Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits
Lavinia Baumstark
CORRESPONDING AUTHOR
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Nico Bauer
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Falk Benke
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Christoph Bertram
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Stephen Bi
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Chen Chris Gong
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Jan Philipp Dietrich
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Alois Dirnaichner
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Anastasis Giannousakis
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Jérôme Hilaire
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
David Klein
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Johannes Koch
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Marian Leimbach
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Antoine Levesque
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Silvia Madeddu
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Aman Malik
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Anne Merfort
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Leon Merfort
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Adrian Odenweller
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Michaja Pehl
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Robert C. Pietzcker
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Franziska Piontek
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Sebastian Rauner
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Renato Rodrigues
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Marianna Rottoli
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Felix Schreyer
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Anselm Schultes
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Bjoern Soergel
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Dominika Soergel
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Jessica Strefler
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Falko Ueckerdt
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Elmar Kriegler
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Gunnar Luderer
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Related authors
No articles found.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan C. Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
EGUsphere, https://doi.org/10.5194/egusphere-2024-2441, https://doi.org/10.5194/egusphere-2024-2441, 2024
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic-climate scenarios' largest effect on variance starting in 2030.
Michaja Pehl, Felix Schreyer, and Gunnar Luderer
Geosci. Model Dev., 17, 2015–2038, https://doi.org/10.5194/gmd-17-2015-2024, https://doi.org/10.5194/gmd-17-2015-2024, 2024
Short summary
Short summary
We extend the REMIND model (used to investigate climate mitigation strategies) by an industry module that represents cement, chemical, steel, and other industries. We also present a method for deriving scenarios of industry subsector activity and energy demand, consistent with established socioeconomic scenarios, allowing us to investigate the different climate change mitigation challenges and strategies in industry subsectors in the context of the entire energy–economy–climate system.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Chen Chris Gong, Falko Ueckerdt, Robert Pietzcker, Adrian Odenweller, Wolf-Peter Schill, Martin Kittel, and Gunnar Luderer
Geosci. Model Dev., 16, 4977–5033, https://doi.org/10.5194/gmd-16-4977-2023, https://doi.org/10.5194/gmd-16-4977-2023, 2023
Short summary
Short summary
To mitigate climate change, the global economy must drastically reduce its greenhouse gas emissions, for which the power sector plays a key role. Until now, long-term models which simulate this transformation cannot always accurately depict the power sector due to a lack of resolution. Our work bridges this gap by linking a long-term model to an hourly model. The result is an almost full harmonization of the models in generating a power sector mix until 2100 with hourly resolution.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Malte Meinshausen, Zebedee R. J. Nicholls, Jared Lewis, Matthew J. Gidden, Elisabeth Vogel, Mandy Freund, Urs Beyerle, Claudia Gessner, Alexander Nauels, Nico Bauer, Josep G. Canadell, John S. Daniel, Andrew John, Paul B. Krummel, Gunnar Luderer, Nicolai Meinshausen, Stephen A. Montzka, Peter J. Rayner, Stefan Reimann, Steven J. Smith, Marten van den Berg, Guus J. M. Velders, Martin K. Vollmer, and Ray H. J. Wang
Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, https://doi.org/10.5194/gmd-13-3571-2020, 2020
Short summary
Short summary
This study provides the future greenhouse gas (GHG) concentrations under the new set of so-called SSP scenarios (the successors of the IPCC SRES and previous representative concentration pathway (RCP) scenarios). The projected CO2 concentrations range from 350 ppm for low-emission scenarios by 2150 to more than 2000 ppm under the high-emission scenarios. We also provide concentrations, latitudinal gradients, and seasonality for most of the other 42 considered GHGs.
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019, https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
Short summary
We compute the global mean temperature increase at which the costs from climate-change damages and climate-change mitigation are minimal. This temperature is computed robustly around 2 degrees of global warming across a wide range of normative assumptions on the valuation of future welfare and inequality aversion.
Matthew J. Gidden, Keywan Riahi, Steven J. Smith, Shinichiro Fujimori, Gunnar Luderer, Elmar Kriegler, Detlef P. van Vuuren, Maarten van den Berg, Leyang Feng, David Klein, Katherine Calvin, Jonathan C. Doelman, Stefan Frank, Oliver Fricko, Mathijs Harmsen, Tomoko Hasegawa, Petr Havlik, Jérôme Hilaire, Rachel Hoesly, Jill Horing, Alexander Popp, Elke Stehfest, and Kiyoshi Takahashi
Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, https://doi.org/10.5194/gmd-12-1443-2019, 2019
Short summary
Short summary
We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources for use in CMIP6. Integrated assessment model results are provided for each scenario with consistent transitions from the historical data to future trajectories. We find that the set of scenarios enables the exploration of a variety of warming pathways. A wide range of scenario data products are provided for the CMIP6 scientific community including global, regional, and gridded emissions datasets.
Jan Philipp Dietrich, Benjamin Leon Bodirsky, Florian Humpenöder, Isabelle Weindl, Miodrag Stevanović, Kristine Karstens, Ulrich Kreidenweis, Xiaoxi Wang, Abhijeet Mishra, David Klein, Geanderson Ambrósio, Ewerton Araujo, Amsalu Woldie Yalew, Lavinia Baumstark, Stephen Wirth, Anastasis Giannousakis, Felicitas Beier, David Meng-Chuen Chen, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 12, 1299–1317, https://doi.org/10.5194/gmd-12-1299-2019, https://doi.org/10.5194/gmd-12-1299-2019, 2019
Short summary
Short summary
We provides an overview on version 4 of the MAgPIE open-source framework for modeling global land systems. Among others, MAgPIE has been used to simulate marker scenarios of the Shared Socioeconomic Pathways (SSPs) and contributed substantially to multiple IPCC assessments. Its recent version marks the first open-source release of the framework and introduces several new features. Via its modularity and spatial flexibility it can serve as a tool for a broad range of land-related research topics.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Brian C. O'Neill, Claudia Tebaldi, Detlef P. van Vuuren, Veronika Eyring, Pierre Friedlingstein, George Hurtt, Reto Knutti, Elmar Kriegler, Jean-Francois Lamarque, Jason Lowe, Gerald A. Meehl, Richard Moss, Keywan Riahi, and Benjamin M. Sanderson
Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, https://doi.org/10.5194/gmd-9-3461-2016, 2016
Short summary
Short summary
The Scenario Model Intercomparison Project (ScenarioMIP) will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. The design consists of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions. Climate model projections will facilitate integrated studies of climate change as well as address targeted scientific questions.
Related subject area
Integrated assessment modeling
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
pathways-ensemble-analysis v1.0.0: an open-source library for systematic and robust analysis of pathways ensembles
CLASH – Climate-responsive Land Allocation model with carbon Storage and Harvests
Carbon Monitor Power-Simulators (CMP-SIM v1.0) across countries: a data-driven approach to simulate daily power generation
Intercomparison of multiple two-way coupled meteorology and air quality models (WRF v4.1.1–CMAQ v5.3.1, WRF–Chem v4.1.1, and WRF v3.7.1–CHIMERE v2020r1) in eastern China
MESSAGEix-GLOBIOM nexus module: integrating water sector and climate impacts
MESSAGEix-Materials v1.0.0: Representation of Material Flows and Stocks in an Integrated Assessment Model
Minimum-variance-based outlier detection method using forward-search model error in geodetic networks
Modelling long-term industry energy demand and CO2 emissions in the system context using REMIND (version 3.1.0)
Bidirectional coupling of the long-term integrated assessment model REgional Model of INvestments and Development (REMIND) v3.0.0 with the hourly power sector model Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) v1.0.2
GCAM-CDR v1.0: enhancing the representation of carbon dioxide removal technologies and policies in an integrated assessment model
The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures
Cyclone generation Algorithm including a THERmodynamic module for Integrated National damage Assessment (CATHERINA 1.0) compatible with Coupled Model Intercomparison Project (CMIP) climate data
A tool for air pollution scenarios (TAPS v1.0) to enable global, long-term, and flexible study of climate and air quality policies
Improved CASA model based on satellite remote sensing data: simulating net primary productivity of Qinghai Lake basin alpine grassland
Pixel-level parameter optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with an efficient model–data fusion method and satellite-derived LAI and GPP data
Climate Services Toolbox (CSTools) v4.0: from climate forecasts to climate forecast information
TIM: modelling pathways to meet Ireland's long-term energy system challenges with the TIMES-Ireland Model (v1.0)
ANEMI_Yangtze v1.0: a coupled human–natural systems model for the Yangtze Economic Belt – model description
Nested leave-two-out cross-validation for the optimal crop yield model selection
GCAM-USA v5.3_water_dispatch: integrated modeling of subnational US energy, water, and land systems within a global framework
GOBLIN version 1.0: a land balance model to identify national agriculture and land use pathways to climate neutrality via backcasting
Globally consistent assessment of economic impacts of wildfires in CLIMADA v2.2
Parallel gridded simulation framework for DSSAT-CSM (version 4.7.5.21) using MPI and NetCDF
Estimating global land system impacts of timber plantations using MAgPIE 4.3.5
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, https://doi.org/10.5194/gmd-17-5587-2024, 2024
Short summary
Short summary
The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.
