Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits
Lavinia Baumstark
CORRESPONDING AUTHOR
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Nico Bauer
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Falk Benke
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Christoph Bertram
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Stephen Bi
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Chen Chris Gong
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Jan Philipp Dietrich
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Alois Dirnaichner
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Anastasis Giannousakis
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Jérôme Hilaire
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
David Klein
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Johannes Koch
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Marian Leimbach
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Antoine Levesque
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Silvia Madeddu
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Aman Malik
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Anne Merfort
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Leon Merfort
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Adrian Odenweller
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Michaja Pehl
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Robert C. Pietzcker
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Franziska Piontek
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Sebastian Rauner
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Renato Rodrigues
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Marianna Rottoli
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Felix Schreyer
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Anselm Schultes
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Bjoern Soergel
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Dominika Soergel
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Jessica Strefler
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Falko Ueckerdt
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Elmar Kriegler
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Gunnar Luderer
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz
Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Related authors
No articles found.
Edna Johanna Molina Bacca, Miodrag Stevanović, Benjamin Leon Bodirsky, Jonathan Cornelis Doelman, Louise Parsons Chini, Jan Volkholz, Katja Frieler, Christopher Paul Oliver Reyer, George Hurtt, Florian Humpenöder, Kristine Karstens, Jens Heinke, Christoph Müller, Jan Philipp Dietrich, Hermann Lotze-Campen, Elke Stehfest, and Alexander Popp
Earth Syst. Dynam., 16, 753–801, https://doi.org/10.5194/esd-16-753-2025, https://doi.org/10.5194/esd-16-753-2025, 2025
Short summary
Short summary
Land-use change projections are vital for impact studies. This study compares updated land-use model projections, including CO2 fertilization among other upgrades, from the MAgPIE and IMAGE models under three scenarios, highlighting differences, uncertainty hotspots, and harmonization effects. Key findings include reduced bioenergy crop demand projections and differences in grassland area allocation and sizes, with socioeconomic–climate scenarios' largest effect on variance starting in 2030.
Pascal Weigmann, Rahel Mandaroux, Fabrice Lécuyer, Anne Merfort, Tabea Dorndorf, Johanna Hoppe, Jarusch Müßel, Robert Pietzcker, Oliver Richters, Lavinia Baumstark, Elmar Kriegler, Nico Bauer, Falk Benke, Chen Chris Gong, and Gunnar Luderer
EGUsphere, https://doi.org/10.5194/egusphere-2025-2284, https://doi.org/10.5194/egusphere-2025-2284, 2025
Short summary
Short summary
We present the Potsdam Integrated Assessment Modeling validation tool, piamValidation, an open-source R package for validating IAM scenarios. The tool enables structured comparison of IAM outputs with historical data, feasibility constraints, and alternative scenarios or models. Designed as a community resource, validation configuration files can serve as a knowledge sharing platform. The main objective is to improve the credibility of IAMs by promoting standardized validation practices.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Michaja Pehl, Felix Schreyer, and Gunnar Luderer
Geosci. Model Dev., 17, 2015–2038, https://doi.org/10.5194/gmd-17-2015-2024, https://doi.org/10.5194/gmd-17-2015-2024, 2024
Short summary
Short summary
We extend the REMIND model (used to investigate climate mitigation strategies) by an industry module that represents cement, chemical, steel, and other industries. We also present a method for deriving scenarios of industry subsector activity and energy demand, consistent with established socioeconomic scenarios, allowing us to investigate the different climate change mitigation challenges and strategies in industry subsectors in the context of the entire energy–economy–climate system.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Chen Chris Gong, Falko Ueckerdt, Robert Pietzcker, Adrian Odenweller, Wolf-Peter Schill, Martin Kittel, and Gunnar Luderer
Geosci. Model Dev., 16, 4977–5033, https://doi.org/10.5194/gmd-16-4977-2023, https://doi.org/10.5194/gmd-16-4977-2023, 2023
Short summary
Short summary
To mitigate climate change, the global economy must drastically reduce its greenhouse gas emissions, for which the power sector plays a key role. Until now, long-term models which simulate this transformation cannot always accurately depict the power sector due to a lack of resolution. Our work bridges this gap by linking a long-term model to an hourly model. The result is an almost full harmonization of the models in generating a power sector mix until 2100 with hourly resolution.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Cited articles
Aguilera, R. F., Eggert, R. G., Lagos C. C., G., and Tilton, J. E.: Depletion
and the Future Availability of Petroleum Resources, Energ. J., 30, 141–174, https://doi.org/10.5547/ISSN0195-6574-EJ-Vol30-No1-6, 2009.
Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C.,
Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P.,
Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W.: Cost-effective
control of air quality and greenhouse gases in Europe: Modeling and policy
applications, Environ. Modell. Softw., 26, 1489–1501, https://doi.org/10.1016/j.envsoft.2011.07.012,
2011.
