Articles | Volume 15, issue 3
https://doi.org/10.5194/gmd-15-1269-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-15-1269-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
NEMO-Bohai 1.0: a high-resolution ocean and sea ice modelling system for the Bohai Sea, China
School of Ocean Sciences, China University of Geosciences, Beijing
100083, China
School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China
Institute for Atmospheric and Earth System Research (INAR), Faculty of
Science, University of Helsinki, 00014 Helsinki, Finland
Wei Gu
School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China
Andrea M. U. Gierisch
Danish Meteorological Institute, Research and Development, 2100 Copenhagen, Denmark
Yingjun Xu
School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China
Petteri Uotila
CORRESPONDING AUTHOR
Institute for Atmospheric and Earth System Research (INAR), Faculty of
Science, University of Helsinki, 00014 Helsinki, Finland
Related authors
No articles found.
Cecilia Äijälä, Yafei Nie, Lucía Gutiérrez-Loza, Chiara De Falco, Siv Kari Lauvset, Bin Cheng, David Anthony Bailey, and Petteri Uotila
Geosci. Model Dev., 18, 4823–4853, https://doi.org/10.5194/gmd-18-4823-2025, https://doi.org/10.5194/gmd-18-4823-2025, 2025
Short summary
Short summary
The sea ice around Antarctica has experienced record lows in recent years. To understand these changes, models are needed. MetROMS-UHel is a new version of an ocean–sea ice model with updated sea ice code and the atmospheric data. We investigate the effect of our updates on different variables with a focus on sea ice and show an improved sea ice representation as compared with observations.
Robert Massom, Phillip Reid, Stephen Warren, Bonnie Light, Donald Perovich, Luke Bennetts, Petteri Uotila, Siobhan O'Farrell, Michael Meylan, Klaus Meiners, Pat Wongpan, Alexander Fraser, Alessandro Toffoli, Giulio Passerotti, Peter Strutton, Sean Chua, and Melissa Fedrigo
EGUsphere, https://doi.org/10.5194/egusphere-2025-3166, https://doi.org/10.5194/egusphere-2025-3166, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ocean waves play a previously-neglected role in the rapid annual melting of Antarctic sea ice by flooding and pulverising floes, removing the snow cover and reducing the albedo by an estimated 0.38–0.54 – to increase solar absorption and enhance the vertical melt rate by up to 5.2 cm/day. Ice algae further decrease the albedo, to increase the melt-rate enhancement to up to 6.1 cm/day. Melting is accelerated by four previously-unconsidered wave-driven positive feedbacks.
Sofie Hedetoft, Olivia Bang Brinck, Ruth Mottram, Andrea M. U. Gierisch, Steffen Malskær Olsen, Martin Olesen, Nicolaj Hansen, Anders Anker Bjørk, Erik Loebel, Anne Solgaard, and Peter Thejll
EGUsphere, https://doi.org/10.5194/egusphere-2025-1907, https://doi.org/10.5194/egusphere-2025-1907, 2025
Short summary
Short summary
Iceberg mélange is the jumble of icebergs in front of some glaciers that calve into the sea. Some studies suggest mélange might help to control the retreat of glaciers. We studied 3 glaciers in NW Greenland where we used GPS sensors and satellites to track ice movement. We found that glaciers push forward and calve all year, including when mélange and landfast sea ice are present, suggesting mélange is not important in supporting glaciers, but may influence the seasonal calving cycle.
Kristiina Verro, Cecilia Äijälä, Roberta Pirazzini, Ruzica Dadic, Damien Maure, Willem Jan van de Berg, Giacomo Traversa, Christiaan T. van Dalum, Petteri Uotila, Xavier Fettweis, Biagio Di Mauro, and Milla Johansson
EGUsphere, https://doi.org/10.5194/egusphere-2025-386, https://doi.org/10.5194/egusphere-2025-386, 2025
Short summary
Short summary
A realistic representation of Antarctic sea ice is crucial for accurate climate and ocean model predictions. We assessed how different models capture the sunlight reflectivity, snow cover, and ice thickness. Most performed well under mild weather conditions, but overestimated snow/ice reflectivity during cold, with patchy/thin snow conditions. High-resolution satellite imagery revealed spatial albedo variability that models failed to replicate.
