the atmosphere. The formalism strives to keep an appropriate balance between accuracy and computation efficiency requirements.
Richard J. Pope, Nigel A. D. Richards, Martyn P. Chipperfield, David P. Moore, Sarah A. Monks, Stephen R. Arnold, Norbert Glatthor, Michael Kiefer, Tom J. Breider, Jeremy J. Harrison, John J. Remedios, Carsten Warneke, James M. Roberts, Glenn S. Diskin, Lewis G. Huey, Armin Wisthaler, Eric C. Apel, Peter F. Bernath, and Wuhu Feng
Atmos. Chem. Phys., 16, 13541–13559, https://doi.org/10.5194/acp-16-13541-2016, https://doi.org/10.5194/acp-16-13541-2016, 2016
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Nathan P. Gillett, Hideo Shiogama, Bernd Funke, Gabriele Hegerl, Reto Knutti, Katja Matthes, Benjamin D. Santer, Daithi Stone, and Claudia Tebaldi
Geosci. Model Dev., 9, 3685–3697, https://doi.org/10.5194/gmd-9-3685-2016, https://doi.org/10.5194/gmd-9-3685-2016, 2016
Short summary
Short summary
Detection and attribution of climate change is the process of determining the causes of observed climate changes, which has underpinned key conclusions on the role of human influence on climate in the reports of the Intergovernmental Panel on Climate Change (IPCC). This paper describes a coordinated set of climate model experiments that will form part of the Sixth Coupled Model Intercomparison Project and will support improved attribution of climate change in the next IPCC report.
Keren Mezuman, Susanne E. Bauer, and Kostas Tsigaridis
Atmos. Chem. Phys., 16, 10651–10669, https://doi.org/10.5194/acp-16-10651-2016, https://doi.org/10.5194/acp-16-10651-2016, 2016
Short summary
Short summary
We test new parameterizations for secondary inorganic aerosols in GISS ModelE. To evaluate the model performance, we use measurements of these aerosols and gaseous precursors from surface and aircraft measurements over the USA and Europe. We show that considering the size distribution of these particles, as well as a variety of formation pathways, is important. Overall, our model underestimates the aerosol mass compared to measurements, while gaseous precursors are overestimated.
Zarashpe Z. Kapadia, Dominick V. Spracklen, Steve R. Arnold, Duncan J. Borman, Graham W. Mann, Kirsty J. Pringle, Sarah A. Monks, Carly L. Reddington, François Benduhn, Alexandru Rap, Catherine E. Scott, Edward W. Butt, and Masaru Yoshioka
Atmos. Chem. Phys., 16, 10521–10541, https://doi.org/10.5194/acp-16-10521-2016, https://doi.org/10.5194/acp-16-10521-2016, 2016
Short summary
Short summary
Using a coupled tropospheric chemistry-aerosol microphysics model this research paper investigates the effect of variations in aviation fuel sulfur content (FSC) on surface PM2.5 concentrations, increases in aviation-induced premature mortalities, low-level cloud condensation nuclei and radiative effect.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
Christopher M. Colose, Allegra N. LeGrande, and Mathias Vuille
Earth Syst. Dynam., 7, 681–696, https://doi.org/10.5194/esd-7-681-2016, https://doi.org/10.5194/esd-7-681-2016, 2016
Short summary
Short summary
A band of intense rainfall exists near the equator known as the intertropical convergence zone, which can migrate in response to climate forcings. Here, we assess such migration in response to volcanic eruptions of varying spatial structure (Northern Hemisphere, Southern Hemisphere, or an eruption fairly symmetric about the equator). We do this using model simulations of the last millennium and link results to energetic constraints and the imprint eruptions may leave behind in past records.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
Matthew Kasoar, Apostolos Voulgarakis, Jean-François Lamarque, Drew T. Shindell, Nicolas Bellouin, William J. Collins, Greg Faluvegi, and Kostas Tsigaridis
Atmos. Chem. Phys., 16, 9785–9804, https://doi.org/10.5194/acp-16-9785-2016, https://doi.org/10.5194/acp-16-9785-2016, 2016
Short summary
Short summary
Computer models are our primary tool to investigate how fossil-fuel emissions are affecting the climate. Here, we used three different climate models to see how they simulate the response to removing sulfur dioxide emissions from China. We found that the models disagreed substantially on how large the climate effect is from the emissions in this region. This range of outcomes is concerning if scientists or policy makers have to rely on any one model when performing their own studies.
Nikos Daskalakis, Kostas Tsigaridis, Stelios Myriokefalitakis, George S. Fanourgakis, and Maria Kanakidou
Atmos. Chem. Phys., 16, 9771–9784, https://doi.org/10.5194/acp-16-9771-2016, https://doi.org/10.5194/acp-16-9771-2016, 2016
Short summary
Short summary
Three 30-year simulations of past atmospheric composition changes were performed using different anthropogenic emissions of pollutants accounting or not for the applied air quality legislation and accounting for the year–to–year observed climate and natural emissions variability. The actual benefit of applied legislation along with technological advances is higher than what is usually calculated by a simple comparison of today's atmosphere against a constant anthropogenic emissions simulation.
Christopher M. Colose, Allegra N. LeGrande, and Mathias Vuille
Clim. Past, 12, 961–979, https://doi.org/10.5194/cp-12-961-2016, https://doi.org/10.5194/cp-12-961-2016, 2016
Short summary
Short summary
Volcanic forcing is the most important source of forced variability during the preindustrial component of the last millennium (~ 850-1850 CE) and is important during the last century.
Here, we focus on the climate impact over South America in a model-based study. Emphasis is given to temperature, precipitation, and oxygen isotope variability (allowing for potential contact made with paleoclimate-based observations)
Here, we focus on the climate impact over South America in a model-based study. Emphasis is given to temperature, precipitation, and oxygen isotope variability (allowing for potential contact made with paleoclimate-based observations)
Zhe Peng, Douglas A. Day, Amber M. Ortega, Brett B. Palm, Weiwei Hu, Harald Stark, Rui Li, Kostas Tsigaridis, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 4283–4305, https://doi.org/10.5194/acp-16-4283-2016, https://doi.org/10.5194/acp-16-4283-2016, 2016
Short summary
Short summary
Oxidation flow reactors (OFRs) are promising tools of studying atmospheric oxidation processes. Elevated concentrations of both OH and non-OH oxidants in OFRs leave room for speculation that non-OH chemistry can play a major role. Through systematic modeling, we find conditions where non-OH VOC fate is significant and show that, in most field studies of SOA using OFRs, non-OH VOC fate in OFRs was insignificant. We also provide guidelines helping OFR users avoid significant non-OH VOC oxidation.
James Hansen, Makiko Sato, Paul Hearty, Reto Ruedy, Maxwell Kelley, Valerie Masson-Delmotte, Gary Russell, George Tselioudis, Junji Cao, Eric Rignot, Isabella Velicogna, Blair Tormey, Bailey Donovan, Evgeniya Kandiano, Karina von Schuckmann, Pushker Kharecha, Allegra N. Legrande, Michael Bauer, and Kwok-Wai Lo
Atmos. Chem. Phys., 16, 3761–3812, https://doi.org/10.5194/acp-16-3761-2016, https://doi.org/10.5194/acp-16-3761-2016, 2016
Short summary
Short summary
We use climate simulations, paleoclimate data and modern observations to infer that continued high fossil fuel emissions will yield cooling of Southern Ocean and North Atlantic surfaces, slowdown and shutdown of SMOC & AMOC, increasingly powerful storms and nonlinear sea level rise reaching several meters in 50–150 years, effects missed in IPCC reports because of omission of ice sheet melt and an insensitivity of most climate models, likely due to excessive ocean mixing.