Amous, S.: Non-CO2 emissions from stationary combustion. Background paper to
“Good Practice Guidance and Uncertainty Management in National Greenhouse
Gas Inventories,” IPCC, 2000.
Anthoff, D. and Tol, R. S. J.: The uncertainty about the social cost of
carbon: A decomposition analysis using fund, Climatic Change, 117, 515–530,
https://doi.org/10.1007/s10584-013-0706-7, 2013.
Arrow, K. J. and Debreu, G.: Existence of an Equilibrium for a Competitive
Economy, Econometrica, 22, 265–290, https://doi.org/10.2307/1907353, 1954.
Balasko, Y.: The Equilibrium Manifold: Postmodern Developments in the Theory
of General Economic Equilibrium, MIT Press, 245 pp., 2009.
Barro, R. J. and Sala-i-Martin, X.: Economic growth, 2nd Edn., MIT
Press, Cambridge, Massachusetts, 2004.
Bauer, N., Brecha, R. J., and Luderer, G.: Economics of nuclear power and
climate change mitigation policies, P. Natl. Acad. Sci. USA, 109, 16805–16810,
https://doi.org/10.1073/pnas.1201264109, 2012a.
Bauer, N., Baumstark, L., and Leimbach, M.: The REMIND-R model: the role of
renewables in the low-carbon transformation – first-best vs. second-best
worlds, Climatic Change, 114, 145–168,
https://doi.org/10.1007/s10584-011-0129-2, 2012b.
Bauer, N., Hilaire, J., Brecha, R. J., Edmonds, J., Jiang, K., Kriegler, E.,
Rogner, H.-H., and Sferra, F.: Assessing global fossil fuel availability in
a scenario framework, Energy, 111, 580–592,
https://doi.org/10.1016/j.energy.2016.05.088, 2016a.
Bauer, N., Mouratiadou, I., Luderer, G., Baumstark, L., Brecha, R. J.,
Edenhofer, O., and Kriegler, E.: Global fossil energy markets and climate
change mitigation – an analysis with REMIND, Climatic Change, 136, 69–82,
https://doi.org/10.1007/s10584-013-0901-6, 2016b.
Bauer, N., Rose, S. K., Fujimori, S., Vuuren, D. P. van, Weyant, J., Wise,
M., Cui, Y., Daioglou, V., Gidden, M. J., Kato, E., Kitous, A., Leblanc, F.,
Sands, R., Sano, F., Strefler, J., Tsutsui, J., Bibas, R., Fricko, O.,
Hasegawa, T., Klein, D., Kurosawa, A., Mima, S., and Muratori, M.: Global
energy sector emission reductions and bioenergy use: overview of the
bioenergy demand phase of the EMF-33 model comparison, Climatic Change,
163, 1553–1568, https://doi.org/10.1007/s10584-018-2226-y, 2018.
Bauer, N., Klein, D., Humpenöder, F., Kriegler, E., Luderer, G., Popp,
A., and Strefler, J.: Bio-energy and CO2 emission reductions: an integrated
land-use and energy sector perspective, Climatic Change, 163, 1675–1693,
https://doi.org/10.1007/s10584-020-02895-z, 2020.
Baumstark, L.: REMIND 2.1 paper – code, reportings, scripts, Zenodo [code], https://doi.org/10.5281/zenodo.5047314, 2021.
Baumstark, L., Giannousakis, A., Rodrigues, R., Levesque, A., Oeser, J.,
Bertram, C., Mouratiadou, I., Malik, A., Schreyer, F., Soergel, B., Rottoli,
M., Mishra, A., Dirnaichner, A., Pehl, M., Klein, D., Strefler, J.,
Feldhaus, L., Brecha, R., Dietrich, J. P., and Bi, S.: mrremind: MadRat
REMIND Input Data Library, Zenodo [code], https://doi.org/10.5281/zenodo.4309197,
2020.
Bertram, C., Luderer, G., Pietzcker, R. C., Schmid, E., Kriegler, E., and
Edenhofer, O.: Complementing carbon prices with technology policies to keep
climate targets within reach, Nat. Clim. Change, 5, 235–239,
https://doi.org/10.1038/nclimate2514, 2015.
Bertram, C., Luderer, G., Popp, A., Minx, J. C., Lamb, W. F., Miodrag
Stevanović, Humpenöder, F., Giannousakis, A., and Kriegler, E.:
Targeted policies can compensate most of the increased sustainability risks
in 1.5 ∘C mitigation scenarios, Environ. Res. Lett., 13, 064038,
https://doi.org/10.1088/1748-9326/aac3ec, 2018.