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
The Cryosphere, 19, 1031–1046, https://doi.org/10.5194/tc-19-1031-2025, https://doi.org/10.5194/tc-19-1031-2025, 2025
Short summary
Short summary
To better understand the local, regional, and global impacts of the recent rapid sea-ice decline in the Arctic, one of the key issues is to quantify the effects of sea-ice concentration on the surface radiative fluxes. We analyse these effects utilising four data sets called atmospheric reanalyses, and we evaluate uncertainties in these effects arising from inter-reanalysis differences in the sensitivity of the surface radiative fluxes to sea-ice concentration.
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
The Cryosphere, 18, 957–976, https://doi.org/10.5194/tc-18-957-2024, https://doi.org/10.5194/tc-18-957-2024, 2024
Short summary
Short summary
A prerequisite for understanding the local, regional, and hemispherical impacts of Arctic sea-ice decline on the atmosphere is to quantify the effects of sea-ice concentration (SIC) on the sensible and latent heat fluxes in the Arctic. We analyse these effects utilising four data sets called atmospheric reanalyses, and we evaluate uncertainties in these effects arising from inter-reanalysis differences in SIC and in the sensitivity of the latent and sensible heat fluxes to SIC.
Bogi Hansen, Karin M. H. Larsen, Hjálmar Hátún, Steffen M. Olsen, Andrea M. U. Gierisch, Svein Østerhus, and Sólveig R. Ólafsdóttir
Ocean Sci., 19, 1225–1252, https://doi.org/10.5194/os-19-1225-2023, https://doi.org/10.5194/os-19-1225-2023, 2023
Short summary
Short summary
Based on in situ observations combined with sea level anomaly (SLA) data from satellite altimetry, volume as well as heat (relative to 0 °C) transport of the Iceland–Faroe warm-water inflow towards the Arctic (IF inflow) increased from 1993 to 2021. The reprocessed SLA data released in December 2021 represent observed variations accurately. The IF inflow crosses the Iceland–Faroe Ridge in two branches, with retroflection in between. The associated coupling to overflow reduces predictability.
Xiaoqiao Wang, Zhaoru Zhang, Michael S. Dinniman, Petteri Uotila, Xichen Li, and Meng Zhou
The Cryosphere, 17, 1107–1126, https://doi.org/10.5194/tc-17-1107-2023, https://doi.org/10.5194/tc-17-1107-2023, 2023
Short summary
Short summary
The bottom water of the global ocean originates from high-salinity water formed in polynyas in the Southern Ocean where sea ice coverage is low. This study reveals the impacts of cyclones on sea ice and water mass formation in the Ross Ice Shelf Polynya using numerical simulations. Sea ice production is rapidly increased caused by enhancement in offshore wind, promoting high-salinity water formation in the polynya. Cyclones also modulate the transport of this water mass by wind-driven currents.
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023, https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary
Short summary
State-of-the-art Earth system models simulate the observed sea ice extent relatively well, but this is often due to errors in the dynamic and other processes in the simulated sea ice changes cancelling each other out. We assessed the sensitivity of these processes simulated by the coupled ocean–sea ice model NEMO4.0-SI3 to 18 parameters. The performance of the model in simulating sea ice change processes was ultimately improved by adjusting the three identified key parameters.
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022, https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary
Short summary
We propose a method to provide sea ice thickness (SIT) estimates over a test area in the Arctic utilizing radar altimeter (RA) measurement lines and C-band SAR imagery. The RA data are from CryoSat-2, and SAR imagery is from Sentinel-1. By combining them we get a SIT grid covering the whole test area instead of only narrow measurement lines from RA. This kind of SIT estimation can be extended to cover the whole Arctic (and Antarctic) for operational SIT monitoring.