N. I. Kristiansen, A. Stohl, D. J. L. Olivié, B. Croft, O. A. Søvde, H. Klein, T. Christoudias, D. Kunkel, S. J. Leadbetter, Y. H. Lee, K. Zhang, K. Tsigaridis, T. Bergman, N. Evangeliou, H. Wang, P.-L. Ma, R. C. Easter, P. J. Rasch, X. Liu, G. Pitari, G. Di Genova, S. Y. Zhao, Y. Balkanski, S. E. Bauer, G. S. Faluvegi, H. Kokkola, R. V. Martin, J. R. Pierce, M. Schulz, D. Shindell, H. Tost, and H. Zhang
Atmos. Chem. Phys., 16, 3525–3561, https://doi.org/10.5194/acp-16-3525-2016, https://doi.org/10.5194/acp-16-3525-2016, 2016
Short summary
Short summary
Processes affecting aerosol removal from the atmosphere are not fully understood. In this study we investigate to what extent atmospheric transport models can reproduce observed loss of aerosols. We compare measurements of radioactive isotopes, that attached to ambient sulfate aerosols during the 2011 Fukushima nuclear accident, to 19 models using identical emissions. Results indicate aerosol removal that is too fast in most models, and apply to aerosols that have undergone long-range transport.
Zak Kipling, Philip Stier, Colin E. Johnson, Graham W. Mann, Nicolas Bellouin, Susanne E. Bauer, Tommi Bergman, Mian Chin, Thomas Diehl, Steven J. Ghan, Trond Iversen, Alf Kirkevåg, Harri Kokkola, Xiaohong Liu, Gan Luo, Twan van Noije, Kirsty J. Pringle, Knut von Salzen, Michael Schulz, Øyvind Seland, Ragnhild B. Skeie, Toshihiko Takemura, Kostas Tsigaridis, and Kai Zhang
Atmos. Chem. Phys., 16, 2221–2241, https://doi.org/10.5194/acp-16-2221-2016, https://doi.org/10.5194/acp-16-2221-2016, 2016
Short summary
Short summary
The vertical distribution of atmospheric aerosol is an important factor in its effects on climate. In this study we use a sophisticated model of the many interacting processes affecting aerosol in the atmosphere to show that the vertical distribution is typically dominated by only a few of these processes. Constraining these physical processes may help to reduce the large differences between models. However, the important processes are not always the same for different types of aerosol.
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
Short summary
In this paper, we assess how well model-simulated precipitation rates compare to those indicated by geological data for the early Eocene, a warm interval 56–49 million years ago. Our results show that a number of models struggle to produce sufficient precipitation at high latitudes, which likely relates to cool simulated temperatures in these regions. However, calculating precipitation rates from plant fossils is highly uncertain, and further data are now required.
Franco Marenco, Ben Johnson, Justin M. Langridge, Jane Mulcahy, Angela Benedetti, Samuel Remy, Luke Jones, Kate Szpek, Jim Haywood, Karla Longo, and Paulo Artaxo
Atmos. Chem. Phys., 16, 2155–2174, https://doi.org/10.5194/acp-16-2155-2016, https://doi.org/10.5194/acp-16-2155-2016, 2016
Short summary
Short summary
A widespread and persistent smoke layer was observed in the Amazon
region during the biomass burning season, spanning a distance of 2200 km
and a period of 14 days. The larger smoke content was typically found
in elevated layers, from 1–1.5 km to 4–6 km.
Measurements have been compared to model predictions, and the latter
were able to reproduce the general features of the smoke layer, but
with some differences which are analysed and described in the paper.
L. Xia, A. Robock, S. Tilmes, and R. R. Neely III
Atmos. Chem. Phys., 16, 1479–1489, https://doi.org/10.5194/acp-16-1479-2016, https://doi.org/10.5194/acp-16-1479-2016, 2016
Short summary
Short summary
Climate model simulations show that stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. Enhanced downward diffuse radiation, combined with cooling, could stimulate plants to grow more and absorb more carbon dioxide. This beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about implementation of geoengineering.
E. W. Butt, A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, V. Vakkari, E. A. Stone, M. Rupakheti, P. S. Praveen, P. G. van Zyl, J. P. Beukes, M. Josipovic, E. J. S. Mitchell, S. M. Sallu, P. M. Forster, and D. V. Spracklen
Atmos. Chem. Phys., 16, 873–905, https://doi.org/10.5194/acp-16-873-2016, https://doi.org/10.5194/acp-16-873-2016, 2016
Short summary
Short summary
We estimate the impact of residential emissions (cooking and heating) on atmospheric aerosol, human health, and climate. We find large contributions to annual mean ambient PM2.5 in residential sources regions resulting in significant but uncertain global premature mortality when key uncertainties in emission flux are considered. We show that residential emissions exert an uncertain global radiative effect and suggest more work is needed to characterise residential emissions climate importance.
A. Laakso, H. Kokkola, A.-I. Partanen, U. Niemeier, C. Timmreck, K. E. J. Lehtinen, H. Hakkarainen, and H. Korhonen
Atmos. Chem. Phys., 16, 305–323, https://doi.org/10.5194/acp-16-305-2016, https://doi.org/10.5194/acp-16-305-2016, 2016
Short summary
Short summary
We have studied the impacts of a volcanic eruption during solar radiation management (SRM) using an aerosol-climate model ECHAM5-HAM-SALSA and an Earth system model MPI-ESM. A volcanic eruption during stratospheric sulfur geoengineering would lead to larger particles and smaller amount of new particles than if an volcano erupts in normal atmospheric conditions. Thus, volcanic eruption during SRM would lead to only a small additional cooling which would last for a significantly shorter period.
C. E. Scott, D. V. Spracklen, J. R. Pierce, I. Riipinen, S. D. D'Andrea, A. Rap, K. S. Carslaw, P. M. Forster, P. Artaxo, M. Kulmala, L. V. Rizzo, E. Swietlicki, G. W. Mann, and K. J. Pringle
Atmos. Chem. Phys., 15, 12989–13001, https://doi.org/10.5194/acp-15-12989-2015, https://doi.org/10.5194/acp-15-12989-2015, 2015
Short summary
Short summary
To understand the radiative effects of biogenic secondary organic aerosol (SOA) it is necessary to consider the manner in which it is distributed across the existing aerosol size distribution. We explore the importance of the approach taken by global-scale models to do this, when calculating the direct radiative effect (DRE) & first aerosol indirect effect (AIE) due to biogenic SOA. This choice has little effect on the DRE, but a substantial impact on the magnitude and even sign of the first AIE
S. R. Kolusu, J. H. Marsham, J. Mulcahy, B. Johnson, C. Dunning, M. Bush, and D. V. Spracklen
Atmos. Chem. Phys., 15, 12251–12266, https://doi.org/10.5194/acp-15-12251-2015, https://doi.org/10.5194/acp-15-12251-2015, 2015
C. J. Gabriel and A. Robock
Atmos. Chem. Phys., 15, 11949–11966, https://doi.org/10.5194/acp-15-11949-2015, https://doi.org/10.5194/acp-15-11949-2015, 2015
Short summary
Short summary
This is a first look at how the El Niño/Southern Oscillation (ENSO) might change under a regime of stratospheric geoengineering (GE). We find neither ENSO event frequency nor ENSO event amplitude will be different under various GE experiments than they would under unabated global warming. We additionally find substantial disagreement between models in depicting ENSO amplitude and frequency. Additionally, output from several GCMs is excluded from comparison due to unrealistic ENSO variability.