Bodirsky, B. L., Karstens, K., Baumstark, L., Weindl, I., Wang, X., Mishra,
A., Wirth, S., Stevanovic, M., Steinmetz, N., Kreidenweis, U., Rodrigues,
R., Popov, R., Humpenoeder, F., Giannousakis, A., Levesque, A., Klein, D.,
Araujo, E., Beier, F., Oeser, J., Pehl, M., Leip, D., Molina Bacca, E.,
Martinelli, E., Schreyer, F., and Dietrich, J. P.: mrcommons: MadRat commons
Input Data Library, Zenodo [code], https://doi.org/10.5281/zenodo.3822010, 2020.
Bonges, H. A. and Lusk, A. C.: Addressing electric vehicle (EV) sales and
range anxiety through parking layout, policy and regulation, Transport.
Res. A-Pol., 83, 63–73,
https://doi.org/10.1016/j.tra.2015.09.011, 2016.
Bosetti, V., Massetti, E., and Tavoni,M.: TheWITCHModel, Structure,
Baseline, Solutions, 2007, FEEM Working Paper No. 10.2007, CMCC Research Paper No. 7, 2007.
Broehm, M., Strefler, J., and Bauer, N.: Techno-Economic Review of Direct
Air Capture Systems for Large Scale Mitigation of Atmospheric CO2, SSRN, https://doi.org/10.2139/ssrn.2665702, 2015.
Brückl, O.: Global Technical Potential of Electricity Production from Wind Energy, Internal Final Report for BMW AG Study, Institute for Energy Economy and Application Technology (IfE) Germany, Technische Universität München, Munich, Germany, 2005.
Burke, M., Hsiang, S. M., and Miguel, E.: Global non-linear effect of
temperature on economic production, Nature, 527, 235–239,
https://doi.org/10.1038/nature15725, 2015.
CONOPT: CONOPT version 3.17L, ARKI Consulting and Development A/S,
Bagsvaerdvej 246 A, DK-2880 Bagsvaerd, Denmark, 2020.
Debreu, G.: Economies with a Finite Set of Equilibria, Econometrica, 38, 387–392,
https://doi.org/10.2307/1909545, 1970.
Dellink, R., Chateau, J., Lanzi, E., and Magné, B.: Long-term economic
growth projections in the Shared Socioeconomic Pathways, Global
Environ. Chang., 42, 200–214,
https://doi.org/10.1016/j.gloenvcha.2015.06.004, 2017.
den Elzen, M., Kuramochi, T., Höhne, N., Cantzler, J., Esmeijer, K.,
Fekete, H., Fransen, T., Keramidas, K., Roelfsema, M., Sha, F., van Soest,
H., and Vandyck, T.: Are the G20 economies making enough progress to meet
their NDC targets?, Energ. Policy, 126, 238–250,
https://doi.org/10.1016/j.enpol.2018.11.027, 2019.
Dietrich, J. P., Baumstark, L., Bodirsky, B. L., Giannousakis, A., Wirth,
S., Kreidenweis, U., Rodrigues, R., and Stevanovic, M.: pik-piam/madrat:
v1.33.1, Zenodo [code], https://doi.org/10.5281/zenodo.1115491, 2017.
Dietrich, J. P., Bodirsky, B. L., Humpenöder, F., Weindl, I., Stevanović, M., Karstens, K., Kreidenweis, U., Wang, X., Mishra, A., Klein, D., Ambrósio, G., Araujo, E., Yalew, A. W., Baumstark, L., Wirth, S., Giannousakis, A., Beier, F., Chen, D. M.-C., Lotze-Campen, H., and Popp, A.: MAgPIE 4 – a modular open-source framework for modeling global land systems, Geosci. Model Dev., 12, 1299–1317, https://doi.org/10.5194/gmd-12-1299-2019, 2019.
Dietrich, J. P., Bodirsky, B. L., Weindl, I., Humpenöder, F.,
Stevanovic, M., Kreidenweis, U., Wang, X., Karstens, K., Mishra, A., Beier,
F. D., Molina Bacca, E. J., Klein, D., Ambrósio, G., Araujo, E.,
Biewald, A., Lotze-Campen, H., and Popp, A.: MAgPIE – An Open Source
land-use modeling framework, Zenodo [code], https://doi.org/10.5281/zenodo.4231467,
2020.
Eurek, K., Sullivan, P., Gleason, M., Hettinger, D., Heimiller, D., and
Lopez, A.: An improved global wind resource estimate for integrated
assessment models, Energ. Econ., 64, 552–567,
https://doi.org/10.1016/j.eneco.2016.11.015, 2017.
European Environmental Agency (EEA): Europe's onshore and offshore wind energy potential – An assessment of environmental and economical constraints, Technical Report 6/2009, https://doi.org/10.2800/11373, 2009.