Lara Welder, Neil Grant, and Matthew J. Gidden
EGUsphere, https://doi.org/10.5194/egusphere-2024-761, https://doi.org/10.5194/egusphere-2024-761, 2024
Short summary
Short summary
Pathways investigating the link between emissions and global warming have been continuously used to inform climate policy. We have developed a tool that can facilitate the systematic and robust analysis of ensembles of such pathways. We describe the structure of this tool and then show an illustrative application of it. The application indicates the usefulness of the tool to the research community and shows how it can be used to establish best-practices.
Tommi Ekholm, Nadine-Cyra Freistetter, Aapo Rautiainen, and Laura Thölix
Geosci. Model Dev., 17, 3041–3062, https://doi.org/10.5194/gmd-17-3041-2024, https://doi.org/10.5194/gmd-17-3041-2024, 2024
Short summary
Short summary
CLASH is a numerical model that portrays land allocation between different uses, land carbon stocks, and agricultural and forestry production globally. CLASH can help in examining the role of land use in mitigating climate change, providing food and biogenic raw materials for the economy, and conserving primary ecosystems. Our demonstration with CLASH confirms that reduction of animal-based food, shifting croplands and storing carbon in forests are effective ways to mitigate climate change.
Léna Gurriaran, Yannig Goude, Katsumasa Tanaka, Biqing Zhu, Zhu Deng, Xuanren Song, and Philippe Ciais
Geosci. Model Dev., 17, 2663–2682, https://doi.org/10.5194/gmd-17-2663-2024, https://doi.org/10.5194/gmd-17-2663-2024, 2024
Short summary
Short summary
We developed a data-driven model simulating daily regional power demand based on climate and socioeconomic variables. Our model was applied to eight countries or regions (Australia, Brazil, China, EU, India, Russia, South Africa, US), identifying influential factors and their relationship with power demand. Our findings highlight the significance of economic indicators in addition to temperature, showcasing country-specific variations. This research aids energy planning and emission reduction.
Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, and Shengjin Xie
Geosci. Model Dev., 17, 2471–2492, https://doi.org/10.5194/gmd-17-2471-2024, https://doi.org/10.5194/gmd-17-2471-2024, 2024
Short summary
Short summary
A comprehensive comparison study is conducted targeting the performances of three two-way coupled meteorology and air quality models (WRF-CMAQ, WRF-Chem, and WRF-CHIMERE) for eastern China during 2017. The impacts of aerosol–radiation–cloud interactions on these models’ results are evaluated against satellite and surface observations. Further improvements to the calculation of aerosol–cloud interactions in these models are crucial to ensure more accurate and timely air quality forecasts.
Muhammad Awais, Adriano Vinca, Edward Byers, Stefan Frank, Oliver Fricko, Esther Boere, Peter Burek, Miguel Poblete Cazenave, Paul Natsuo Kishimoto, Alessio Mastrucci, Yusuke Satoh, Amanda Palazzo, Madeleine McPherson, Keywan Riahi, and Volker Krey
Geosci. Model Dev., 17, 2447–2469, https://doi.org/10.5194/gmd-17-2447-2024, https://doi.org/10.5194/gmd-17-2447-2024, 2024
Short summary
Short summary
Climate change, population growth, and depletion of natural resources all pose complex and interconnected challenges. Our research offers a novel model that can help in understanding the interplay of these aspects, providing policymakers with a more robust tool for making informed future decisions. The study highlights the significance of incorporating climate impacts within large-scale global integrated assessments, which can help us in generating more climate-resilient scenarios.
Gamze Ünlü, Florian Maczek, Jihoon Min, Stefan Frank, Fridolin Glatter, Paul Natsuo Kishimoto, Jan Streeck, Nina Eisenmenger, Volker Krey, and Dominik Wiedenhofer
EGUsphere, https://doi.org/10.5194/egusphere-2023-3035, https://doi.org/10.5194/egusphere-2023-3035, 2024
Short summary
Short summary
Extraction and processing of raw materials is a significant source of CO2 emissions in industry and therefore contributor to climate change. We develop an open-source tool to assess different industry decarbonization pathways in Integrated Assessment Models (IAM) with a representation of material flows and stocks.Our research highlights the importance of expanding the scope of climate change mitigation options to include circular economy and material efficiency measures in IAM scenario analysis.
Utkan M. Durdağ
Geosci. Model Dev., 17, 2187–2196, https://doi.org/10.5194/gmd-17-2187-2024, https://doi.org/10.5194/gmd-17-2187-2024, 2024
Short summary
Short summary
This study introduces a novel approach to outlier detection in geodetic networks, challenging conventional and robust methods. By treating outliers as unknown parameters within the Gauss–Markov model and exploring numerous outlier combinations, this approach prioritizes minimal variance and eliminates iteration dependencies. The mean success rate (MSR) comparisons highlight its effectiveness, improving the MSR by 40–45 % for multiple outliers.
Michaja Pehl, Felix Schreyer, and Gunnar Luderer
Geosci. Model Dev., 17, 2015–2038, https://doi.org/10.5194/gmd-17-2015-2024, https://doi.org/10.5194/gmd-17-2015-2024, 2024
Short summary
Short summary
We extend the REMIND model (used to investigate climate mitigation strategies) by an industry module that represents cement, chemical, steel, and other industries. We also present a method for deriving scenarios of industry subsector activity and energy demand, consistent with established socioeconomic scenarios, allowing us to investigate the different climate change mitigation challenges and strategies in industry subsectors in the context of the entire energy–economy–climate system.
Chen Chris Gong, Falko Ueckerdt, Robert Pietzcker, Adrian Odenweller, Wolf-Peter Schill, Martin Kittel, and Gunnar Luderer
Geosci. Model Dev., 16, 4977–5033, https://doi.org/10.5194/gmd-16-4977-2023, https://doi.org/10.5194/gmd-16-4977-2023, 2023
Short summary
Short summary
To mitigate climate change, the global economy must drastically reduce its greenhouse gas emissions, for which the power sector plays a key role. Until now, long-term models which simulate this transformation cannot always accurately depict the power sector due to a lack of resolution. Our work bridges this gap by linking a long-term model to an hourly model. The result is an almost full harmonization of the models in generating a power sector mix until 2100 with hourly resolution.
David R. Morrow, Raphael Apeaning, and Garrett Guard
Geosci. Model Dev., 16, 1105–1118, https://doi.org/10.5194/gmd-16-1105-2023, https://doi.org/10.5194/gmd-16-1105-2023, 2023
Short summary
Short summary
GCAM-CDR is a variant of the Global Change Analysis Model that makes it easier to study the roles that carbon dioxide removal (CDR) might play in climate policy. Building on GCAM 5.4, GCAM-CDR adds several extra technologies to permanently remove carbon dioxide from the air and enables users to simulate a wider range of CDR-related policies and controls.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Théo Le Guenedal, Philippe Drobinski, and Peter Tankov
Geosci. Model Dev., 15, 8001–8039, https://doi.org/10.5194/gmd-15-8001-2022, https://doi.org/10.5194/gmd-15-8001-2022, 2022
Short summary
Short summary
The CATHERINA model produces simulations of cyclone-related annualized damage costs at a country level from climate data and open-source socioeconomic indicators. The framework couples statistical and physical modeling of tropical cyclones to bridge the gap between general circulation and integrated assessment models providing a precise description of tropical-cyclone-related damages.
William Atkinson, Sebastian D. Eastham, Y.-H. Henry Chen, Jennifer Morris, Sergey Paltsev, C. Adam Schlosser, and Noelle E. Selin
Geosci. Model Dev., 15, 7767–7789, https://doi.org/10.5194/gmd-15-7767-2022, https://doi.org/10.5194/gmd-15-7767-2022, 2022
Short summary
Short summary
Understanding policy effects on human-caused air pollutant emissions is key for assessing related health impacts. We develop a flexible scenario tool that combines updated emissions data sets, long-term economic modeling, and comprehensive technology pathways to clarify the impacts of climate and air quality policies. Results show the importance of both policy levers in the future to prevent long-term emission increases from offsetting near-term air quality improvements from existing policies.