B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe
Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, https://doi.org/10.5194/gmd-8-3379-2015, 2015
S. Jasechko, A. Lechler, F. S. R. Pausata, P. J. Fawcett, T. Gleeson, D. I. Cendón, J. Galewsky, A. N. LeGrande, C. Risi, Z. D. Sharp, J. M. Welker, M. Werner, and K. Yoshimura
Clim. Past, 11, 1375–1393, https://doi.org/10.5194/cp-11-1375-2015, https://doi.org/10.5194/cp-11-1375-2015, 2015
Short summary
Short summary
In this study we compile global isotope proxy records of climate changes from the last ice age to the late-Holocene preserved in cave calcite, glacial ice and groundwater aquifers. We show that global patterns of late-Pleistocene to late-Holocene precipitation isotope shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles.
S. C. Lewis and A. N. LeGrande
Clim. Past, 11, 1347–1360, https://doi.org/10.5194/cp-11-1347-2015, https://doi.org/10.5194/cp-11-1347-2015, 2015
M. Namazi, K. von Salzen, and J. N. S. Cole
Atmos. Chem. Phys., 15, 10887–10904, https://doi.org/10.5194/acp-15-10887-2015, https://doi.org/10.5194/acp-15-10887-2015, 2015
Short summary
Short summary
A new parameterization of black carbon in snow in the Canadian Atmospheric Global Climate Model provides realistic simulations of radiative forcings. BC emissions and simulated BC concentrations in snow have changed substantially in recent decades. However, simulated impacts of changes in BC concentrations in snow from 1950-1959 to 2000-2009 on snow reflectivity and snow extent in the Northern Hemisphere are very small, with few regional exceptions, in contrast to results from earlier studies.
S. T. Turnock, D. V. Spracklen, K. S. Carslaw, G. W. Mann, M. T. Woodhouse, P. M. Forster, J. Haywood, C. E. Johnson, M. Dalvi, N. Bellouin, and A. Sanchez-Lorenzo
Atmos. Chem. Phys., 15, 9477–9500, https://doi.org/10.5194/acp-15-9477-2015, https://doi.org/10.5194/acp-15-9477-2015, 2015
Short summary
Short summary
We evaluate HadGEM3-UKCA over Europe for the period 1960-2009 against observations of aerosol mass and number, aerosol optical depth (AOD) and surface solar radiation (SSR). The model underestimates aerosol mass and number but is less biased if compared to AOD and SSR. Observed trends in aerosols are well simulated by the model and necessary for reproducing the observed increase in SSR since 1990. European all-sky top of atmosphere aerosol radiative forcing increased by > 3 Wm-2 from 1970 to 2009.
U. Niemeier and C. Timmreck
Atmos. Chem. Phys., 15, 9129–9141, https://doi.org/10.5194/acp-15-9129-2015, https://doi.org/10.5194/acp-15-9129-2015, 2015
Short summary
Short summary
The injection of sulfur dioxide is considered as an option for solar radiation management. We have calculated the effects of SO2 injections up to 100 Tg(S)/y. Our calculations show that the forcing efficiency of the injection decays exponentially. This result implies that SO2 injections in the order of 6 times Mt. Pinatubo eruptions per year are required to keep temperatures constant at that anticipated for 2020, whilst maintaining business as usual emission conditions.
M. Abe, T. Nozawa, T. Ogura, and K. Takata
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-17527-2015, https://doi.org/10.5194/acpd-15-17527-2015, 2015
Revised manuscript not accepted
D. J. Zawada, S. R. Dueck, L. A. Rieger, A. E. Bourassa, N. D. Lloyd, and D. A. Degenstein
Atmos. Meas. Tech., 8, 2609–2623, https://doi.org/10.5194/amt-8-2609-2015, https://doi.org/10.5194/amt-8-2609-2015, 2015
X. Pan, M. Chin, R. Gautam, H. Bian, D. Kim, P. R. Colarco, T. L. Diehl, T. Takemura, L. Pozzoli, K. Tsigaridis, S. Bauer, and N. Bellouin
Atmos. Chem. Phys., 15, 5903–5928, https://doi.org/10.5194/acp-15-5903-2015, https://doi.org/10.5194/acp-15-5903-2015, 2015
R. Hommel, C. Timmreck, M. A. Giorgetta, and H. F. Graf
Atmos. Chem. Phys., 15, 5557–5584, https://doi.org/10.5194/acp-15-5557-2015, https://doi.org/10.5194/acp-15-5557-2015, 2015
N. Sudarchikova, U. Mikolajewicz, C. Timmreck, D. O'Donnell, G. Schurgers, D. Sein, and K. Zhang
Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, https://doi.org/10.5194/cp-11-765-2015, 2015
S. Tilmes, M. J. Mills, U. Niemeier, H. Schmidt, A. Robock, B. Kravitz, J.-F. Lamarque, G. Pitari, and J. M. English
Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, https://doi.org/10.5194/gmd-8-43-2015, 2015
Short summary
Short summary
A new Geoengineering Model Intercomparison Project (GeoMIP) experiment “G4 specified stratospheric aerosols” (G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments.
M. Toohey, K. Krüger, M. Bittner, C. Timmreck, and H. Schmidt
Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-2014, https://doi.org/10.5194/acp-14-13063-2014, 2014
Short summary
Short summary
Earth system model simulations are used to investigate the impact of volcanic aerosol forcing on stratospheric dynamics, e.g. the Northern Hemisphere (NH) polar vortex. We find that mechanisms linking aerosol heating and high-latitude dynamics are not as direct as often assumed; high-latitude effects result from changes in stratospheric circulation and related vertical motions. The simulated responses also show evidence of being sensitive to the structure of the volcanic forcing used.
B. H. Samset, G. Myhre, A. Herber, Y. Kondo, S.-M. Li, N. Moteki, M. Koike, N. Oshima, J. P. Schwarz, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, M. Chin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, M. Schulz, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, and K. Zhang
Atmos. Chem. Phys., 14, 12465–12477, https://doi.org/10.5194/acp-14-12465-2014, https://doi.org/10.5194/acp-14-12465-2014, 2014
Short summary
Short summary
Far from black carbon (BC) emission sources, present climate models are unable to reproduce flight measurements. By comparing recent models with data, we find that the atmospheric lifetime of BC may be overestimated in models. By adjusting modeled BC concentrations to measurements in remote regions - over oceans and at high altitudes - we arrive at a reduced estimate for BC radiative forcing over the industrial era.