Ewing, B. T., Barron, J. M., and Lynch, G. J.: Understanding Macroeconomic
Theory, Routledge, 241 pp., 2006.
Fischedick, M., Roy, J., Abdel-Aziz, A., Acquaye, A., Allwood, J. M., Ceron,
J.-P., Geng, Y., Kheshgi, H., Lanza, A., Perczyk, D., Price, L., Santalla,
E., Sheinbaum, C., and Tanaka, K.: Industry, in: Climate Change 2014:
Mitigation of Climate Change, Contribution of Working Group III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S.,
Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B.,
Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and Minx, J. C., Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 2014.
Fricko, O., Parkinson, S. C., Johnson, N., Strubegger, M., van Vliet, M. T.,
and Riahi, K.: Energy sector water use implications of a 2 ∘C
climate policy, Environ. Res. Lett., 11, 034011,
https://doi.org/10.1088/1748-9326/11/3/034011, 2016.
Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M. Heyes, C., Kindermann, G., Krey, V., McCollum, D. L., Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp, W., and Riahia, K.: The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century, Global Environ. Change,
42, 251–267, https://doi.org/10.1016/j.gloenvcha.2016.06.004,
2017.
Fujino, J., Nair, R., Kainuma, M., Masui, T., and Matsuoka, Y.: Multi-gas
mitigation analysis on stabilization scenarios using AIM global model,
Energ. J., in: Multi-Greenhouse Gas Mitigation and Climate Policy, 343–354, https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-17, 2006.
GAMS: General Algebraic Modeling System (GAMS) Release 31.1.1, GAMS
Development Corporation, Washington, DC, USA, 2020.
Giannousakis, A., Baumstark, L., and Kriegler, E.: En route to China's
mid-century climate goal: comparison of emissions intensity versus absolute
targets, Clim. Policy, 20, 1274–1289, https://doi.org/10.1080/14693062.2020.1798734, 2020a.
Giannousakis, A., Hilaire, J., Nemet, G. F., Luderer, G., Pietzcker, R. C.,
Rodrigues, R., Baumstark, L., and Kriegler, E.: How uncertainty in
technology costs and carbon dioxide removal availability affect climate
mitigation pathways, Energy, 216, 119253,
https://doi.org/10.1016/j.energy.2020.119253, 2020b.
Gibon, T., Hertwich, E. G., Arvesen, A., Singh, B., and Verones, F.: Health
benefits, ecological threats of low-carbon electricity, Environ. Res. Lett.,
12, 034023, https://doi.org/10.1088/1748-9326/aa6047, 2017a.
Gibon, T., Arvesen, A., and Hertwich, E. G.: Life cycle assessment
demonstrates environmental co-benefits and trade-offs of low-carbon
electricity supply options, Renew. Sustain. Energ. Rev., 76,
1283–1290, https://doi.org/10.1016/j.rser.2017.03.078, 2017b.
Glanemann, N., Willner, S. N., and Levermann, A.: Paris Climate Agreement
passes the cost-benefit test, Nat. Commun., 11, 110,
https://doi.org/10.1038/s41467-019-13961-1, 2020.
Global Emissions EDGAR v4.2:
http://edgar.jrc.ec.europa.eu/overview.php?v=42, last access: 25 January
2013.
Gütschow, J., Jeffery, L., Gieseke, R., Gebel, R., Stevens, D., Krapp,
M., and Rocha, M.: The PRIMAP-hist national historical emissions time series
(1850–2014), GFZ Data Services, https://doi.org/10.5880/PIK.2016.003, 2016.
Harmsen, M., Fricko, O., Hilaire, J., van Vuuren, D. P., Drouet, L.,
Durand-Lasserve, O., Fujimori, S., Keramidas, K., Klimont, Z., Luderer, G.,
Aleluia Reis, L., Riahi, K., Sano, F., and Smith, S. J.: Taking some heat
off the NDCs? The limited potential of additional short-lived climate
forcers' mitigation, Climatic Change, 163, 1443–1461,
https://doi.org/10.1007/s10584-019-02436-3, 2020.
Heckscher, E. F., Ohlin, B., Flam, H., and Flanders, M. J.: Heckscher-Ohlin
trade theory, MIT Press, Cambridge, Massachusetts, 234 pp., 1991.
Herfindahl, O. C.: Depletion and Economic Theory, in: Extractive Resources
and Taxation, edited by: Gaffney, M., University of Wisconsin Press, Madison,
Wisconsin, 1967.
Hoogwijk, M.: On the global and regional potential of renewable energy
sources, PhD Thesis, Universiteit Utrecht, Faculteit Scheikunde, Utrecht,
2004.