Chengyong Wu, Kelong Chen, Chongyi E, Xiaoni You, Dongcai He, Liangbai Hu, Baokang Liu, Runke Wang, Yaya Shi, Chengxiu Li, and Fumei Liu
Geosci. Model Dev., 15, 6919–6933, https://doi.org/10.5194/gmd-15-6919-2022, https://doi.org/10.5194/gmd-15-6919-2022, 2022
Short summary
Short summary
The traditional Carnegie–Ames–Stanford Approach (CASA) model driven by multisource data such as meteorology, soil, and remote sensing (RS) has notable disadvantages. We drove the CASA using RS data and conducted a case study of the Qinghai Lake basin alpine grassland. The simulated result is similar to published and measured net primary productivity (NPP). It may provide a reference for simulating vegetation NPP to satisfy the requirements of accounting carbon stocks and other applications.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Olexandr Balyk, James Glynn, Vahid Aryanpur, Ankita Gaur, Jason McGuire, Andrew Smith, Xiufeng Yue, and Hannah Daly
Geosci. Model Dev., 15, 4991–5019, https://doi.org/10.5194/gmd-15-4991-2022, https://doi.org/10.5194/gmd-15-4991-2022, 2022
Short summary
Short summary
Ireland has significantly increased its climate mitigation ambition, with a recent commitment to reduce greenhouse gases by an average of 7 % yr-1 in the period to 2030 and a net-zero target for 2050. This article describes the TIMES-Ireland model (TIM) developed to inform Ireland's energy system decarbonisation challenge. The paper also outlines a priority list of future model developments to better meet the challenge, taking into account equity, cost-effectiveness, and technical feasibility.
Haiyan Jiang, Slobodan P. Simonovic, and Zhongbo Yu
Geosci. Model Dev., 15, 4503–4528, https://doi.org/10.5194/gmd-15-4503-2022, https://doi.org/10.5194/gmd-15-4503-2022, 2022
Short summary
Short summary
The Yangtze Economic Belt is one of the most dynamic regions of China. The fast urbanization and strong economic growth in the region pose severe challenges for its sustainable development. To improve our understanding of the interactions among coupled human–natural systems in the Belt and to provide the foundation for science-based policy-making for the sustainable development of the Belt, we developed an integrated system-dynamics-based simulation model (ANEMI_Yangtze) for the Belt.
Thi Lan Anh Dinh and Filipe Aires
Geosci. Model Dev., 15, 3519–3535, https://doi.org/10.5194/gmd-15-3519-2022, https://doi.org/10.5194/gmd-15-3519-2022, 2022
Short summary
Short summary
We proposed the leave-two-out method (i.e. one particular implementation of the nested cross-validation) to determine the optimal statistical crop model (using the validation dataset) and estimate its true generalization ability (using the testing dataset). This approach is applied to two examples (robusta coffee in Cu M'gar and grain maize in France). The results suggested that the simple models are more suitable in crop modelling where a limited number of samples is available.
Matthew Binsted, Gokul Iyer, Pralit Patel, Neal T. Graham, Yang Ou, Zarrar Khan, Nazar Kholod, Kanishka Narayan, Mohamad Hejazi, Son Kim, Katherine Calvin, and Marshall Wise
Geosci. Model Dev., 15, 2533–2559, https://doi.org/10.5194/gmd-15-2533-2022, https://doi.org/10.5194/gmd-15-2533-2022, 2022
Short summary
Short summary
GCAM-USA v5.3_water_dispatch is an open-source model that represents key interactions across economic, energy, water, and land systems in a global framework, with subnational detail in the United States. GCAM-USA can be used to explore future changes in demand for (and production of) energy, water, and crops at the state and regional level in the US. This paper describes GCAM-USA and provides four illustrative scenarios to demonstrate the model's capabilities and potential applications.
Colm Duffy, Remi Prudhomme, Brian Duffy, James Gibbons, Cathal O'Donoghue, Mary Ryan, and David Styles
Geosci. Model Dev., 15, 2239–2264, https://doi.org/10.5194/gmd-15-2239-2022, https://doi.org/10.5194/gmd-15-2239-2022, 2022
Short summary
Short summary
The GOBLIN (General Overview for a Backcasting approach of Livestock INtensification) model is a new high-resolution integrated
bottom-upbiophysical land use model capable of identifying broad pathways towards climate neutrality in the agriculture, forestry, and other land use (AFOLU) sector. The model is intended to bridge the gap between hindsight representations of national emissions and much larger globally integrated assessment models.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Phillip D. Alderman
Geosci. Model Dev., 14, 6541–6569, https://doi.org/10.5194/gmd-14-6541-2021, https://doi.org/10.5194/gmd-14-6541-2021, 2021
Short summary
Short summary
This paper documents a framework for accessing crop model input data directly from spatially referenced file formats and running simulations in parallel across a geographic region using the Decision Support System for Agrotechnology Transfer Cropping Systems Model (a widely used crop model system). The framework greatly reduced the execution time when compared to running the standard version of the model.
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Cited articles
Aguilera, R. F., Eggert, R. G., Lagos C. C., G., and Tilton, J. E.: Depletion
and the Future Availability of Petroleum Resources, Energ. J., 30, 141–174, https://doi.org/10.5547/ISSN0195-6574-EJ-Vol30-No1-6, 2009.
Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C.,
Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P.,
Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W.: Cost-effective
control of air quality and greenhouse gases in Europe: Modeling and policy
applications, Environ. Modell. Softw., 26, 1489–1501, https://doi.org/10.1016/j.envsoft.2011.07.012,
2011.
Amous, S.: Non-CO2 emissions from stationary combustion. Background paper to
“Good Practice Guidance and Uncertainty Management in National Greenhouse
Gas Inventories,” IPCC, 2000.
Anthoff, D. and Tol, R. S. J.: The uncertainty about the social cost of
carbon: A decomposition analysis using fund, Climatic Change, 117, 515–530,
https://doi.org/10.1007/s10584-013-0706-7, 2013.
Arrow, K. J. and Debreu, G.: Existence of an Equilibrium for a Competitive
Economy, Econometrica, 22, 265–290, https://doi.org/10.2307/1907353, 1954.
Balasko, Y.: The Equilibrium Manifold: Postmodern Developments in the Theory
of General Economic Equilibrium, MIT Press, 245 pp., 2009.
Barro, R. J. and Sala-i-Martin, X.: Economic growth, 2nd Edn., MIT
Press, Cambridge, Massachusetts, 2004.
Bauer, N., Brecha, R. J., and Luderer, G.: Economics of nuclear power and
climate change mitigation policies, P. Natl. Acad. Sci. USA, 109, 16805–16810,
https://doi.org/10.1073/pnas.1201264109, 2012a.
Bauer, N., Baumstark, L., and Leimbach, M.: The REMIND-R model: the role of
renewables in the low-carbon transformation – first-best vs. second-best
worlds, Climatic Change, 114, 145–168,
https://doi.org/10.1007/s10584-011-0129-2, 2012b.
Bauer, N., Hilaire, J., Brecha, R. J., Edmonds, J., Jiang, K., Kriegler, E.,
Rogner, H.-H., and Sferra, F.: Assessing global fossil fuel availability in
a scenario framework, Energy, 111, 580–592,
https://doi.org/10.1016/j.energy.2016.05.088, 2016a.
Bauer, N., Mouratiadou, I., Luderer, G., Baumstark, L., Brecha, R. J.,
Edenhofer, O., and Kriegler, E.: Global fossil energy markets and climate
change mitigation – an analysis with REMIND, Climatic Change, 136, 69–82,
https://doi.org/10.1007/s10584-013-0901-6, 2016b.
Bauer, N., Rose, S. K., Fujimori, S., Vuuren, D. P. van, Weyant, J., Wise,
M., Cui, Y., Daioglou, V., Gidden, M. J., Kato, E., Kitous, A., Leblanc, F.,
Sands, R., Sano, F., Strefler, J., Tsutsui, J., Bibas, R., Fricko, O.,
Hasegawa, T., Klein, D., Kurosawa, A., Mima, S., and Muratori, M.: Global
energy sector emission reductions and bioenergy use: overview of the
bioenergy demand phase of the EMF-33 model comparison, Climatic Change,
163, 1553–1568, https://doi.org/10.1007/s10584-018-2226-y, 2018.
Bauer, N., Klein, D., Humpenöder, F., Kriegler, E., Luderer, G., Popp,
A., and Strefler, J.: Bio-energy and CO2 emission reductions: an integrated
land-use and energy sector perspective, Climatic Change, 163, 1675–1693,
https://doi.org/10.1007/s10584-020-02895-z, 2020.
Baumstark, L.: REMIND 2.1 paper – code, reportings, scripts, Zenodo [code], https://doi.org/10.5281/zenodo.5047314, 2021.