J. Apaéstegui, F. W. Cruz, A. Sifeddine, M. Vuille, J. C. Espinoza, J. L. Guyot, M. Khodri, N. Strikis, R. V. Santos, H. Cheng, L. Edwards, E. Carvalho, and W. Santini
Clim. Past, 10, 1967–1981, https://doi.org/10.5194/cp-10-1967-2014, https://doi.org/10.5194/cp-10-1967-2014, 2014
Short summary
Short summary
In this paper we explore a speleothem δ18O record from Palestina cave, northwestern Peru, on the eastern side of the Andes cordillera, in the upper Amazon Basin. The δ18O record is interpreted as a proxy for South American Summer Monsoon (SASM) intensity and allows the reconstruction of its variability during the last 1600 years. Replicating regional climate signals from different sites and using different proxies is essential for a comprehensive understanding of past changes in SASM activity.
J. Brito, L. V. Rizzo, W. T. Morgan, H. Coe, B. Johnson, J. Haywood, K. Longo, S. Freitas, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 14, 12069–12083, https://doi.org/10.5194/acp-14-12069-2014, https://doi.org/10.5194/acp-14-12069-2014, 2014
Short summary
Short summary
This paper details the physical--chemical characteristics of aerosols in a region strongly impacted by biomass burning in the western part of the Brazilian Amazon region. For such, a large suite of state-of-the-art instruments for realtime analysis was deployed at a ground site. Among the key findings, we observe the strong prevalence of organic aerosols associated to fire emissions, with important climate effects, and indications of its very fast processing in the atmosphere.
S. S. Dhomse, K. M. Emmerson, G. W. Mann, N. Bellouin, K. S. Carslaw, M. P. Chipperfield, R. Hommel, N. L. Abraham, P. Telford, P. Braesicke, M. Dalvi, C. E. Johnson, F. O'Connor, O. Morgenstern, J. A. Pyle, T. Deshler, J. M. Zawodny, and L. W. Thomason
Atmos. Chem. Phys., 14, 11221–11246, https://doi.org/10.5194/acp-14-11221-2014, https://doi.org/10.5194/acp-14-11221-2014, 2014
K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, https://doi.org/10.5194/acp-14-10845-2014, 2014
J. Browse, K. S. Carslaw, G. W. Mann, C. E. Birch, S. R. Arnold, and C. Leck
Atmos. Chem. Phys., 14, 7543–7557, https://doi.org/10.5194/acp-14-7543-2014, https://doi.org/10.5194/acp-14-7543-2014, 2014
R. E. L. West, P. Stier, A. Jones, C. E. Johnson, G. W. Mann, N. Bellouin, D. G. Partridge, and Z. Kipling
Atmos. Chem. Phys., 14, 6369–6393, https://doi.org/10.5194/acp-14-6369-2014, https://doi.org/10.5194/acp-14-6369-2014, 2014
D. Zanchettin, O. Bothe, C. Timmreck, J. Bader, A. Beitsch, H.-F. Graf, D. Notz, and J. H. Jungclaus
Earth Syst. Dynam., 5, 223–242, https://doi.org/10.5194/esd-5-223-2014, https://doi.org/10.5194/esd-5-223-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
L. A. Rieger, A. E. Bourassa, and D. A. Degenstein
Atmos. Meas. Tech., 7, 777–780, https://doi.org/10.5194/amt-7-777-2014, https://doi.org/10.5194/amt-7-777-2014, 2014
D. J. Ullman, A. N. LeGrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi
Clim. Past, 10, 487–507, https://doi.org/10.5194/cp-10-487-2014, https://doi.org/10.5194/cp-10-487-2014, 2014
E. Gasson, D. J. Lunt, R. DeConto, A. Goldner, M. Heinemann, M. Huber, A. N. LeGrande, D. Pollard, N. Sagoo, M. Siddall, A. Winguth, and P. J. Valdes
Clim. Past, 10, 451–466, https://doi.org/10.5194/cp-10-451-2014, https://doi.org/10.5194/cp-10-451-2014, 2014
C. Jiao, M. G. Flanner, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, K. S. Carslaw, M. Chin, N. De Luca, T. Diehl, S. J. Ghan, T. Iversen, A. Kirkevåg, D. Koch, X. Liu, G. W. Mann, J. E. Penner, G. Pitari, M. Schulz, Ø. Seland, R. B. Skeie, S. D. Steenrod, P. Stier, T. Takemura, K. Tsigaridis, T. van Noije, Y. Yun, and K. Zhang
Atmos. Chem. Phys., 14, 2399–2417, https://doi.org/10.5194/acp-14-2399-2014, https://doi.org/10.5194/acp-14-2399-2014, 2014
L. A. Rieger, A. E. Bourassa, and D. A. Degenstein
Atmos. Meas. Tech., 7, 507–522, https://doi.org/10.5194/amt-7-507-2014, https://doi.org/10.5194/amt-7-507-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
C. E. Scott, A. Rap, D. V. Spracklen, P. M. Forster, K. S. Carslaw, G. W. Mann, K. J. Pringle, N. Kivekäs, M. Kulmala, H. Lihavainen, and P. Tunved
Atmos. Chem. Phys., 14, 447–470, https://doi.org/10.5194/acp-14-447-2014, https://doi.org/10.5194/acp-14-447-2014, 2014
A. I. Partanen, A. Laakso, A. Schmidt, H. Kokkola, T. Kuokkanen, J.-P. Pietikäinen, V.-M. Kerminen, K. E. J. Lehtinen, L. Laakso, and H. Korhonen
Atmos. Chem. Phys., 13, 12059–12071, https://doi.org/10.5194/acp-13-12059-2013, https://doi.org/10.5194/acp-13-12059-2013, 2013
M. Yoshida, J. M. Haywood, T. Yokohata, H. Murakami, and T. Nakajima
Atmos. Chem. Phys., 13, 10827–10845, https://doi.org/10.5194/acp-13-10827-2013, https://doi.org/10.5194/acp-13-10827-2013, 2013
O. Bothe, J. H. Jungclaus, and D. Zanchettin
Clim. Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013, https://doi.org/10.5194/cp-9-2471-2013, 2013
M. Trail, A. P. Tsimpidi, P. Liu, K. Tsigaridis, Y. Hu, A. Nenes, and A. G. Russell
Geosci. Model Dev., 6, 1429–1445, https://doi.org/10.5194/gmd-6-1429-2013, https://doi.org/10.5194/gmd-6-1429-2013, 2013
L. A. Lee, K. J. Pringle, C. L. Reddington, G. W. Mann, P. Stier, D. V. Spracklen, J. R. Pierce, and K. S. Carslaw
Atmos. Chem. Phys., 13, 8879–8914, https://doi.org/10.5194/acp-13-8879-2013, https://doi.org/10.5194/acp-13-8879-2013, 2013
T. Russon, A. W. Tudhope, G. C. Hegerl, M. Collins, and J. Tindall
Clim. Past, 9, 1543–1557, https://doi.org/10.5194/cp-9-1543-2013, https://doi.org/10.5194/cp-9-1543-2013, 2013
Z. Kipling, P. Stier, J. P. Schwarz, A. E. Perring, J. R. Spackman, G. W. Mann, C. E. Johnson, and P. J. Telford
Atmos. Chem. Phys., 13, 5969–5986, https://doi.org/10.5194/acp-13-5969-2013, https://doi.org/10.5194/acp-13-5969-2013, 2013
O. Bothe, J. H. Jungclaus, D. Zanchettin, and E. Zorita
Clim. Past, 9, 1089–1110, https://doi.org/10.5194/cp-9-1089-2013, https://doi.org/10.5194/cp-9-1089-2013, 2013
C. L. Reddington, G. McMeeking, G. W. Mann, H. Coe, M. G. Frontoso, D. Liu, M. Flynn, D. V. Spracklen, and K. S. Carslaw
Atmos. Chem. Phys., 13, 4917–4939, https://doi.org/10.5194/acp-13-4917-2013, https://doi.org/10.5194/acp-13-4917-2013, 2013
C. Morrill, A. N. LeGrande, H. Renssen, P. Bakker, and B. L. Otto-Bliesner
Clim. Past, 9, 955–968, https://doi.org/10.5194/cp-9-955-2013, https://doi.org/10.5194/cp-9-955-2013, 2013
M. Toohey and T. von Clarmann
Atmos. Meas. Tech., 6, 937–948, https://doi.org/10.5194/amt-6-937-2013, https://doi.org/10.5194/amt-6-937-2013, 2013
N. Bellouin, G. W. Mann, M. T. Woodhouse, C. Johnson, K. S. Carslaw, and M. Dalvi
Atmos. Chem. Phys., 13, 3027–3044, https://doi.org/10.5194/acp-13-3027-2013, https://doi.org/10.5194/acp-13-3027-2013, 2013
B. H. Samset, G. Myhre, M. Schulz, Y. Balkanski, S. Bauer, T. K. Berntsen, H. Bian, N. Bellouin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, S. Kinne, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, and K. Zhang
Atmos. Chem. Phys., 13, 2423–2434, https://doi.org/10.5194/acp-13-2423-2013, https://doi.org/10.5194/acp-13-2423-2013, 2013