Hoogwijk, M. and Graus, W.: Global potential of renewable energy sources: a
literature assessment, Ecofys, REN21 – Renewable Energy Policy Network for the 21st Century, 45 pp., available at: https://www.researchgate.net/profile/Wina-Crijns-Graus/publication/237576106_Global_Potential_of_Renewable_ Energy_Sources_a_Literature_Assessment/links/0deec52f89ed 07b2b9000000/Global-Potential-of-Renewable-Energy-Sources-a-Literature-Assessment.pdf (last access: 27 October 2021), 2008.
Horlacher, H.-B.: Globale Potenziale der Wasserkraft. Externe Expertise
für das WBGU-Hauptgutachten 2003 “Welt im Wandel: Energiewende zur
Nachhaltigkeit,” WBGU, Heidelberg, Germany, 2003.
Hourcade, J.-C., Jaccard, M., Bataille, C., and Ghersi, F.: Hybrid Modeling:
New Answers to Old Challenges Introduction to the Special Issue of “The
Energy Journal”, Energ. J., 27, 1–11, 2006.
Howard, P. H. and Sterner, T.: Few and Not So Far Between: A Meta-analysis
of Climate Damage Estimates, Environ. Resour. Econ., 68, 197–225,
https://doi.org/10.1007/s10640-017-0166-z, 2017.
Humpenöder, F., Popp, A., Bodirsky, B. L., Weindl, I., Biewald, A.,
Hermann Lotze-Campen, Dietrich, J. P., Klein, D., Kreidenweis, U.,
Müller, C., Rolinski, S., and Stevanovic, M.: Large-scale bioenergy
production: how to resolve sustainability trade-offs?, Environ. Res. Lett.,
13, 024011, https://doi.org/10.1088/1748-9326/aa9e3b, 2018.
Huppmann, D., Kriegler, E., Krey, V., Riahi, K., Rogelj, J., Rose, S. K.,
Weyant, J., Bauer, N., Bertram, C., Bosetti, V., Calvin, K., Doelman, J.,
Drouet, L., Emmerling, J., Frank, S., Fujimori, S., Gernaat, D., Grubler,
A., Guivarch, C., Haigh, M., Holz, C., Iyer, G., Kato, E., Keramidas, K.,
Kitous, A., Leblanc, F., Liu, J.-Y., Löffler, K., Luderer, G., Marcucci,
A., McCollum, D., Mima, S., Popp, A., Sands, R. D., Sano, F., Strefler, J.,
Tsutsui, J., Van Vuuren, D., Vrontisi, Z., Wise, M., and Zhang, R.: IAMC
1.5 ∘C Scenario Explorer and Data hosted by IIASA, Integrated
Assessment Modeling Consortium & International Institute for Applied
Systems Analysis, https://doi.org/10.22022/SR15/08-2018.15429, 2018.
IEA: CO2 Capture and Storage – A key carbon abatement option, edited by:
OECD, I., International Energy Agency, 2008.
IEA: World Energy Outlook 2016, International Energy Agency, Paris, France,
2016.
IEA: Extended world energy balances, IEA World Energy Statistics and Balances (database), International Energy Agency, https://doi.org/10.1787/data-00513-en, 2021.
IPCC: Special Report on climate change, desertification, land degradation,
sustainable land management, food security, and greenhouse gas fluxes in
terrestrial ecosystems (SRCCL), available at: https://www.ipcc.ch/srccl/ (last access: 27 October 2021), 2019.
Jakob, M., Luderer, G., Steckel, J., Tavoni, M., and Monjon, S.: Time to act
now? Assessing the costs of delaying climate measures and benefits of early
action, Climatic Change, 114, 79–99,
https://doi.org/10.1007/s10584-011-0128-3, 2012.
Jones, B. and O'Neill, B. C.: Spatially explicit global population scenarios
consistent with the Shared Socioeconomic Pathways, Environ. Res. Lett., 11, 084003, https://doi.org/10.1088/1748-9326/11/8/084003, 2016.
Kalkuhl, M. and Wenz, L.: The Impact of Climate Conditions on Economic
Production. Evidence from a Global Panel of Regions, EAERE, Journal of Environmental Economics and Management, 103, 102360, https://doi.org/10.1016/j.jeem.2020.102360, 2020.
KC, S. and Lutz, W.: The human core of the shared socioeconomic pathways:
Population scenarios by age, sex and level of education for all countries to
2100, Global Environm. Chang., 42, 181–192,
https://doi.org/10.1016/j.gloenvcha.2014.06.004, 2017.
Klein, D.: Bioenergy markets in a climate constrained world, Doctoral Thesis, Fakultät VI – Planen Bauen Umwelt, Technische Universität Berlin, Berlin, Germany, https://doi.org/10.14279/depositonce-4307, 2015.