Imke Sievers, Andrea M. U. Gierisch, Till A. S. Rasmussen, Robinson Hordoir, and Lars Stenseng
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-84, https://doi.org/10.5194/tc-2022-84, 2022
Preprint withdrawn
Short summary
Short summary
To predict Arctic sea ice models are used. Many ice models exists. They all are skill full, but give different results. Often this differences result from forcing as for example air temperature. Other differences result from the way the physical equations are solved in the model. In this study two commonly used models are compared under equal forcing, to find out how much the models differ under similar external forcing. The results are compared to observations and to eachother.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Cited articles
Aksenov, Y., Blockley, E., Chevallier, M., Feltham, D., Fichefet, T.,
Garric, G., Holland, P., Iovino, D., Madec, G., Massonnet, F., Ridley, J.,
Rousset, C., Salas, D., Schroeder, D., Tietsche, S., and Vancoppenolle, M.:
Sea Ice modelling Integrated Initiative (SI3) – The NEMO sea ice
engine, Scientific Notes of Climate Modelling Center, ISSN 1288-1619,
Institut Pierre-Simon Laplace (IPSL), https://doi.org/10.5281/zenodo.1471689, 2019.
Bai, S. and Wu, H.: Numerical sea ice forecast for the Bohai Sea, Acta
Meteorol. Sin., 56, 139–153, 1998 (in Chinese).
Bai, X., Wang, J., Liu, Q., Wang, D., and Liu, Y.: Severe ice conditions in
the Bohai Sea, China, and mild ice conditions in the great lakes during the
2009/10 winter: Links to El Nino and a strong negative arctic oscillation, J.
Appl. Meteorol. Clim., 50, 1922–1935, 2011.
Barnier, B., Madec, G., Penduff, T., Molines, J. M., Treguier, A. M., Le
Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval,
C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud,
M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum
advection schemes in a global ocean circulation model at eddy-permitting
resolution, Ocean Dynam., 56, 543–567, 2006.
Bian, C., Jiang, W., Pohlmann, T., and Sündermann, J.:
Hydrography-physical description of the Bohai Sea, J. Coast. Res., 74, 1–12,
2016.
Blanke, B. and Delecluse, P.: Variability of the tropical Atlantic Ocean
simulated by a general circulation model with two different mixed-layer
physics, J. Phys. Oceanogr., 23, 1363–1388, 1993.
Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D.: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts, Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014, 2014.
Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The
elastic–viscous–plastic method revisited, Ocean Model., 71, 2–12, 2013.
Chen, D. X.: Marine atlas of Bohai Sea, Yellow Sea and East China Sea:
Hydrology, Ocean Press, Beijing, China, ISBN 7502737820, 1992.
Courtois, P., Hu, X., Pennelly, C., Spence, P., and Myers, P. G.: Mixed
layer depth calculation in deep convection regions in ocean numerical
models, Ocean Model., 120, 60–78, 2017.
Dai, A., Qian, T., Trenberth, K., and Milliman, J.: Changes in continental
freshwater discharge from 1948 to 2004, J. Climate, 22, 2773–2792, 2009.
Declerck, A., Ourmières, Y., and Molcard, A.: Assessment of the coastal
dynamics in a nested zoom and feedback on the boundary current: the
North-Western Mediterranean Sea case, Ocean Dynam., 66, 1529–1542, 2016.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T., Ligtenberg,
S. R., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal melt
rates of Antarctic ice shelves, Nature, 502, 89–92, 2013.
Ding, D. W.: Introduction to sea ice engineering, Ocean Press,
Beijing, ISBN 7502748075, 1999 (in Chinese).
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The operational sea surface temperature and sea ice analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158, 2012.
Drouard, M. and Cassou, C.: A modeling-and process-oriented study to
investigate the projected change of ENSO-forced wintertime teleconnectivity
in a warmer world, J. Climate, 32, 8047–8068, 2019.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, 2002.
Engedahl, H.: Use of the flow relaxation scheme in a three-dimensional
baroclinic ocean model with realistic topography, Tellus A, 47, 365–382,
1995.
Feucher, C., Garcia Quintana, Y., Yashayaev, I., Hu, X., and Myers, P. G.:
Labrador sea water formation rate and its impact on the local meridional
overturning circulation, J. Geophys. Res.-Oceans, 124, 5654–5670, 2019.
Flather, R. A.: A tidal model of the north-west European continental shelf,
Memoires Societe Royale des Sciences de Liege, 10, 141–164, 1976.
Fu, M., Liu, H., Jin, X., and He, K.: National-to port-level inventories of
shipping emissions in China, Environ. Res. Lett., 12, 114024, https://doi.org/10.1088/1748-9326/aa897a, 2017.