J. Segschneider, A. Beitsch, C. Timmreck, V. Brovkin, T. Ilyina, J. Jungclaus, S. J. Lorenz, K. D. Six, and D. Zanchettin
Biogeosciences, 10, 669–687, https://doi.org/10.5194/bg-10-669-2013, https://doi.org/10.5194/bg-10-669-2013, 2013
H. F. Dacre, A. L. M. Grant, and B. T. Johnson
Atmos. Chem. Phys., 13, 1277–1291, https://doi.org/10.5194/acp-13-1277-2013, https://doi.org/10.5194/acp-13-1277-2013, 2013
Related subject area
Climate and Earth system modeling
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
CropSuite – A comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – The ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
A non-intrusive, multi-scale, and flexible coupling interface in WRF
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
The very-high resolution configuration of the EC-Earth global model for HighResMIP
ZEMBA v1.0: An energy and moisture balance climate model to investigate Quaternary climate
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
EGUsphere, https://doi.org/10.5194/egusphere-2024-2526, https://doi.org/10.5194/egusphere-2024-2526, 2024
Short summary
Short summary
CropSuite is a fuzzy-logic based high resolution open-source crop suitability model considering the impact of climate variability. We apply CropSuite for 48 important staple and cash crops at 1 km spatial resolution for Africa. We find that climate variability significantly impacts on suitable areas, but also affects optimal sowing dates, and multiple cropping potentials. The results provide information that can be used for climate impact assessments, adaptation and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-135, https://doi.org/10.5194/gmd-2024-135, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The Icosahedral Nonhydrostatic (ICON) Model Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++ and Python) and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-140, https://doi.org/10.5194/gmd-2024-140, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article details a new feature we implemented in the most popular regional atmospheric model (WRF). This feature allows data to be exchanged between WRF and any other model (e.g. an ocean model) using the coupling library Ocean-Atmosphere-Sea-Ice-Soil – Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-119, https://doi.org/10.5194/gmd-2024-119, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10-15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100-km and a 25-km grid. The three models are compared with observations to study the improvements thanks to the increased in the resolution.
Daniel Francis James Gunning, Kerim Hestnes Nisancioglu, Emilie Capron, and Roderik van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1384, https://doi.org/10.5194/egusphere-2024-1384, 2024
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth’s orbit. We demonstrate ZEMBA reproduces many features of the Earth’s climate for both the pre-industrial period and the Earth’s most recent cold extreme- the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
K. Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
EGUsphere, https://doi.org/10.5194/egusphere-2024-1431, https://doi.org/10.5194/egusphere-2024-1431, 2024
Short summary
Short summary
The study aimed to improve the representation of spring wheat and rice in the CLM5. The modified CLM5 model performed significantly better than the default model in simulating crop phenology, yield, carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific parameters for accurately simulating vegetation processes and land surface processes.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Cited articles
Abe, M.: Core code of MIROC-ES2L for CMIP6 VolMIP experiments, Zenodo [code], https://doi.org/10.5281/zenodo.5975701, 2022.
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J.,
Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J.,
and Arkin, P.: The Version 2 Global Precipitation Climatology Project (GPCP)
Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, 2003.
Andrews, T., Gregory, J. M., Webb, M. J., and Taylor, K. E.: Forcing,
feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate
models, Geophys. Res. Lett., 39, 1–7, https://doi.org/10.1029/2012GL051607, 2012.
Archibald, A. T., O'Connor, F. M., Abraham, N. L., Archer-Nicholls, S.,
Chipperfield, M. P., Dalvi, M., Folberth, G. A., Dennison, F., Dhomse, S.
S., Griffiths, P. T., Hardacre, C., Hewitt, A. J., Hill, R. S., Johnson, C.
E., Keeble, J., Köhler, M. O., Morgenstern, O., Mulcahy, J. P., Ordóñez, C., Pope, R. J., Rumbold, S. T., Russo, M. R., Savage, N.
H., Sellar, A., Stringer, M., Turnock, S. T., Wild, O., and Zeng, G.:
Description and evaluation of the UKCA stratosphere–troposphere chemistry
scheme (StratTrop vn 1.0) implemented in UKESM1, Geosci. Model Dev., 13,
1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, 2020.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: An ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Bellouin, N., Mann, G. W., Woodhouse, M. T., Johnson, C., Carslaw, K. S., and Dalvi, M.: Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model, Atmos. Chem. Phys., 13, 3027–3044, https://doi.org/10.5194/acp-13-3027-2013, 2013.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H.,
Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N.,
Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C.
S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES),
model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Bittner, M., Schmidt, H., Timmreck, C., and Sienz, F.: Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical
response to tropical volcanic eruptions and its uncertainty, Geophys. Res.
Lett., 43, 9324–9332, 2016.
Boer, G., Stowasser, M., and Hamilton, K.: Inferring climate sensitivity from volcanic events, Clim. Dynam., 28, 481–502, https://doi.org/10.1007/s00382-006-0193-x, 2007.
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes,
J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé,
C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S.,
Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, E., Lionel,
Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020.
Cheruy, F., Ducharne, A., Hourdin, F., Musat, I., Vignon, É., Gastineau,
G., Bastrikov, V., Vuichard, N., Diallo, B., Dufresne, J. L., and Ghattas, J.: Improved near-surface continental climate in IPSL-CM6A-LR by combined
evolutions of atmospheric and land surface physics, J. Adv. Model. Earth
Syst., 12, e2019MS002005, https://doi.org/10.1029/2019MS002005, 2020.
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M.
J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land
Environment Simulator (JULES), model description – Part 2: Carbon fluxes and
vegetation dynamics, Geosci. Model Dev., 4, 701–722,
https://doi.org/10.5194/gmd-4-701-2011, 2011.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran,
P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin,
G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire,
A., and Woodward, S.: Development and evaluation of an Earth-System model –
HadGEM2, Geosci. Mod. Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011.