Klein, D., Humpenöder, F., Bauer, N., Dietrich, J. P., Popp, A.,
Bodirsky, B. L., Bonsch, M., and Lotze-Campen, H.: The global economic
long-term potential of modern biomass in a climate-constrained world,
Environ. Res. Lett., 9, 074017,
https://doi.org/10.1088/1748-9326/9/7/074017, 2014a.
Klein, D., Luderer, G., Kriegler, E., Strefler, J., Bauer, N., Leimbach, M.,
Popp, A., Dietrich, J. P., Humpenöder, F., Lotze-Campen, H., and
Edenhofer, O.: The value of bioenergy in low stabilization scenarios: an
assessment using REMIND-MAgPIE, Climatic Change, 123, 705–718,
https://doi.org/10.1007/s10584-013-0940-z, 2014b.
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017.
Klimont, Z., Hoglund, L., Heyes, C., Rafaj, P., Schoepp, W., Cofala, J.,
Borken-Kleefeld, J., Purohit, P., Kupiainen, K., Winiwarter, W., Amann, M.,
Zhao, B., Wang, S. X., Bertok, I., and Sander, R.: Global scenarios of air
pollutants and methane: 1990–2050, in preparation, 2021.
Krey, V.: Global energy-climate scenarios and models: a review, WIREs Energy and Environment, 3, 363–383, https://doi.org/10.1002/wene.98, 2014.
Krey, V., Guo, F., Kolp, P., Zhou, W., Schaeffer, R., Awasthy, A., Bertram,
C., de Boer, H.-S., Fragkos, P., Fujimori, S., He, C., Iyer, G., Keramidas,
K., Köberle, A. C., Oshiro, K., Reis, L. A., Shoai-Tehrani, B.,
Vishwanathan, S., Capros, P., Drouet, L., Edmonds, J. E., Garg, A., Gernaat,
D. E. H. J., Jiang, K., Kannavou, M., Kitous, A., Kriegler, E., Luderer, G.,
Mathur, R., Muratori, M., Sano, F., and van Vuuren, D. P.: Looking under the
hood: A comparison of techno-economic assumptions across national and global
integrated assessment models, Energy, 172, 1254–1267,
https://doi.org/10.1016/j.energy.2018.12.131, 2019.
Kriegler, E., Petermann, N., Krey, V., Schwanitz, V. J., Luderer, G.,
Ashina, S., Bosetti, V., Eom, J., Kitous, A., Méjean, A., Paroussos, L.,
Sano, F., Turton, H., Wilson, C., and Van Vuuren, D. P.: Diagnostic
indicators for integrated assessment models of climate policy, Technol.
Forecast. Soc., 90, 45–61,
https://doi.org/10.1016/j.techfore.2013.09.020, 2015.
Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M.,
Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D.,
Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J.-P., Luderer, G.,
Pehl, M., Pietzcker, R., Piontek, F., Lotze-Campen, H., Biewald, A., Bonsch,
M., Giannousakis, A., Kreidenweis, U., Müller, C., Rolinski, S.,
Schultes, A., Schwanitz, J., Stevanovic, M., Calvin, K., Emmerling, J.,
Fujimori, S., and Edenhofer, O.: Fossil-fueled development (SSP5): An energy
and resource intensive scenario for the 21st century, Global Environ.
Chang., 42, 297–315, https://doi.org/10.1016/j.gloenvcha.2016.05.015, 2017.
Kriegler, E., Bertram, C., Kuramochi, T., Jakob, M., Pehl, M.,
Stevanović, M., Höhne, N., Luderer, G., Minx, J. C., Fekete, H.,
Hilaire, J., Luna, L., Popp, A., Steckel, J. C., Sterl, S., Yalew, A. W.,
Dietrich, J. P., and Edenhofer, O.: Short term policies to keep the door
open for Paris climate goals, Environ. Res. Lett., 13, 074022,
https://doi.org/10.1088/1748-9326/aac4f1, 2018.
Kuramochi, T., Ramírez, A., Turkenburg, W., and Faaij, A.: Comparative
assessment of CO2 capture technologies for carbon-intensive industrial
processes, Prog. Energ. Combust., 38, 87–112, https://doi.org/10.1016/j.pecs.2011.05.001, 2012.
Kyle, P. and Kim, S. H.: Long-term implications of alternative light-duty
vehicle technologies for global greenhouse gas emissions and primary energy
demands, Energ. Policy, 39, 3012–3024,
https://doi.org/10.1016/j.enpol.2011.03.016, 2011.
Le Gallic, T., Assoumou, E., and Maïzi, N.: Future demand for energy
services through a quantitative approach of lifestyles, Energy, 141, 2613–2627, 2017.
Leimbach, M. and Bauer, N.: Capital markets and the costs of climate policies, Environ. Econ. Policy Stud., https://doi.org/10.1007/s10018-021-00327-5, online first, 2021.