Gong, D., Kim, S., and Ho, C.: Arctic oscillation and ice severity in the
Bohai Sea, East Asia, Int. J. Climatol., 27, 1287–1302, 2007.
Graham, J. A., O'Dea, E., Holt, J., Polton, J., Hewitt, H. T., Furner, R., Guihou, K., Brereton, A., Arnold, A., Wakelin, S., Castillo Sanchez, J. M., and Mayorga Adame, C. G.: AMM15: a new high-resolution NEMO configuration for operational simulation of the European north-west shelf, Geosci. Model Dev., 11, 681–696, https://doi.org/10.5194/gmd-11-681-2018, 2018.
Gu, W., Liu, C., Yuan, S., Li, N., Chao, J., Li, L., and Xu, Y.: Spatial
distribution characteristics of sea-ice-hazard risk in Bohai, China, Ann.
Glaciol., 54, 73–79, 2013.
Gu, W., Shi, P., Chen, W., Xie, F., Xu, Y., and Yuan, S.: Sea ice reserves
estimates and quality evaluation, Science Press, Beijing, ISBN 9787030419149, 2014.
Gunduz, M., Özsoy, E., and Hordoir, R.: A model of Black Sea circulation with strait exchange (2008–2018), Geosci. Model Dev., 13, 121–138, https://doi.org/10.5194/gmd-13-121-2020, 2020.
Harada, Y., Kamahori, H., Kobayashi, C., Endo, H., Kobayashi, S., Ota, Y.,
Onoda, H., Onogi, K., Miyaoka, K., and Takahashi, K.: The JRA-55 reanalysis:
Representation of atmospheric circulation and climate variability, J.
Meteorol. Soc. Jpn., 94, 269–302, 2016.
Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., and Haapala, J.: Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications, Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, 2019.
Hvatov, A., Nikitin, N. O., Kalyuzhnaya, A. V., and Kosukhin, S. S.:
Adaptation of NEMO-LIM3 model for multigrid high resolution Arctic
simulation, Ocean Model., 141, 101427, https://doi.org/10.1016/j.ocemod.2019.101427, 2019.
Ji, C. Z., Li, K., Yu, B., Dong, L., and Liu, Q. R.: The multi-time scale
variations of water exchange across the Bohai Strait, Oceanol. Limnol. Sin., 50, 24–30, 2019 (in
Chinese).
Ju, X. and Xiong, X.: Distributions and seasonal changes of water
temperature in the Bohai Sea, Yellow Sea and East China Sea, Adv. Mar. Sci., 31, 55–68, 2013 (in Chinese).
Kärnä, T., Ljungemyr, P., Falahat, S., Ringgaard, I., Axell, L., Korabel, V., Murawski, J., Maljutenko, I., Lindenthal, A., Jandt-Scheelke, S., Verjovkina, S., Lorkowski, I., Lagemaa, P., She, J., Tuomi, L., Nord, A., and Huess, V.: Nemo-Nordic 2.0: operational marine forecast model for the Baltic Sea, Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, 2021.
Karvonen, J., Shi, L., Cheng, B., Simila, M., Makynen, M., and Vihma, T.:
Bohai sea ice parameter estimation based on thermodynamic ice model and
earth observation data, Remote Sens.-Basel, 9, 234, https://doi.org/10.3390/rs9030234, 2017.
Kimmritz, M., Losch, M., and Danilov, S.: A comparison of viscous-plastic
sea ice solvers with and without replacement pressure, Ocean Model., 115,
59–69, 2017.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 reanalysis: General specifications and basic characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, 2015.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364, 2009.
Leppäranta, M.: The drift of sea ice, Springer Science & Business
Media, 2011.
Li, R., Lu, Y., Hu, X., Guo, D., Zhao, P., Wang, N., Lee, K., and Zhang, B.:
Space-time variations of sea ice in Bohai Sea in the winter of 2009–2010
simulated with a coupled ocean and ice model, J. Oceanogr., 77, 243–258,
2021.
Li, Y., Wolanski, E., and Zhang, H.: What processes control the net currents
through shallow straits? A review with application to the Bohai Strait,
China, Estuar. Coast Shelf S., 158, 1–11, 2015.