Coupe, J. and Robock, A.: The Influence of Stratospheric Soot and Sulfate
Aerosols on the Northern Hemisphere Wintertime Atmospheric Circulation, J.
Geophys. Res.-Atmos., 126, e2020JD034513, https://doi.org/10.1029/2020JD034513, 2021.
Cusinato, E., Rubino, A., and Zanchettin, D.: Winter Euro-Atlantic Climate Modes: Future Scenarios From a CMIP6 Multi-Model Ensemble, Geophys. Res. Lett., 48, e2021GL094532, https://doi.org/10.1029/2021GL094532, 2021.
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio,
P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from Earth system model initial-condition large ensembles and future prospects, Nat. Clim. Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020.
d'Orgeval, T., Polcher, J., and de Rosnay, P.: Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes, Hydrol. Earth Syst. Sci., 12, 1387–1401, https://doi.org/10.5194/hess-12-1387-2008, 2008.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R.
J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9,
1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fang, S.-W., Khodri, M., Timmreck, C., Zanchettin, D., and Jungclaus, J. H.:
Disentangling Internal and External Contributions to Atlantic Multidecadal
Variability Over the Past Millennium, Geophys. Res. Lett., 48, e2021GL095990, https://doi.org/10.1029/2021GL095990, 2021.
Fiedler, S., Crueger, T., D'Agostino, R., Peters, K., Becker, T., Leutwyler,
D., Paccini, L., Burdanowitz, J., Buehler, S. A., Cortes, A. U., Dauhut, T.,
Dommenget, D., Fraedrich, K., Jungandreas, L., Maher, N., Naumann, A. K.,
Rugenstein, M., Sakradzija, M., Schmidt, H., Sielmann, F., Stephan, C., Timmreck, C., Zhu, X., and Stevens, B.: Simulated Tropical Precipitation
Assessed across Three Major Phases of the Coupled Model Intercomparison
Project (CMIP), Mon. Weather Rev., 148, 3653–3680, https://doi.org/10.1175/MWR-D-19-0404.1, 2020.
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M.,
Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020.
Hommel, R., Timmreck, C., Giorgetta, M. A., and Graf, H. F.: Quasi-biennial
oscillation of the tropical stratospheric aerosol layer, Atmos. Chem. Phys.,
15, 5557–5584, https://doi.org/10.5194/acp-15-5557-2015, 2015.
Hourdin, F., Rio, C., Grandpeix, J.-Y., Madeleine, J.-B., Cheruy, F., Rochetin, N., Musat, I., Idelkadi, A., Fairhead, L., Foujols, M.-A., Mellul,
L., Traore, A.-K., Dufresne, J.-L., Boucher, O., Lefebvre, M.-P., Millour,
E., Vignon, E., Jouaud, J., Diallo, F. B., Lott, F., Caubel, A., Meurdesoif,
Y., and Ghattas, J.: LMDZ6: Improved atmospheric component of the IPSL
coupled model, J. Adv. Model. Earth Syst., 12, e2019MS001892, https://doi.org/10.1029/2019MS001892, 2020.
IGCMG: IPSLCM6 configuration, http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Config/IPSLCM6, last access: 14 March 2022.
Illing, S., Kadow, C., Pohlmann, H., and Timmreck, C.: Assessing the impact of a future volcanic eruption on decadal predictions, Earth Syst. Dynam., 9,
701–715, https://doi.org/10.5194/esd-9-701-2018, 2018.
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and
Núñez-Riboni, I.: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations, J. Adv. Model. Earth Syst., 5, 287–315, https://doi.org/10.1029/2012MS000178, 2013.
IPSL-CM model development team: Version 6A-LR, IPSL-CM model development team [code],
svn co http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/trunk modipsl; cd modipsl/util; ./model IPSLCM6.1.11-LR
, last access: 11 December 2021.
Jacobson, T. W. P., Yang, W., Vecchi, G. A., and Horowitz, L. W.: Impact of
volcanic aerosol hemispheric symmetry on Sahel rainfall, Clim. Dynam., 55, 1733–1758, https://doi.org/10.1007/s00382-020-05347-7, 2020.
Jin, E. K., Kinter, J., Wang, B., Park, C., Kang, I., Kirtman, B., Kug, J.,
Kumar, A., Luo, J.-J., Schemm, J., Shukla, J., and Yamagata, T.: Current status of ENSO prediction skill in coupled ocean–atmosphere models, Clim.
Dynam., 31, 647–664, https://doi.org/10.1007/s00382-008-0397-3, 2008.
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model, J. Adv. Model. Earth Syst., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013.
Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell, G. L., Ackerman, A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto,
V., Cesana, G., Cheng, Y., Clune, T. L., Cook, B. I., Cruz, C. A., Del Genio, A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y., Kim, D., Lacis, A. A., Leboissetier, A., LeGrande, A. N., Lo, K. K., Marshall, J., Matthews, E. E., McDermid, S., Mezuman, K., Miller, R. L., Murray, L. T., Oinas, V., Orbe, C., García-Pando, C. P., Perlwitz, J. P., Puma, M. J., Rind, D., Romanou, A., Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K., Tselioudis, G., Weng, E., Wu, J., and Yao, M.-S.: GISS-E2.1: Configurations and Climatology, J. Adv. Model. Earth Syst., 12, e2019MS002025, https://doi.org/10.1029/2019MS002025, 2020.
Khodri, M., Izumo, T., Vialard, J., Janicot, S., Cassou, C., Lengaigne, M.,
Mignot, J., Gastineau, G., Guilyardi, E., Lebas, N., Robock, A., and McPhaden, M. J.: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa, Nat. Commun., 8, 778, https://doi.org/10.1038/s41467-017-00755-6, 2017.
Kuhlbrodt, T., Jones, C. G., Sellar, A., Storkey, D., Blockley, E., Stringer, M., Hill, R., Graham, T., Ridley, J., Blaker, A., Calvert, D., Copsey, D., Ellis, R., Hewitt, H., Hyder, P., Ineson, S., Mulcahy, J., Siahaan, A., and Walton, J.: The Low-Resolution Version of HadGEM3 GC3.1: Development and Evaluation for Global Climate, J. Adv. Model. Earth Syst., 10, 2865–2888, https://doi.org/10.1029/2018MS001370, 2018.
Lacis, A., Hansen, J., and Sato, M.: Climate forcing by stratospheric aerosols, Geophys. Res. Lett., 19, 1607–1610, https://doi.org/10.1029/92GL01620, 1992.
Lehner, F., Schurer, A. P., Hegerl, G. C., Deser, C., and Frölicher, T. L.: The importance of ENSO phase during volcanic eruptions for detection and
attribution, Geophys. Res. Lett., 43, 2851–2858, https://doi.org/10.1002/2016GL067935, 2016.
Luo, B.: Stratospheric aerosol data for use in CMIP6 models,
ftp://iacftp.ethz.ch/pub_read/luo/CMIP6/Readme_Data_Description.pdf (last access: 12 August 2019), 2018a.
Luo, B.: Release Notes Stratospheric Aerosol Radiative Forcing and SAD
version v4.0.01850 – 2016, ftp://iacftp.ethz.ch/pub_read/luo/CMIP6_SAD_radForcing_v4.0.0/Release_note_v4.0.0.pdf (last access: 12 August 2019), 2018b.