Leimbach, M. and Giannousakis, A.: Burden sharing of climate change
mitigation: global and regional challenges under shared socio-economic
pathways, Climatic Change, 155, 273–291, https://doi.org/10.1007/s10584-019-02469-8, 2019.
Leimbach, M., Bauer, N., Baumstark, L., and Edenhofer, O.: Mitigation Costs
in a Globalized World: Climate Policy Analysis with REMIND-R, Environ. Model
Assess., 15, 155–173, https://doi.org/10.1007/s10666-009-9204-8, 2010a.
Leimbach, M., Bauer, N., Baumstark, L., Luken, M., and Edenhofer, O.:
Technological Change and International Trade – Insights from REMIND-R, Energ. J., 31,
109–136, https://doi.org/10.5547/ISSN0195-6574-EJ-Vol31-NoSI-5, 2010b.
Leimbach, M., Schultes, A., Baumstark, L., Giannousakis, A., and Luderer,
G.: Solution algorithms for regional interactions in large-scale integrated
assessment models of climate change, Ann. Oper. Res., 255, 29–45,
https://doi.org/10.1007/s10479-016-2340-z, 2017.
Levesque, A., Pietzcker, R. C., Baumstark, L., De Stercke, S., Grübler,
A., and Luderer, G.: How much energy will buildings consume in 2100? A
global perspective within a scenario framework, Energy, 148, 514–527,
https://doi.org/10.1016/j.energy.2018.01.139, 2018.
Levesque, A., Pietzcker, R. C., and Luderer, G.: Halving energy demand from
buildings: The impact of low consumption practices, Technol.
Forecast. Soc., 146, 253–266,
https://doi.org/10.1016/j.techfore.2019.04.025, 2019.
Levesque, A., Pietzcker, R. C., Baumstark, L., and Luderer, G.: Deep
decarbonisation of buildings energy services through demand and supply
transformations in a 1.5 ∘C scenario, Environ. Res. Lett., 16, 054071,
https://doi.org/10.1088/1748-9326/abdf07, 2021.
Lotze-Campen, H., Müller, C., Bondeau, A., Rost, S., Popp, A., and
Lucht, W.: Global food demand, productivity growth, and the scarcity of land
and water resources: a spatially explicit mathematical programming approach, Agr. Econ.,
39, 325–338, https://doi.org/10.1111/j.1574-0862.2008.00336.x, 2008.
Lu, X., McElroy, M. B., and Kiviluoma, J.: Global potential for
wind-generated electricity, P. Natl. Acad. Sci. USA, 106, 10933–10938,
https://doi.org/10.1073/pnas.0904101106, 2009.
Lucas, P. L., van Vuuren, D. P., Olivier, J. G. J., and den Elzen, M. G. J.:
Long-term reduction potential of non-CO2 greenhouse gases, Environ.
Sci. Policy, 10, 85–103,
https://doi.org/10.1016/j.envsci.2006.10.007, 2007.
Lucas, R. E.: Why Doesn't Capital Flow from Rich to Poor Countries?, Am. Econ. Rev., 80,
92–96, 1990.
Luderer, G., Pietzcker, R. C., Kriegler, E., Haller, M., and Bauer, N.:
Asia's role in mitigating climate change: A technology and sector specific
analysis with ReMIND-R, Energ. Econ., 34, S378–S390,
https://doi.org/10.1016/j.eneco.2012.07.022, 2012.
Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M.,
and Edenhofer, O.: Economic mitigation challenges: how further delay closes
the door for achieving climate targets, Environ. Res. Lett., 8, 034033,
https://doi.org/10.1088/1748-9326/8/3/034033, 2013.
Luderer, G., Krey, V., Calvin, K., Merrick, J., Mima, S., Pietzcker, R.,
Vliet, J. V., and Wada, K.: The role of renewable energy in climate
stabilization: results from the EMF27 scenarios, Climatic Change, 123,
427–441, https://doi.org/10.1007/s10584-013-0924-z, 2014.
Luderer, G., Leimbach, M., Bauer, N., Kriegler, E., Baumstark, L., Bertram,
C., Giannousakis, A., Hilaire, J., Klein, D., Levesque, A., Mouratiadou, I.,
Pehl, M., Pietzcker, R., Piontek, F., Roming, N., Schultes, A., Schwanitz,
V. J., and Strefler, J.: Description of the REMIND Model (Version 1.6),
Social Science Research Network, Rochester, NY, 2015.
Luderer, G., Vrontisi, Z., Bertram, C., Edelenbosch, O. Y., Pietzcker, R.