Baumstark, L., Giannousakis, A., Rodrigues, R., Levesque, A., Oeser, J.,
Bertram, C., Mouratiadou, I., Malik, A., Schreyer, F., Soergel, B., Rottoli,
M., Mishra, A., Dirnaichner, A., Pehl, M., Klein, D., Strefler, J.,
Feldhaus, L., Brecha, R., Dietrich, J. P., and Bi, S.: mrremind: MadRat
REMIND Input Data Library, Zenodo [code], https://doi.org/10.5281/zenodo.4309197,
2020.
Bertram, C., Luderer, G., Pietzcker, R. C., Schmid, E., Kriegler, E., and
Edenhofer, O.: Complementing carbon prices with technology policies to keep
climate targets within reach, Nat. Clim. Change, 5, 235–239,
https://doi.org/10.1038/nclimate2514, 2015.
Bertram, C., Luderer, G., Popp, A., Minx, J. C., Lamb, W. F., Miodrag
Stevanović, Humpenöder, F., Giannousakis, A., and Kriegler, E.:
Targeted policies can compensate most of the increased sustainability risks
in 1.5 ∘C mitigation scenarios, Environ. Res. Lett., 13, 064038,
https://doi.org/10.1088/1748-9326/aac3ec, 2018.
Bodirsky, B. L., Karstens, K., Baumstark, L., Weindl, I., Wang, X., Mishra,
A., Wirth, S., Stevanovic, M., Steinmetz, N., Kreidenweis, U., Rodrigues,
R., Popov, R., Humpenoeder, F., Giannousakis, A., Levesque, A., Klein, D.,
Araujo, E., Beier, F., Oeser, J., Pehl, M., Leip, D., Molina Bacca, E.,
Martinelli, E., Schreyer, F., and Dietrich, J. P.: mrcommons: MadRat commons
Input Data Library, Zenodo [code], https://doi.org/10.5281/zenodo.3822010, 2020.
Bonges, H. A. and Lusk, A. C.: Addressing electric vehicle (EV) sales and
range anxiety through parking layout, policy and regulation, Transport.
Res. A-Pol., 83, 63–73,
https://doi.org/10.1016/j.tra.2015.09.011, 2016.
Bosetti, V., Massetti, E., and Tavoni,M.: TheWITCHModel, Structure,
Baseline, Solutions, 2007, FEEM Working Paper No. 10.2007, CMCC Research Paper No. 7, 2007.
Broehm, M., Strefler, J., and Bauer, N.: Techno-Economic Review of Direct
Air Capture Systems for Large Scale Mitigation of Atmospheric CO2, SSRN, https://doi.org/10.2139/ssrn.2665702, 2015.
Brückl, O.: Global Technical Potential of Electricity Production from Wind Energy, Internal Final Report for BMW AG Study, Institute for Energy Economy and Application Technology (IfE) Germany, Technische Universität München, Munich, Germany, 2005.
Burke, M., Hsiang, S. M., and Miguel, E.: Global non-linear effect of
temperature on economic production, Nature, 527, 235–239,
https://doi.org/10.1038/nature15725, 2015.
CONOPT: CONOPT version 3.17L, ARKI Consulting and Development A/S,
Bagsvaerdvej 246 A, DK-2880 Bagsvaerd, Denmark, 2020.
Debreu, G.: Economies with a Finite Set of Equilibria, Econometrica, 38, 387–392,
https://doi.org/10.2307/1909545, 1970.
Dellink, R., Chateau, J., Lanzi, E., and Magné, B.: Long-term economic
growth projections in the Shared Socioeconomic Pathways, Global
Environ. Chang., 42, 200–214,
https://doi.org/10.1016/j.gloenvcha.2015.06.004, 2017.
den Elzen, M., Kuramochi, T., Höhne, N., Cantzler, J., Esmeijer, K.,
Fekete, H., Fransen, T., Keramidas, K., Roelfsema, M., Sha, F., van Soest,
H., and Vandyck, T.: Are the G20 economies making enough progress to meet
their NDC targets?, Energ. Policy, 126, 238–250,
https://doi.org/10.1016/j.enpol.2018.11.027, 2019.
Dietrich, J. P., Baumstark, L., Bodirsky, B. L., Giannousakis, A., Wirth,
S., Kreidenweis, U., Rodrigues, R., and Stevanovic, M.: pik-piam/madrat:
v1.33.1, Zenodo [code], https://doi.org/10.5281/zenodo.1115491, 2017.
Dietrich, J. P., Bodirsky, B. L., Humpenöder, F., Weindl, I., Stevanović, M., Karstens, K., Kreidenweis, U., Wang, X., Mishra, A., Klein, D., Ambrósio, G., Araujo, E., Yalew, A. W., Baumstark, L., Wirth, S., Giannousakis, A., Beier, F., Chen, D. M.-C., Lotze-Campen, H., and Popp, A.: MAgPIE 4 – a modular open-source framework for modeling global land systems, Geosci. Model Dev., 12, 1299–1317, https://doi.org/10.5194/gmd-12-1299-2019, 2019.
Dietrich, J. P., Bodirsky, B. L., Weindl, I., Humpenöder, F.,
Stevanovic, M., Kreidenweis, U., Wang, X., Karstens, K., Mishra, A., Beier,
F. D., Molina Bacca, E. J., Klein, D., Ambrósio, G., Araujo, E.,
Biewald, A., Lotze-Campen, H., and Popp, A.: MAgPIE – An Open Source
land-use modeling framework, Zenodo [code], https://doi.org/10.5281/zenodo.4231467,
2020.
Eurek, K., Sullivan, P., Gleason, M., Hettinger, D., Heimiller, D., and
Lopez, A.: An improved global wind resource estimate for integrated
assessment models, Energ. Econ., 64, 552–567,
https://doi.org/10.1016/j.eneco.2016.11.015, 2017.
European Environmental Agency (EEA): Europe's onshore and offshore wind energy potential – An assessment of environmental and economical constraints, Technical Report 6/2009, https://doi.org/10.2800/11373, 2009.
Ewing, B. T., Barron, J. M., and Lynch, G. J.: Understanding Macroeconomic
Theory, Routledge, 241 pp., 2006.
Fischedick, M., Roy, J., Abdel-Aziz, A., Acquaye, A., Allwood, J. M., Ceron,
J.-P., Geng, Y., Kheshgi, H., Lanza, A., Perczyk, D., Price, L., Santalla,
E., Sheinbaum, C., and Tanaka, K.: Industry, in: Climate Change 2014:
Mitigation of Climate Change, Contribution of Working Group III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S.,
Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B.,
Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and Minx, J. C., Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 2014.
Fricko, O., Parkinson, S. C., Johnson, N., Strubegger, M., van Vliet, M. T.,
and Riahi, K.: Energy sector water use implications of a 2 ∘C
climate policy, Environ. Res. Lett., 11, 034011,
https://doi.org/10.1088/1748-9326/11/3/034011, 2016.
Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M. Heyes, C., Kindermann, G., Krey, V., McCollum, D. L., Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp, W., and Riahia, K.: The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century, Global Environ. Change,
42, 251–267, https://doi.org/10.1016/j.gloenvcha.2016.06.004,
2017.
Fujino, J., Nair, R., Kainuma, M., Masui, T., and Matsuoka, Y.: Multi-gas
mitigation analysis on stabilization scenarios using AIM global model,
Energ. J., in: Multi-Greenhouse Gas Mitigation and Climate Policy, 343–354, https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-17, 2006.
GAMS: General Algebraic Modeling System (GAMS) Release 31.1.1, GAMS
Development Corporation, Washington, DC, USA, 2020.
Giannousakis, A., Baumstark, L., and Kriegler, E.: En route to China's
mid-century climate goal: comparison of emissions intensity versus absolute
targets, Clim. Policy, 20, 1274–1289, https://doi.org/10.1080/14693062.2020.1798734, 2020a.
Giannousakis, A., Hilaire, J., Nemet, G. F., Luderer, G., Pietzcker, R. C.,
Rodrigues, R., Baumstark, L., and Kriegler, E.: How uncertainty in
technology costs and carbon dioxide removal availability affect climate
mitigation pathways, Energy, 216, 119253,
https://doi.org/10.1016/j.energy.2020.119253, 2020b.
Gibon, T., Hertwich, E. G., Arvesen, A., Singh, B., and Verones, F.: Health
benefits, ecological threats of low-carbon electricity, Environ. Res. Lett.,
12, 034023, https://doi.org/10.1088/1748-9326/aa6047, 2017a.
Gibon, T., Arvesen, A., and Hertwich, E. G.: Life cycle assessment
demonstrates environmental co-benefits and trade-offs of low-carbon
electricity supply options, Renew. Sustain. Energ. Rev., 76,
1283–1290, https://doi.org/10.1016/j.rser.2017.03.078, 2017b.