Madec, G., Bourdallé-Badie, R., Bouttier, P. A., Bricaud, C., Bruciaferri, D., Calvert, D., and Vancoppenolle, M.: NEMO ocean engine
(Version v3.6), Notes du Pôle de modélisation de l'Institut
Pierre-simon Laplace (IPSL), 27, Zenodo, https://doi.org/10.5281/zenodo.1472492, 2017.
Maher, N., Milinski, S., and Ludwig, R.: Large ensemble climate model
simulations: introduction, overview, and future prospects for utilising
multiple types of large ensemble, Earth Syst. Dynam., 12, 401–418,
https://doi.org/10.5194/esd-12-401-2021, 2021.
Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P.
T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description
and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for
the UKCA composition-climate model, Geosci. Model Dev., 3, 519–551,
https://doi.org/10.5194/gmd-3-519-2010, 2010.
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la-Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2, J. Adv. Model. Earth Syst., 11, 998–1038, https://doi.org/10.1029/2018MS001400, 2019.
Max-Planck Institut für Meteorologie: Code availability, https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability last access: 14 March 2022.
Meinen, C. S. and McPhaden, M. J.: Observations of Warm Water Volume Changes
in the Equatorial Pacific and Their Relationship to El Niño and La Niña, J. Climate, 13, 3551–3559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2, 2000.
Ménégoz, M., Cassou, C., Swingedouw, D., Ruprich-Robert, Y.,
Bretonnière, P. A., and Doblas-Reyes, F.: Role of the Atlantic Multidecadal Variability in modulating the climate response to a Pinatubo-like volcanic eruption, Clim. Dynam., 51, 1863–1883, 2018.
Merlis, T. M., Held, I. M., Stenchikov, G. L., Zeng, F., and Horowitz, L.
W.: Constraining Transient Climate Sensitivity Using Coupled Climate Model
Simulations of Volcanic Eruptions, J. Climate, 27, 7781–7795,
https://doi.org/10.1175/JCLI-D-14-00214.1, 2014.
Met Office: Unified Model, http://www.metoffice.gov.uk/research/modelling-systems/unified-model, last access: 14 March 2022.
Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E., Killick, R. E., Dunn, R. J. H., Osborn, T. J., Jones, P. D., and Simpson, I.
R.: An Updated Assessment of Near-Surface Temperature Change From 1850: The
HadCRUT5 Data Set, J. Geophys. Res.-Atmos., 126, e2019JD032361, https://doi.org/10.1029/2019JD032361, 2021.
Mulcahy, J. P., Jones, C., Sellar, A., Johnson, B., Boutle, I. A., Jones, A., Andrews, T., Rumbold, S. T., Mollard, J., Bellouin, N., Johnson, C. E., Williams, K. D., Grosvenor, D. P., and McCoy, D. T.: Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1, J. Adv. Model. Earth Syst., 10, 2786–2805, https://doi.org/10.1029/2018MS001464, 2018.
NASA GISS ModelE development team: Version E2.1 of Model E, NASA [code], https://simplex.giss.nasa.gov/snapshots/, last access:
10 December 2021.
Omrani, N.-E., Bader, J., Keenlyside, N. S., and Manzini, E.: Troposphere–stratosphere response to large-scale North Atlantic Ocean
variability in an atmosphere/ocean coupled model, Clim. Dynam., 46, 1397–1415, https://doi.org/10.1007/s00382-015-2654-6, 2016.
Paik, S., Min, S.-K., Iles, C. E., Fischer, E. M., and Schurer, A. P.:
Volcanic-induced global monsoon drying modulated by diverse El Niño
responses, Sci. Adv., 6, 21, https://doi.org/10.1126/sciadv.aba1212, 2020.
Pauling, A. G., Bushuk, M., and Bitz, C. M.: Robust Inter-Hemispheric Asymmetry in the Response to Symmetric Volcanic Forcing in Model Large Ensembles, Geophys. Res. Lett., 48, e2021GL092558, https://doi.org/10.1029/2021GL092558, 2021.
Pausata, F. S. R., Zanchettin, D., Karamperidou, C., Caballero, R., and
Battisti, D. S.: ITCZ shift and extratropical teleconnections drive ENSO
response to volcanic eruptions, Sci. Adv., 6, eaaz5006, https://doi.org/10.1126/sciadv.aaz5006, 2020.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth
Syst., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013.
Ridley, J. K., Blockley, E. W., Keen, A. B., Rae, J. G. L., West, A. E., and
Schroeder, D.: The sea ice model component of HadGEM3-GC3.1, Geosci. Model
Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018, 2018.
Rieger, L. A., Cole, J. N. S., Fyfe, J. C., Po-Chedley, S., Cameron-Smith,
P. J., Durack, P. J., Gillett, N. P., and Tang, Q.: Quantifying CanESM5 and
EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment, Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, 2020.
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S.,
Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., and
Vivier, F.: The Louvain-La-Neuve sea ice model LIM3.6: Global and regional
capabilities, Geosci. Model Dev., 28, 2991–3005,
https://doi.org/10.5194/gmd-8-2991-2015, 2015.
Sato, M., Hansen, J. E., McCormick, M. P., and Pollack, J. B.: Stratospheric
aerosol optical depths, 1850–1990, J. Geophys. Res., 98, 22987–22994,
https://doi.org/10.1029/93JD02553, 1993.
Schmidt, A., Mills, M. J., Ghan, S., Gregory, J. M., Allan, R. P., Andrews,
T., Bardeen, C. G., Conley, A., Forster, P. M., Gettelman, A., Portmann, R.
W., Solomon, S., and Toon, O. B.: Volcanic radiative forcing from 1979 to 2015, J. Geophys. Res.-Atmos., 123, 12491–12508, 2018.
Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire,
A., O'Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S., de
Mora, L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson,
C. E., Walton, J., Abraham, N. L., Andrews, M. B., Andrews, T., Archibald,
A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.: UKESM1: Description and Evaluation of the U.K. Earth System Model, J. Adv. Model. Earth Syst., 11, 4513–4558, https://doi.org/10.1029/2019MS001739, 2019a.
Sellar, A. A., Walton, J., Jones, C. G., Wood, R., Abraham, N. L., Andrejczuk, M., Andrews, M. B., Andrews, T., Archibald, A. T., de Mora, L.,
Dyson, H., Elkington, M., Ellis, R., Florek, P., Good, P., Gohar, L., Haddad
S., Hardiman, S., Hogan, E., Iwi, A., Jones, C. D., Johnson, B., Kelley, D.
I., Kettleborough, J., Knight, J. R., Koehler, M. O., Kuhlbrodt, T., Liddicoat, S., Linova-Pavlova, I., Mizielinski, M. S., Morgenstern, O.,
Mulcahy, J. P., Neininger, E., O'Connor, F., Petrie, R., Ridley, J., Rioual,
J.-C., Roberts, M., Robertson, E., Rumbold, S. T., Seddon, J., Shepherd, H.,
Shim, S. Stephens, A., Teixiera, Tang, Y, Williams, J., Wiltshire, A., and
Griffiths, P. T.: Implementation of U. K. Earth System Models for CMIP6,
J. Adv. Model. Earth Syst., 12, e2019MS001946, https://doi.org/10.1029/2019MS001946, 2019b.
Smith, C. J., Kramer, R. J., Myhre, G., Forster, P. M., Soden, B. J.,
Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Mülmenstädt, J., Olivié, D., Richardson, T., Samset, B. H., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., and Watson-Parris, D.: Understanding rapid adjustments to diverse forcing agents, Geophys. Res. Lett., 45, 12023–12031, https://doi.org/10.1029/2018GL079826, 2018.