Li, Z., Lu, P., and Sodhi, D. S.: Ice engineering sub-areas in Bohai from
ice physical and mechanical parameters, Adv. Water Sci., 15, 598–602, 2004 (in
Chinese).
Li, Z., Zhang, L., Lu, P., Leppäranta, M., and Li, G.: Experimental
study on the effect of porosity on the uniaxial compressive strength of sea
ice in Bohai Sea, Sci. China Technol. Sci., 54, 2429–2436, 2011.
Lin, X., Wu, D., Bao, X., and Jiang, W.: Study on seasonal temperature and
flux variation of the Bohai Strait, J. Ocean Univ. Qingdao, 32, 355–360, 2002 (in Chinese).
Lin, X., Yang, J., Guo, J., Zhang, Z., Yin, Y., Song, X., and Zhang, X.: An
asymmetric upwind flow, Yellow Sea warm current: 1. New observations in the
western Yellow Sea, J. Geophys. Res.-Oceans, 116, C04026, https://doi.org/10.1029/2010JC006513, 2011.
Liu, C., Gu, W., Chao, J., Li, L., Yuan, S., and Xu, Y.: Spatio-temporal
characteristics of the sea-ice volume of the Bohai Sea, China, in winter
2009/10, Ann. Glaciol., 54, 97–104, 2013.
Liu, Q., Liu, Y., Bai, S., Zhang, Q., Li, B., and Li, C.: Numerical sea ice
forecast for the Bohai Sea in the winter of 2002-2003, Mar. Forecast., 20, 60–67, 2003 (in
Chinese).
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., and Seidov, D.: World ocean atlas 2013, Volume 1:
Temperature, NOAA Atlas NESDIS 73, 40 pp., 2013.
Madec, G. and the NEMO team: NEMO ocean engine, Note du Pôle de
modélisation, Institut Pierre-Simon Laplace No 27, France, 1288–1619, 2016.
Massonnet, F., Barthélemy, A., Worou, K., Fichefet, T., Vancoppenolle, M., Rousset, C., and Moreno-Chamarro, E.: On the discretization of the ice thickness distribution in the NEMO3.6-LIM3 global ocean–sea ice model, Geosci. Model Dev., 12, 3745–3758, https://doi.org/10.5194/gmd-12-3745-2019, 2019.
Massonnet, F., Fichefet, T., Goosse, H., Vancoppenolle, M., Mathiot, P., and König Beatty, C.: On the influence of model physics on simulations of Arctic and Antarctic sea ice, The Cryosphere, 5, 687–699, https://doi.org/10.5194/tc-5-687-2011, 2011.
Mortin, J., Svensson, G., Graversen, R. G., Kapsch, M.-L., Stroeve, J. C.,
and Boisvert, L. N.: Melt onset over Arctic sea ice controlled by
atmospheric moisture transport, Geophys. Res. Lett., 43, 6636–6642, 2016.
NEMO Consortium: NEMO svn depository [code], http://forge.ipsl.jussieu.fr/nemo/svn/NEMO/trunk/, last access: 20 May 2021.
Obermann-Hellhund, A., Conte, D., Somot, S., Torma, C. Z., and Ahrens, B.:
Mistral and Tramontane wind systems in climate simulations from 1950 to
2100, Clim. Dynam., 50, 693–703, 2018.
O'Dea, E., Furner, R., Wakelin, S., Siddorn, J., While, J., Sykes, P., King, R., Holt, J., and Hewitt, H.: The CO5 configuration of the 7 km Atlantic Margin Model: large-scale biases and sensitivity to forcing, physics options and vertical resolution, Geosci. Model Dev., 10, 2947–2969, https://doi.org/10.5194/gmd-10-2947-2017, 2017.
Pemberton, P., Löptien, U., Hordoir, R., Höglund, A., Schimanke, S., Axell, L., and Haapala, J.: Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO–LIM3.6-based ocean–sea-ice model setup for the North Sea and Baltic Sea, Geosci. Model Dev., 10, 3105–3123, https://doi.org/10.5194/gmd-10-3105-2017, 2017.
Reffray, G., Bourdalle-Badie, R., and Calone, C.: Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO, Geosci. Model Dev., 8, 69–86, https://doi.org/10.5194/gmd-8-69-2015, 2015.