Glanemann, N., Willner, S. N., and Levermann, A.: Paris Climate Agreement
passes the cost-benefit test, Nat. Commun., 11, 110,
https://doi.org/10.1038/s41467-019-13961-1, 2020.
Global Emissions EDGAR v4.2:
http://edgar.jrc.ec.europa.eu/overview.php?v=42, last access: 25 January
2013.
Gütschow, J., Jeffery, L., Gieseke, R., Gebel, R., Stevens, D., Krapp,
M., and Rocha, M.: The PRIMAP-hist national historical emissions time series
(1850–2014), GFZ Data Services, https://doi.org/10.5880/PIK.2016.003, 2016.
Harmsen, M., Fricko, O., Hilaire, J., van Vuuren, D. P., Drouet, L.,
Durand-Lasserve, O., Fujimori, S., Keramidas, K., Klimont, Z., Luderer, G.,
Aleluia Reis, L., Riahi, K., Sano, F., and Smith, S. J.: Taking some heat
off the NDCs? The limited potential of additional short-lived climate
forcers' mitigation, Climatic Change, 163, 1443–1461,
https://doi.org/10.1007/s10584-019-02436-3, 2020.
Heckscher, E. F., Ohlin, B., Flam, H., and Flanders, M. J.: Heckscher-Ohlin
trade theory, MIT Press, Cambridge, Massachusetts, 234 pp., 1991.
Herfindahl, O. C.: Depletion and Economic Theory, in: Extractive Resources
and Taxation, edited by: Gaffney, M., University of Wisconsin Press, Madison,
Wisconsin, 1967.
Hoogwijk, M.: On the global and regional potential of renewable energy
sources, PhD Thesis, Universiteit Utrecht, Faculteit Scheikunde, Utrecht,
2004.
Hoogwijk, M. and Graus, W.: Global potential of renewable energy sources: a
literature assessment, Ecofys, REN21 – Renewable Energy Policy Network for the 21st Century, 45 pp., available at: https://www.researchgate.net/profile/Wina-Crijns-Graus/publication/237576106_Global_Potential_of_Renewable_ Energy_Sources_a_Literature_Assessment/links/0deec52f89ed 07b2b9000000/Global-Potential-of-Renewable-Energy-Sources-a-Literature-Assessment.pdf (last access: 27 October 2021), 2008.
Horlacher, H.-B.: Globale Potenziale der Wasserkraft. Externe Expertise
für das WBGU-Hauptgutachten 2003 “Welt im Wandel: Energiewende zur
Nachhaltigkeit,” WBGU, Heidelberg, Germany, 2003.
Hourcade, J.-C., Jaccard, M., Bataille, C., and Ghersi, F.: Hybrid Modeling:
New Answers to Old Challenges Introduction to the Special Issue of “The
Energy Journal”, Energ. J., 27, 1–11, 2006.
Howard, P. H. and Sterner, T.: Few and Not So Far Between: A Meta-analysis
of Climate Damage Estimates, Environ. Resour. Econ., 68, 197–225,
https://doi.org/10.1007/s10640-017-0166-z, 2017.
Humpenöder, F., Popp, A., Bodirsky, B. L., Weindl, I., Biewald, A.,
Hermann Lotze-Campen, Dietrich, J. P., Klein, D., Kreidenweis, U.,
Müller, C., Rolinski, S., and Stevanovic, M.: Large-scale bioenergy
production: how to resolve sustainability trade-offs?, Environ. Res. Lett.,
13, 024011, https://doi.org/10.1088/1748-9326/aa9e3b, 2018.
Huppmann, D., Kriegler, E., Krey, V., Riahi, K., Rogelj, J., Rose, S. K.,
Weyant, J., Bauer, N., Bertram, C., Bosetti, V., Calvin, K., Doelman, J.,
Drouet, L., Emmerling, J., Frank, S., Fujimori, S., Gernaat, D., Grubler,
A., Guivarch, C., Haigh, M., Holz, C., Iyer, G., Kato, E., Keramidas, K.,
Kitous, A., Leblanc, F., Liu, J.-Y., Löffler, K., Luderer, G., Marcucci,
A., McCollum, D., Mima, S., Popp, A., Sands, R. D., Sano, F., Strefler, J.,
Tsutsui, J., Van Vuuren, D., Vrontisi, Z., Wise, M., and Zhang, R.: IAMC
1.5 ∘C Scenario Explorer and Data hosted by IIASA, Integrated
Assessment Modeling Consortium & International Institute for Applied
Systems Analysis, https://doi.org/10.22022/SR15/08-2018.15429, 2018.
IEA: CO2 Capture and Storage – A key carbon abatement option, edited by:
OECD, I., International Energy Agency, 2008.
IEA: World Energy Outlook 2016, International Energy Agency, Paris, France,
2016.
IEA: Extended world energy balances, IEA World Energy Statistics and Balances (database), International Energy Agency, https://doi.org/10.1787/data-00513-en, 2021.
IPCC: Special Report on climate change, desertification, land degradation,
sustainable land management, food security, and greenhouse gas fluxes in
terrestrial ecosystems (SRCCL), available at: https://www.ipcc.ch/srccl/ (last access: 27 October 2021), 2019.
Jakob, M., Luderer, G., Steckel, J., Tavoni, M., and Monjon, S.: Time to act
now? Assessing the costs of delaying climate measures and benefits of early
action, Climatic Change, 114, 79–99,
https://doi.org/10.1007/s10584-011-0128-3, 2012.
Jones, B. and O'Neill, B. C.: Spatially explicit global population scenarios
consistent with the Shared Socioeconomic Pathways, Environ. Res. Lett., 11, 084003, https://doi.org/10.1088/1748-9326/11/8/084003, 2016.
Kalkuhl, M. and Wenz, L.: The Impact of Climate Conditions on Economic
Production. Evidence from a Global Panel of Regions, EAERE, Journal of Environmental Economics and Management, 103, 102360, https://doi.org/10.1016/j.jeem.2020.102360, 2020.
KC, S. and Lutz, W.: The human core of the shared socioeconomic pathways:
Population scenarios by age, sex and level of education for all countries to
2100, Global Environm. Chang., 42, 181–192,
https://doi.org/10.1016/j.gloenvcha.2014.06.004, 2017.
Klein, D.: Bioenergy markets in a climate constrained world, Doctoral Thesis, Fakultät VI – Planen Bauen Umwelt, Technische Universität Berlin, Berlin, Germany, https://doi.org/10.14279/depositonce-4307, 2015.
Klein, D., Humpenöder, F., Bauer, N., Dietrich, J. P., Popp, A.,
Bodirsky, B. L., Bonsch, M., and Lotze-Campen, H.: The global economic
long-term potential of modern biomass in a climate-constrained world,
Environ. Res. Lett., 9, 074017,
https://doi.org/10.1088/1748-9326/9/7/074017, 2014a.
Klein, D., Luderer, G., Kriegler, E., Strefler, J., Bauer, N., Leimbach, M.,
Popp, A., Dietrich, J. P., Humpenöder, F., Lotze-Campen, H., and
Edenhofer, O.: The value of bioenergy in low stabilization scenarios: an
assessment using REMIND-MAgPIE, Climatic Change, 123, 705–718,
https://doi.org/10.1007/s10584-013-0940-z, 2014b.
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017.
Klimont, Z., Hoglund, L., Heyes, C., Rafaj, P., Schoepp, W., Cofala, J.,
Borken-Kleefeld, J., Purohit, P., Kupiainen, K., Winiwarter, W., Amann, M.,
Zhao, B., Wang, S. X., Bertok, I., and Sander, R.: Global scenarios of air
pollutants and methane: 1990–2050, in preparation, 2021.
Krey, V.: Global energy-climate scenarios and models: a review, WIREs Energy and Environment, 3, 363–383, https://doi.org/10.1002/wene.98, 2014.
Krey, V., Guo, F., Kolp, P., Zhou, W., Schaeffer, R., Awasthy, A., Bertram,
C., de Boer, H.-S., Fragkos, P., Fujimori, S., He, C., Iyer, G., Keramidas,
K., Köberle, A. C., Oshiro, K., Reis, L. A., Shoai-Tehrani, B.,
Vishwanathan, S., Capros, P., Drouet, L., Edmonds, J. E., Garg, A., Gernaat,
D. E. H. J., Jiang, K., Kannavou, M., Kitous, A., Kriegler, E., Luderer, G.,
Mathur, R., Muratori, M., Sano, F., and van Vuuren, D. P.: Looking under the
hood: A comparison of techno-economic assumptions across national and global
integrated assessment models, Energy, 172, 1254–1267,
https://doi.org/10.1016/j.energy.2018.12.131, 2019.