Stephenson, D. B., Pavan, V., Collins, M., Junge, M. M., and Quadrelli, R.:
North Atlantic Oscillation response to transient greenhouse gas forcing and
the impact on European winter climate: a CMIP2 multi-model assessment, Clim.
Dynam., 27, 401–420, https://doi.org/10.1007/s00382-006-0140-x, 2006.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6,
J. Adv. Model. Earth Syst., 5, 146–172, https://doi.org/10.1002/jame.20015, 2013.
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley,
E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., Kuhlbrodt, T.,
Rae, J. G. L., and Sinha, B.: UK Global Ocean GO6 and GO7: a traceable
hierarchy of model resolutions, Geosci. Model Dev., 11, 3187–3213,
https://doi.org/10.5194/gmd-11-3187-2018, 2018.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao,
Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao,
A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The
Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12,
4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019.
Swart, N. C., Cole, J., Kharin, S., Lazare, M., Scinocca, J., Gillett, N., Anstey, J., Arora, V., Christian, J., Hanna, S., Jiao, Y., Lee, W., Majaess, F., Saenko, O., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model (CanESM) – v5.0.3 (v5.0.3), Zenodo [code], https://doi.org/10.5281/zenodo.3251114, 2019.
Swingedouw, D., Ortega, P., Mignot, J., Guilyardi, E., Masson-Delmotte, V.,
Butler, P. G., Khodri, M., and Séférian, R.: Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions, Nat. Commun., 6, 1–12, https://doi.org/10.1038/ncomms7545, 2015.
Thomas, M. A., Giorgetta, M. A., Timmreck, C., Graf, H.-F., and Stenchikov,
G.: Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5
– Part 2: Sensitivity to the phase of the QBO and ENSO, Atmos. Chem. Phys.,
9, 3001–3009, https://doi.org/10.5194/acp-9-3001-2009, 2009.
Thomason, L. W., Ernest, N., Millán, L., Rieger, L., Bourassa, A.,
Vernier, J.-P., Manney, G., Luo, B., Arfeuille, F., and Peter, T.: A global
space-based stratospheric aerosol climatology: 1979–2016, Earth Syst. Sci. Data, 10, 469–492, https://doi.org/10.5194/essd-10-469-2018, 2018.
Timmreck, C., Mann, G. W., Aquila, V., Hommel, R., Lee, L. A., Schmidt, A.,
Brühl, C., Carn, S., Chin, M., Dhomse, S. S., Diehl, T., English, J. M.,
Mills, M. J., Neely, R., Sheng, J., Toohey, M., and Weisenstein, D.: The
Interactive Stratospheric Aerosol Model Intercomparison Project :
motivation and experimental design, Geosci. Model Dev., 11, 2581–2608,
https://doi.org/10.5194/gmd-11-2581-2018, 2018.
Timmreck, C., Toohey, M., Zanchettin, D., Brönnimann, S., Lundstad, E.,
and Wilson, R.: The unidentified eruption of 1809: a climatic cold case,
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, 2021.
Tsutsui, J.: Diagnosing Transient Response to CO2 Forcing in Coupled Atmosphere-Ocean Model Experiments Using a Climate Model Emulator, Geophys. Res. Lett., 47, e2019GL085844, https://doi.org/10.1029/2019GL085844, 2020.
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and
Morales Maqueda, M. A.: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation, Ocean Model., 27, 54–69, https://doi.org/10.1016/j.ocemod.2008.11.003, 2009.
Virgin, J. G., Fletcher, C. G., Cole, J. N. S., von Salzen, K., and Mitovski, T.: Cloud Feedbacks from CanESM2 to CanESM5.0 and their influence on climate sensitivity, Geosci. Model Dev., 14, 5355–5372, https://doi.org/10.5194/gmd-14-5355-2021, 2021.
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw,
K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson,
C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A.,
Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office
Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0
configurations, Geosci. Model Dev., 12, 1909–1963,
https://doi.org/10.5194/gmd-12-1909-2019, 2019.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Wigley, T. M. L., Ammann, C. M., Santer, B. D., and Raper, S. C. B.: Effect of climate sensitivity on the response to volcanic forcing, J. Geophys. Res., 110, D09107, https://doi.org/10.1029/2004JD005557, 2005.
Wild, M.: The global energy balance as represented in CMIP6 climate models,
Clim. Dynam., 55, 553–577, https://doi.org/10.1007/s00382-020-05282-7, 2020.
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D., Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L., Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and Xavier, P. K.: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations, J. Adv. Model. Earth Syst., 10, 357–380, https://doi.org/10.1002/2017MS001115, 2018.
Yang, W., Vecchi, G. A., Fueglistaler, S., Horowitz, L. W., Luet, D. J.,
Muñoz, A. G., Paynter, D., and Underwood, S.: Climate Impacts From Large
Volcanic Eruptions in a High-Resolution Climate Model: The Importance of
Forcing Structure, Geophys. Res. Lett., 46, 7690–7699, https://doi.org/10.1029/2019GL082367, 2019.
Zanchettin, D., Bothe, O., Graf, H. F., Lorenz, S. J., Luterbacher, J., Timmreck, C., and Jungclaus, J. H.: Background conditions influence the
decadal climate response to strong volcanic eruptions, J. Geophys. Res.-Atmos., 118, 4090–4106, https://doi.org/10.1002/jgrd.50229, 2013.
Zanchettin, D., Khodri, M., Timmreck, C., Toohey, M., Schmidt, A., Gerber,
E. P., Hegerl, G., Robock, A., Pausata, F. S. R., Ball, W. T., Bauer, S. E.,
Bekki, S., Dhomse, S. S., LeGrande, A. N., Mann, G. W., Marshall, L., Mills,
M., Marchand, M., Niemeier, U., Poulain, V., Rozanov, E., Rubino, A., Stenke, A., Tsigaridis, K., and Tummon, F.: The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Model Dev., 9, 2701–2719,
https://doi.org/10.5194/gmd-9-2701-2016, 2016.
Zanchettin, D., Timmreck, C., Toohey, M., Jungclaus, J. H., Bittner, M.,
Lorenz, S. J., and Rubino, A.: Clarifying the Relative Role of Forcing Uncertainties and Initial-Condition Unknowns in Spreading the Climate Response to Volcanic Eruptions, Geophys. Res. Lett., 46, 1602–1611,
https://doi.org/10.1029/2018GL081018, 2019.
Zanchettin, D., Timmreck, C., Khodri, M., Cole, J., Tsigaridis, K., Abe, M.,
and Mann, G.: VolMIP piControl field-average GL TR NH SH ENSO NAO monthly
time series, World Data Center for Climate (WDCC) at DKRZ [data set],
https://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=VolMIP_pC (last access: 10 March 2022), 2022a.
Zanchettin, D., Timmreck, C., Khodri, M., Cole, J., Tsigaridis, K., Abe, M.,
and Mann, G.: VolMIP volc-pinatubo-full field-average GL TR NH SH ENSO NAO
monthly time series, World Data Center for Climate (WDCC) at DKRZ [data set], https://doi.org/10.26050/WDCC/VolMIP_volc, 2022b.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020.
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of...