Rjazin, J., Hordoir, R., and Parn, O.: Evaluation of the NEMO-Nordic model
by comparing the sea-ice concentration values in the Baltic Sea, J. Ocean.
Technol., 14, 182–194, 2019.
Shi, W. and Wang, M.: Sea ice properties in the Bohai Sea measured by
MODIS-Aqua: 2. Study of sea ice seasonal and interannual variability, J.
Mar. Syst., 95, 41–49, 2012.
Schwarzkopf, F. U., Biastoch, A., Böning, C. W., Chanut, J., Durgadoo, J. V., Getzlaff, K., Harlaß, J., Rieck, J. K., Roth, C., Scheinert, M. M., and Schubert, R.: The INALT family – a set of high-resolution nests for the Agulhas Current system within global NEMO ocean/sea-ice configurations, Geosci. Model Dev., 12, 3329–3355, https://doi.org/10.5194/gmd-12-3329-2019, 2019.
Su, H., Ji, B., and Wang, Y.: Sea ice extent detection in the Bohai Sea
using Sentinel-3 OLCI data, Remote Sens.-Basel, 11, 2436, https://doi.org/10.3390/rs11202436, 2019.
Su, H. and Wang, Y.: Using MODIS data to estimate sea ice thickness in the
Bohai Sea (China) in the 2009-2010 winter, J. Geophys. Res.-Oceans, 117,
C10018, https://doi.org/10.1029/2012JC008251, 2012.
Su, J., Wu, H., Zhang, Y., Liu, Q., and Bai, S.: A coupled ice-ocean model
for the Bohai Sea: I. Study on model and parameter, Acta. Ocean. Sin., 23,
597–608, 2004.
Tang, M., Liu, Q., Liu, Y., and Bai, S.: The numerical simulation of sea ice
in the Bohai Sea, Mar. Forecast., 27, 48–52, 2010 (in Chinese).
Tedesco, L., Miettunen, E., An, B. W., Haapala, J., Kaartokallio, H., and
Miller, L. A.: Long-term mesoscale variability of modelled sea-ice primary
production in the northern Baltic Sea, Elementa-Sci. Anthrop, 5, 29, https://doi.org/10.1525/elementa.223, 2017.
Thompson, B., Sanchez, C., Sun, X., Song, G., Liu, J., Huang, X., and
Tkalich, P.: A high-resolution atmosphere-ocean coupled model for the
western Maritime Continent: development and preliminary assessment, Clim.
Dynam., 52, 3951–3981, 2019.
Uotila, P., Iovino, D., Vancoppenolle, M., Lensu, M., and Rousset, C.: Comparing sea ice, hydrography and circulation between NEMO3.6 LIM3 and LIM2, Geosci. Model Dev., 10, 1009–1031, https://doi.org/10.5194/gmd-10-1009-2017, 2017.
Voldoire, A., Sanchez-Gomez, E., y Mélia, D. S., Decharme, B., Cassou,
C., Sénési, S., Valcke, S., Beau, I., Alias, A., and Chevallier, M.:
The CNRM-CM5. 1 global climate model: description and basic evaluation, Clim.
Dynam., 40, 2091–2121, 2013.
Wan, K., Bao, X., Wang, Y., Wan, X., Li, H., and Liu, K.: Barotropic current
fluctuations coupled with sea level drawdown in Yellow and Bohai Seas, Chin.
J. Ocean. Lim., 33, 272–281, 2015.
Wang, Q., Guo, X., and Takeoka, H.: Seasonal variations of the Yellow River
plume in the Bohai Sea: A model study, J. Geophys. Res., 113, C08046, https://doi.org/10.1029/2007JC004555, 2008.
Wang, R., Liu, X., and Zhang, L.: Numerical tests of sea ice, Acta
Oceanol. Sin., 6, 572–582, 1984 (in Chinese).
Westerlund, A.: A Gulf of Finland (GoF) configuration for the NEMO ocean
model, available at: https://github.com/fmidev/nemo-gof/, last access: 15
December 2019.
Wu, H.: Mathematical representations of sea ice dynamic-thermodynamic
processes, Oceanol. Limnol. Sin., 22, 221–228, 1991 (in Chinese).
Wu, H., Bai, S., Zhang, Z., and Li, G.: Numerical simulation for dynamical
processes of sea ice, Acta Ocean. Sin., 16, 303–325, 1997.