Kriegler, E., Petermann, N., Krey, V., Schwanitz, V. J., Luderer, G.,
Ashina, S., Bosetti, V., Eom, J., Kitous, A., Méjean, A., Paroussos, L.,
Sano, F., Turton, H., Wilson, C., and Van Vuuren, D. P.: Diagnostic
indicators for integrated assessment models of climate policy, Technol.
Forecast. Soc., 90, 45–61,
https://doi.org/10.1016/j.techfore.2013.09.020, 2015.
Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M.,
Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D.,
Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J.-P., Luderer, G.,
Pehl, M., Pietzcker, R., Piontek, F., Lotze-Campen, H., Biewald, A., Bonsch,
M., Giannousakis, A., Kreidenweis, U., Müller, C., Rolinski, S.,
Schultes, A., Schwanitz, J., Stevanovic, M., Calvin, K., Emmerling, J.,
Fujimori, S., and Edenhofer, O.: Fossil-fueled development (SSP5): An energy
and resource intensive scenario for the 21st century, Global Environ.
Chang., 42, 297–315, https://doi.org/10.1016/j.gloenvcha.2016.05.015, 2017.
Kriegler, E., Bertram, C., Kuramochi, T., Jakob, M., Pehl, M.,
Stevanović, M., Höhne, N., Luderer, G., Minx, J. C., Fekete, H.,
Hilaire, J., Luna, L., Popp, A., Steckel, J. C., Sterl, S., Yalew, A. W.,
Dietrich, J. P., and Edenhofer, O.: Short term policies to keep the door
open for Paris climate goals, Environ. Res. Lett., 13, 074022,
https://doi.org/10.1088/1748-9326/aac4f1, 2018.
Kuramochi, T., Ramírez, A., Turkenburg, W., and Faaij, A.: Comparative
assessment of CO2 capture technologies for carbon-intensive industrial
processes, Prog. Energ. Combust., 38, 87–112, https://doi.org/10.1016/j.pecs.2011.05.001, 2012.
Kyle, P. and Kim, S. H.: Long-term implications of alternative light-duty
vehicle technologies for global greenhouse gas emissions and primary energy
demands, Energ. Policy, 39, 3012–3024,
https://doi.org/10.1016/j.enpol.2011.03.016, 2011.
Le Gallic, T., Assoumou, E., and Maïzi, N.: Future demand for energy
services through a quantitative approach of lifestyles, Energy, 141, 2613–2627, 2017.
Leimbach, M. and Bauer, N.: Capital markets and the costs of climate policies, Environ. Econ. Policy Stud., https://doi.org/10.1007/s10018-021-00327-5, online first, 2021.
Leimbach, M. and Giannousakis, A.: Burden sharing of climate change
mitigation: global and regional challenges under shared socio-economic
pathways, Climatic Change, 155, 273–291, https://doi.org/10.1007/s10584-019-02469-8, 2019.
Leimbach, M., Bauer, N., Baumstark, L., and Edenhofer, O.: Mitigation Costs
in a Globalized World: Climate Policy Analysis with REMIND-R, Environ. Model
Assess., 15, 155–173, https://doi.org/10.1007/s10666-009-9204-8, 2010a.
Leimbach, M., Bauer, N., Baumstark, L., Luken, M., and Edenhofer, O.:
Technological Change and International Trade – Insights from REMIND-R, Energ. J., 31,
109–136, https://doi.org/10.5547/ISSN0195-6574-EJ-Vol31-NoSI-5, 2010b.
Leimbach, M., Schultes, A., Baumstark, L., Giannousakis, A., and Luderer,
G.: Solution algorithms for regional interactions in large-scale integrated
assessment models of climate change, Ann. Oper. Res., 255, 29–45,
https://doi.org/10.1007/s10479-016-2340-z, 2017.
Levesque, A., Pietzcker, R. C., Baumstark, L., De Stercke, S., Grübler,
A., and Luderer, G.: How much energy will buildings consume in 2100? A
global perspective within a scenario framework, Energy, 148, 514–527,
https://doi.org/10.1016/j.energy.2018.01.139, 2018.
Levesque, A., Pietzcker, R. C., and Luderer, G.: Halving energy demand from
buildings: The impact of low consumption practices, Technol.
Forecast. Soc., 146, 253–266,
https://doi.org/10.1016/j.techfore.2019.04.025, 2019.
Levesque, A., Pietzcker, R. C., Baumstark, L., and Luderer, G.: Deep
decarbonisation of buildings energy services through demand and supply
transformations in a 1.5 ∘C scenario, Environ. Res. Lett., 16, 054071,
https://doi.org/10.1088/1748-9326/abdf07, 2021.
Lotze-Campen, H., Müller, C., Bondeau, A., Rost, S., Popp, A., and
Lucht, W.: Global food demand, productivity growth, and the scarcity of land
and water resources: a spatially explicit mathematical programming approach, Agr. Econ.,
39, 325–338, https://doi.org/10.1111/j.1574-0862.2008.00336.x, 2008.
Lu, X., McElroy, M. B., and Kiviluoma, J.: Global potential for
wind-generated electricity, P. Natl. Acad. Sci. USA, 106, 10933–10938,
https://doi.org/10.1073/pnas.0904101106, 2009.
Lucas, P. L., van Vuuren, D. P., Olivier, J. G. J., and den Elzen, M. G. J.:
Long-term reduction potential of non-CO2 greenhouse gases, Environ.
Sci. Policy, 10, 85–103,
https://doi.org/10.1016/j.envsci.2006.10.007, 2007.
Lucas, R. E.: Why Doesn't Capital Flow from Rich to Poor Countries?, Am. Econ. Rev., 80,
92–96, 1990.
Luderer, G., Pietzcker, R. C., Kriegler, E., Haller, M., and Bauer, N.:
Asia's role in mitigating climate change: A technology and sector specific
analysis with ReMIND-R, Energ. Econ., 34, S378–S390,
https://doi.org/10.1016/j.eneco.2012.07.022, 2012.
Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M.,
and Edenhofer, O.: Economic mitigation challenges: how further delay closes
the door for achieving climate targets, Environ. Res. Lett., 8, 034033,
https://doi.org/10.1088/1748-9326/8/3/034033, 2013.
Luderer, G., Krey, V., Calvin, K., Merrick, J., Mima, S., Pietzcker, R.,
Vliet, J. V., and Wada, K.: The role of renewable energy in climate
stabilization: results from the EMF27 scenarios, Climatic Change, 123,
427–441, https://doi.org/10.1007/s10584-013-0924-z, 2014.
Luderer, G., Leimbach, M., Bauer, N., Kriegler, E., Baumstark, L., Bertram,
C., Giannousakis, A., Hilaire, J., Klein, D., Levesque, A., Mouratiadou, I.,
Pehl, M., Pietzcker, R., Piontek, F., Roming, N., Schultes, A., Schwanitz,
V. J., and Strefler, J.: Description of the REMIND Model (Version 1.6),
Social Science Research Network, Rochester, NY, 2015.
Luderer, G., Vrontisi, Z., Bertram, C., Edelenbosch, O. Y., Pietzcker, R.
C., Rogelj, J., De Boer, H. S., Drouet, L., Emmerling, J., Fricko, O.,
Fujimori, S., Havlík, P., Iyer, G., Keramidas, K., Kitous, A., Pehl,
M., Krey, V., Riahi, K., Saveyn, B., Tavoni, M., Van Vuuren, D. P., and
Kriegler, E.: Residual fossil CO2 emissions in 1.5–2 ∘C
pathways, Nat. Clim. Change, 8, 626–633, https://doi.org/10.1038/s41558-018-0198-6, 2018.
Luderer, G., Pehl, M., Arvesen, A., Gibon, T., Bodirsky, B. L., de Boer, H.
S., Fricko, O., Hejazi, M., Humpenöder, F., Iyer, G., Mima, S.,
Mouratiadou, I., Pietzcker, R. C., Popp, A., van den Berg, M., van Vuuren,
D., and Hertwich, E. G.: Environmental co-benefits and adverse side-effects
of alternative power sector decarbonization strategies, Nat. Commun., 10,
5229, https://doi.org/10.1038/s41467-019-13067-8, 2019.
Luderer, G., Bauer, N., Baumstark, L., Bertram, C., Leimbach, M., Pietzcker,
R., Strefler, J., Aboumahboub, T., Auer, C., Bi, S., Dietrich, J.,
Dirnaichner, A., Giannousakis, A., Haller, M., Hilaire, J., Klein, D., Koch,
J., Körner, A., Kriegler, E., Levesque, A., Lorenz, A., Ludig, S.,
Lüken, M., Malik, A., Manger, S., Merfort, L., Mouratiadou, I., Pehl,
M., Piontek, F., Popin, L., Rauner, S., Rodrigues, R., Roming, N., Rottoli,
M., Schmidt, E., Schreyer, F., Schultes, A., Sörgel, B., and Ueckerdt,
F.: REMIND – REgional Model of INvestments and Development (version 2.1.3),
Zenodo [code], https://doi.org/10.5281/zenodo.4091409, 2020a.
Luderer, G., Auer, C., Bauer, N., Baumstark, L., Bertram, C., Bi, S.,
Dirnaichner, A., Giannousakis, A., Hilaire, J., Klein, D., Koch, J.,
Leimbach, M., Levesque, A., Malik, A., Merfort, L., Pehl, M., Pietzker, R.,
Piontek, F., Rauner, S., Rodrigues, R., Rottoli, M., Schreyer, F.,
Sörgel, B., Strefler, J., and Ueckerdt, F.: REMIND v2.1.3 – Model
documentation, Zenodo [data set], https://doi.org/10.5281/zenodo.4268254, 2020b.
Manne, A., Mendelsohn, R., and Richels, R.: A Model for Evaluating Regional
and Global Effects of GHG Reduction Policies, Energ. Policy, 23, 17–34, 1995.
Manne, A. S. and Rutherford, T. F.: International Trade in Oil, Gas and
Carbon Emission Rights: An Intertemporal General Equilibrium Model, Energ. J.,
15, 57–76, 1994.
Meinshausen, M., Wigley, T. M. L., and Raper, S. C. B.: Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications, Atmos. Chem. Phys., 11, 1457–1471, https://doi.org/10.5194/acp-11-1457-2011, 2011.
Miller, L. M. and Kleidon, A.: Wind speed reductions by large-scale wind
turbine deployments lower turbine efficiencies and set low generation
limits, P. Natl. Acad. Sci. USA, 113, 13570,
https://doi.org/10.1073/pnas.1602253113, 2016.
Mishra, G. S., Kyle, P., Teter, J., Morrison, G. M., Kim, S. H., and Yeh,
S.: Transportation Module of Global Change Assessment Model (GCAM): Model
Documentation – Version 1.0, 2013.
Model Documentation – REMIND – IAMC-Documentation:
https://www.iamcdocumentation.eu/index.php/Model_Documentation -_REMIND, last access: 8 December 2020.
Moore, F. C. and Diaz, D. B.: Temperature impacts on economic growth warrant
stringent mitigation policy, Nat. Clim. Change, 5, 127–131, https://doi.org/10.1038/nclimate2481, 2015.
Mouratiadou, I., Bevione, M., Bijl, D. L., Drouet, L., Hejazi, M., Mima, S.,
Pehl, M., and Luderer, G.: Water demand for electricity in deep
decarbonisation scenarios: a multi-model assessment, Climatic Change, 147,
91–106, https://doi.org/10.1007/s10584-017-2117-7, 2018.
Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin,
S., Gregory, K., Grubler, A., Jung, T. Y., Kram, T., La Rovere, E. L.,
Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H. M., Price, L.,
Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M.,
Shukla, P., Smith, S. J., Swart, R., van Rooijen, S., Victor, N., and Dadi,
Z.: Special Report on Emissions Scenarios: A Special Report of Working Group
III of the Intergovernmental Panel on Climate Change, Cambridge University
Press, Cambridge, UK, 2000.
Nordhaus, W.: Estimates of the Social Cost of Carbon: Concepts and Results
from the DICE-2013R Model and Alternative Approaches, Journal of the
Association of Environmental and Resource Economists, 1, 273–312,
https://doi.org/10.1086/676035, 2014.
Nordhaus, W. D.: Economic aspects of global warming in a post-Copenhagen
environment, P. Natl. Acad. Sci. USA, 107, 11721–11726, https://doi.org/10.1073/pnas.1005985107, 2010.
Nordhaus, W. D.: Revisiting the social cost of carbon, P. Natl. Acad. Sci. USA,, 114,
1518–1523, https://doi.org/10.1073/pnas.1609244114, 2017.
Nordhaus, W. D. and Yang, Z.: A Regional Dynamic General-Equilibrium Model
of Alternative Climate-Change Strategies, Am. Econ. Rev., 86,
741–765, 1996.
O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter,
T. R., Mathur, R., and Vuuren, D. P.: A new scenario framework for climate
change research: the concept of shared socioeconomic pathways, Climatic
Change, 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2, 2013.
Pauliuk, S., Milford, R. L., Müller, D. B., and Allwood, J. M.: The
Steel Scrap Age, Environ. Sci. Technol., 47, 3448–3454,
https://doi.org/10.1021/es303149z, 2013.
Pietzcker, R. C., Longden, T., Chen, W., Fu, S., Kriegler, E., Kyle, P., and
Luderer, G.: Long-term transport energy demand and climate policy:
Alternative visions on transport decarbonization in energy-economy models,
Energy, 64, 95–108, https://doi.org/10.1016/j.energy.2013.08.059, 2014a.
Pietzcker, R. C., Stetter, D., Manger, S., and Luderer, G.: Using the sun to
decarbonize the power sector: The economic potential of photovoltaics and
concentrating solar power, Appl. Energ., 135, 704–720,
https://doi.org/10.1016/j.apenergy.2014.08.011, 2014b.
Rao, S., Klimont, Z., Leitao, J., Riahi, K., van Dingenen, R., Reis, L. A.,
Calvin, K., Dentener, F., Drouet, L., Fujimori, S., Harmsen, M., Luderer,
G., Heyes, C., Strefler, J., Tavoni, M., and van Vuuren, D. P.: A
multi-model assessment of the co-benefits of climate mitigation for global
air quality, Environ. Res. Lett., 11, 124013, https://doi.org/10.1088/1748-9326/11/12/124013,
2016.
Rauner, S., Bauer, N., Dirnaichner, A., Dingenen, R. V., Mutel, C., and
Luderer, G.: Coal-exit health and environmental damage reductions outweigh
economic impacts, Nat. Clim. Change, 10, 308–312, https://doi.org/10.1038/s41558-020-0728-x, 2020.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, 2019.
Riahi, K., Vuuren, D. P. van, Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., KC, S., and Leimbach, M.: Shared Socioeconomic
Pathways: An Overview, Global Environ. Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009,
2017.
Roelfsema, M., van Soest, H. L., Harmsen, M., van Vuuren, D. P., Bertram,
C., den Elzen, M., Höhne, N., Iacobuta, G., Krey, V., Kriegler, E.,
Luderer, G., Riahi, K., Ueckerdt, F., Després, J., Drouet, L.,
Emmerling, J., Frank, S., Fricko, O., Gidden, M., Humpenöder, F.,
Huppmann, D., Fujimori, S., Fragkiadakis, K., Gi, K., Keramidas, K.,
Köberle, A. C., Aleluia Reis, L., Rochedo, P., Schaeffer, R., Oshiro,
K., Vrontisi, Z., Chen, W., Iyer, G. C., Edmonds, J., Kannavou, M., Jiang,
K., Mathur, R., Safonov, G., and Vishwanathan, S. S.: Taking stock of
national climate policies to evaluate implementation of the Paris Agreement,
Nat. Commun., 11, 2096, https://doi.org/10.1038/s41467-020-15414-6, 2020.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Seferian, R., Vilarino, M. V., Calvin, K., Edelenbosch, O., Emmerling, J., Fuss, S., Gasser, T., Gillet, N., He, C., Hertwich, E., Höglund Isaksson, L., Huppmann, D., Luderer, G., Markandya, A., McCollum, D., Millar, R., Meinshausen, M.,
Popp, A., Pereira, J., Purohit, P., Riahi, K., Ribes, A., Saunders, H., Schadel, C., Smith, C., Smith, P., Trutnevyte, E., Xiu, Y., Zickfeld, K., and Zhou, W.: Chapter 2: Mitigation pathways compatible with 1.5 ∘C in the context of sustainable development, in: Global Warming of 1.5 ∘C an IPCC special report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, Intergovernmental Panel on Climate Change, Geneva, Switzerland, available at: https://www.ipcc.ch/sr15/ (last access: 27 October 2021), 2018a.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L.,
Séférian, R., and Vilariño, M. V.: Mitigation pathways
compatible with 1.5 ∘C in the context of sustainable development,
in: Special Report on the impacts of global warming of 1.5 ∘C, in: Global Warming of 1.5 ∘C an IPCC special report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, Intergovernmental Panel on Climate Change, Geneva, Switzerland, available at: https://www.ipcc.ch/sr15/ (last access: 27 October 2021), 2018b.
Rogelj, J., Huppmann, D., Krey, V., Riahi, K., Clarke, L., Gidden, M.,
Nicholls, Z., and Meinshausen, M.: A new scenario logic for the Paris
Agreement long-term temperature goal, Nature, 573, 357–363,
https://doi.org/10.1038/s41586-019-1541-4, 2019.