Yan, H., Wang, N., Wu, N., and Lin, W.: Abundance, habitat conditions, and
conservation of the largha seal (Phoca largha) during the past half century
in the Bohai Sea, China, Mamm Study, 43, 1–10, 2018.
Yan, Y., Shao, D., Gu, W., Liu, C., Li, Q., Chao, J., Tao, J., and Xu, Y.:
Multidecadal anomalies of Bohai Sea ice cover and potential climate driving
factors during 1988-2015, Environ. Res. Lett., 12, 094014, https://doi.org/10.1088/1748-9326/aa8116, 2017.
Yan, Y., Gu, W., Xu, Y., and Li, Q.: The in situ observation of modelled sea
ice drift characteristics in the Bohai Sea, Acta Ocean. Sin., 38, 17–25,
2019.
Yan, Y., Uotila, P., Huang, K., and Gu, W.: Variability of sea ice area in
the Bohai Sea from 1958 to 2015, Sci. Total Environ., 709, 136164, https://doi.org/10.1016/j.scitotenv.2019.136164, 2020.
Yan, Y.: NEMO-Bohai 1.0, Zenodo [code],
https://doi.org/10.5281/zenodo.4892454, 2021.
Yang, L., Xu, X., Zhang, P., Han, J., Li, B., and Berggren, P.:
Classification of underwater vocalizations of wild spotted seals (Phoca
largha) in Liaodong Bay, China, J. Acoust. Soc. Am., 141, 2256–2262, 2017.
Yuan, B., Huang, R., Jiao, Y., Guo, D., Shang, J., and Zhang, H.: Analysis
of sea surface temperature and salinity based on the observed buoys data in
the Bohai Sea, Mar. Forecast., 32, 44–50, 2015 (in Chinese).
Yuan, S., Gu, W., Xu, Y., Wang, P., Huang, S., Le, Z., and Cong, J.: The
estimate of sea ice resources quantity in the Bohai Sea based on NOAA/AVHRR
data, Acta Ocean. Sin., 31, 33–40, 2012.
Zalesak, S. T.: Fully multidimensional flux-corrected transport algorithms
for fluids, J. Comput. Phys., 31, 335–362, 1979.
Zeng, T., Shi, L., Marko, M., Cheng, B., Zou, J., and Zhang, Z.: Sea ice
thickness analyses for the Bohai Sea using MODIS thermal infrared imagery,
Acta Ocean. Sin., 35, 96–104, 2016.
Zhang, N., Wu, Y., and Zhang, Q.: Forecasting the evolution of the sea ice
in the Liaodong Bay using meteorological data, Cold. Reg. Sci. Technol., 125,
21–30, 2016.
Zhang, Q. and Zhang, N.: A three-dimensional numerical model of sea ice
evolution in the Bohai Sea, J. Tianjin Univ., 46, 333–341, 2013 (in Chinese).
Zhang, X., Zhang, Z., Xu, Z., Li, G., Sun, Q., and Hou, X.: Sea ice
disasters and their impacts since 2000 in Laizhou Bay of Bohai Sea, China,
Nat. Hazards, 65, 27–40, 2013.
Zhang, Z., Qiao, F., Guo, J., and Guo, B.: Seasonal changes and driving
forces of inflow and outflow through the Bohai Strait, Cont. Shelf. Res., 154,
1–8, 2018.
Zheng, J., Ke, C., and Shao, Z.: Winter sea ice albedo variations in the
Bohai Sea of China, Acta Ocean. Sin., 36, 56–63, 2017.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A.
V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., and
Seidov, D.: World ocean atlas 2013, volume 2: Salinity, NOAA Atlas NESDIS
74, 39 pp., 2013.
Short summary
In this study, we developed NEMO-Bohai, an ocean–ice model for the Bohai Sea, China. This study presented the scientific design and technical choices of the parameterizations for the NEMO-Bohai model. The model was calibrated and evaluated with in situ and satellite observations of ocean and sea ice. NEMO-Bohai is intended to be a valuable tool for long-term ocean and ice simulations and climate change studies.
In this study, we developed NEMO-Bohai, an ocean–ice model for the Bohai Sea, China. This study...
Special issue