Rogner, H.-H.: An assessment of world hydrocarbon ressources, Annu. Rev. Energ. Env., 22, 217–262,
https://doi.org/10.1146/annurev.energy.22.1.217, 1997.
Rogner, H.-H., Aguilera, R. F., Bertani, R., Bhattacharya, S. C., Dusseault,
M. B., Gagnon, L., Haberl, H., Hoogwijk, M., Johnson, A., Rogner, M. L.,
Wagner, H., and Yakushev, V.: Chapter 7 – Energy Resources and Potentials,
in: Global Energy Assessment – Toward a Sustainable Future, Cambridge
University Press, Cambridge, UK and New York, NY, USA and the International
Institute for Applied Systems Analysis, Laxenburg, Austria, 423–512, 2012.
Rottoli, M., Dirnaichner, A., Kyle, P., Baumstark, L., Pietzcker, R., and
Luderer, G.: Coupling a Detailed Transport Model to the Integrated
Assessment Model REMIND, Environ. Model. Assess.,
https://doi.org/10.1007/s10666-021-09760-y, 2021.
Schafer, A. and Victor, D. G.: The future mobility of the world population,
Transport. Res. A-Pol., 34, 171–205,
https://doi.org/10.1016/S0965-8564(98)00071-8, 2000.
Scholz, Y., Gils, H. C., and Pietzcker, R. C.: Application of a high-detail
energy system model to derive power sector characteristics at high wind and
solar shares, Energ. Econ., 64, 568–582, 2017.
Schultes, A., Leimbach, M., Luderer, G., Pietzcker, R. C., Baumstark, L.,
Bauer, N., Kriegler, E., and Edenhofer, O.: Optimal international technology
cooperation for the low-carbon transformation, Clim. Policy, 18, 1165–1176,
https://doi.org/10.1080/14693062.2017.1409190, 2018.
Schultes, A., Piontek, F., Soergel, B., Rogelj, J., Baumstark, L., Kriegler,
E., Edenhofer, O., and Luderer, G.: Economic damages from on-going climate
change imply deeper near-term emission cuts, Environ. Res. Lett., 16, 104053, https://doi.org/10.1088/1748-9326/ac27ce, 2021.
Schwanitz, V. J.: Evaluating integrated assessment models of global climate
change, Environ. Model. Softw., 50, 120–131,
https://doi.org/10.1016/j.envsoft.2013.09.005, 2013.
Soergel, B., Kriegler, E., Weindl, I., Rauner, S., Dirnaichner, A., Ruhe,
C., Hofmann, M., Bauer, N., Bertram, C., Bodirsky, B. L., Leimbach, M.,
Leininger, J., Levesque, A., Luderer, G., Pehl, M., Wingens, C., Baumstark,
L., Beier, F., Dietrich, J. P., Humpenöder, F., von Jeetze, P., Klein,
D., Koch, J., Pietzcker, R., Strefler, J., Lotze-Campen, H., and Popp, A.: A
sustainable development pathway for climate action within the UN 2030
Agenda, Nat. Clim. Change, 11, 656–664,
https://doi.org/10.1038/s41558-021-01098-3, 2021a.
Soergel, B., Kriegler, E., Bodirsky, B. L., Bauer, N., Leimbach, M., and
Popp, A.: Combining ambitious climate policies with efforts to eradicate
poverty, Nat. Commun., 12, 2342, https://doi.org/10.1038/s41467-021-22315-9, 2021b.
Strefler, J.: Challenges for low stabilization of climate change: The
complementarity of non-CO2 greenhouse gas and aerosol abatement to CO2
emission reductions, PhD Thesis, Technische Universität Berlin, Berlin,
Germany, 178 pp., 2014.
Strefler, J., Bauer, N., Kriegler, E., Popp, A., Giannousakis, A., and
Edenhofer, O.: Between Scylla and Charybdis: Delayed mitigation narrows the
passage between large-scale CDR and high costs, Environ. Res. Lett., 13, 044015,
https://doi.org/10.1088/1748-9326/aab2ba, 2018a.
Strefler, J., Amann, T., Bauer, N., Kriegler, E., and Hartmann, J.:
Potential and costs of carbon dioxide removal by enhanced weathering of
rocks, Environ. Res. Lett., 13, 034010, https://doi.org/10.1088/1748-9326/aaa9c4, 2018b.
Sullivan, P., Krey, V., and Riahi, K.: Impacts of considering electric
sector variability and reliability in the MESSAGE model, Energy Strateg.
Rev., 1, 157–163, https://doi.org/10.1016/j.esr.2013.01.001, 2013.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
The World in 2050 initiative (TWI): Transformations to Achieve the
Sustainable Development Goals, IIASA, TWI2050, Laxenburg, Austria, 2018.
Ueckerdt, F., Pietzcker, R., Scholz, Y., Stetter, D., Giannousakis, A., and
Luderer, G.: Decarbonizing global power supply under region-specific
consideration of challenges and options of integrating variable renewables
in the REMIND model, Energ. Econ., 64, 665–684,
https://doi.org/10.1016/j.eneco.2016.05.012, 2017.
UNEP: The Emissions Gap Report 2019, UNEP, Nairobi, Kenya, 2019.
United Nations General Assembly: Transforming our World: The 2030 Agenda for
Sustainable Development, UN, New York, NY, USA, 2015.
University of Delaware Air Temperature and Precipitation: NOAA Physical
Sciences Laboratory, available at:
https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html, last access: 8 December 2020.
van Beek, L., Hajer, M., Pelzer, P., van Vuuren, D., and Cassen, C.:
Anticipating futures through models: the rise of Integrated Assessment
Modelling in the climate science-policy interface since 1970, Global
Environ. Chang., 65, 102191,
https://doi.org/10.1016/j.gloenvcha.2020.102191, 2020.
Vandyck, T., Keramidas, K., Kitous, A., Spadaro, J. V., Van Dingenen, R.,
Holland, M., and Saveyn, B.: Air quality co-benefits for human health and
agriculture counterbalance costs to meet Paris Agreement pledges, Nat. Commun., 9, 1–11,
https://doi.org/10.1038/s41467-018-06885-9, 2018.
van Sluisveld, M. A. E., Harmsen, J. H. M., Bauer, N., McCollum, D. L.,
Riahi, K., Tavoni, M., Vuuren, D. P. van, Wilson, C., and Zwaan, B. van der:
Comparing future patterns of energy system change in 2 ∘C
scenarios with historically observed rates of change, Global Environ.
Chang., 35, 436–449, https://doi.org/10.1016/j.gloenvcha.2015.09.019, 2015.
van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., van
den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V.,
Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van
Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., and
Tabeau, A.: Energy, land-use and greenhouse gas emissions trajectories under
a green growth paradigm, Global Environ. Chang., 42, 237–250,
https://doi.org/10.1016/j.gloenvcha.2016.05.008, 2017.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Waisman, H.-D., Guivarch, C., and Lecocq, F.: The transportation sector and
low-carbon growth pathways: modelling urban, infrastructure, and spatial
determinants of mobility, Clim. Policy, 13, 106–129,
https://doi.org/10.1080/14693062.2012.735916, 2013.
West, J. J., Smith, S. J., Silva, R. A., Naik, V., Zhang, Y., Adelman, Z.,
Fry, M. M., Anenberg, S., Horowitz, L. W., and Lamarque, J.-F.: Co-benefits
of mitigating global greenhouse gas emissions for future air quality and
human health, Nat. Clim. Change, 3, 885–889,
https://doi.org/10.1038/nclimate2009, 2013.
WGBU: Welt im Wandel: Energiewende zur Nachhaltigkeit (WB der B globale
Umweltveränderung), available at: https://www.wbgu.de/de/publikationen/publikation/welt-im-wandel-energiewende-zur-nachhaltigkeit (last access: 27 October 2021), 2003.
Wilson, C., Grubler, A., Bauer, N., Krey, V., and Riahi, K.: Future capacity
growth of energy technologies: are scenarios consistent with historical
evidence?, Climatic Change, 118, 381–395,
https://doi.org/10.1007/s10584-012-0618-y, 2013.
World Bank: World Development Report 2012: Gender Equality and Development, World Bank, available at: https://openknowledge.worldbank.org/handle/10986/4391 (last access: 27 October 2021), 2012.
Short summary
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and Development (REMIND) with the aim of improving code documentation and transparency. REMIND is an integrated assessment model (IAM) of the energy-economic system. By answering questions like
Can the world keep global warming below 2 °C?and, if so,
Under what socio-economic conditions and applying what technological options?, it is the goal of REMIND to explore consistent transformation pathways.
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and...