C., Rogelj, J., De Boer, H. S., Drouet, L., Emmerling, J., Fricko, O.,
Fujimori, S., Havlík, P., Iyer, G., Keramidas, K., Kitous, A., Pehl,
M., Krey, V., Riahi, K., Saveyn, B., Tavoni, M., Van Vuuren, D. P., and
Kriegler, E.: Residual fossil CO2 emissions in 1.5–2 ∘C
pathways, Nat. Clim. Change, 8, 626–633, https://doi.org/10.1038/s41558-018-0198-6, 2018.
Luderer, G., Pehl, M., Arvesen, A., Gibon, T., Bodirsky, B. L., de Boer, H.
S., Fricko, O., Hejazi, M., Humpenöder, F., Iyer, G., Mima, S.,
Mouratiadou, I., Pietzcker, R. C., Popp, A., van den Berg, M., van Vuuren,
D., and Hertwich, E. G.: Environmental co-benefits and adverse side-effects
of alternative power sector decarbonization strategies, Nat. Commun., 10,
5229, https://doi.org/10.1038/s41467-019-13067-8, 2019.
Luderer, G., Bauer, N., Baumstark, L., Bertram, C., Leimbach, M., Pietzcker,
R., Strefler, J., Aboumahboub, T., Auer, C., Bi, S., Dietrich, J.,
Dirnaichner, A., Giannousakis, A., Haller, M., Hilaire, J., Klein, D., Koch,
J., Körner, A., Kriegler, E., Levesque, A., Lorenz, A., Ludig, S.,
Lüken, M., Malik, A., Manger, S., Merfort, L., Mouratiadou, I., Pehl,
M., Piontek, F., Popin, L., Rauner, S., Rodrigues, R., Roming, N., Rottoli,
M., Schmidt, E., Schreyer, F., Schultes, A., Sörgel, B., and Ueckerdt,
F.: REMIND – REgional Model of INvestments and Development (version 2.1.3),
Zenodo [code], https://doi.org/10.5281/zenodo.4091409, 2020a.
Luderer, G., Auer, C., Bauer, N., Baumstark, L., Bertram, C., Bi, S.,
Dirnaichner, A., Giannousakis, A., Hilaire, J., Klein, D., Koch, J.,
Leimbach, M., Levesque, A., Malik, A., Merfort, L., Pehl, M., Pietzker, R.,
Piontek, F., Rauner, S., Rodrigues, R., Rottoli, M., Schreyer, F.,
Sörgel, B., Strefler, J., and Ueckerdt, F.: REMIND v2.1.3 – Model
documentation, Zenodo [data set], https://doi.org/10.5281/zenodo.4268254, 2020b.
Manne, A., Mendelsohn, R., and Richels, R.: A Model for Evaluating Regional
and Global Effects of GHG Reduction Policies, Energ. Policy, 23, 17–34, 1995.
Manne, A. S. and Rutherford, T. F.: International Trade in Oil, Gas and
Carbon Emission Rights: An Intertemporal General Equilibrium Model, Energ. J.,
15, 57–76, 1994.
Meinshausen, M., Wigley, T. M. L., and Raper, S. C. B.: Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications, Atmos. Chem. Phys., 11, 1457–1471, https://doi.org/10.5194/acp-11-1457-2011, 2011.
Miller, L. M. and Kleidon, A.: Wind speed reductions by large-scale wind
turbine deployments lower turbine efficiencies and set low generation
limits, P. Natl. Acad. Sci. USA, 113, 13570,
https://doi.org/10.1073/pnas.1602253113, 2016.
Mishra, G. S., Kyle, P., Teter, J., Morrison, G. M., Kim, S. H., and Yeh,
S.: Transportation Module of Global Change Assessment Model (GCAM): Model
Documentation – Version 1.0, 2013.
Model Documentation – REMIND – IAMC-Documentation:
https://www.iamcdocumentation.eu/index.php/Model_Documentation -_REMIND, last access: 8 December 2020.
Moore, F. C. and Diaz, D. B.: Temperature impacts on economic growth warrant
stringent mitigation policy, Nat. Clim. Change, 5, 127–131, https://doi.org/10.1038/nclimate2481, 2015.
Mouratiadou, I., Bevione, M., Bijl, D. L., Drouet, L., Hejazi, M., Mima, S.,
Pehl, M., and Luderer, G.: Water demand for electricity in deep
decarbonisation scenarios: a multi-model assessment, Climatic Change, 147,
91–106, https://doi.org/10.1007/s10584-017-2117-7, 2018.
Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin,
S., Gregory, K., Grubler, A., Jung, T. Y., Kram, T., La Rovere, E. L.,
Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H. M., Price, L.,
Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M.,
Shukla, P., Smith, S. J., Swart, R., van Rooijen, S., Victor, N., and Dadi,
Z.: Special Report on Emissions Scenarios: A Special Report of Working Group
III of the Intergovernmental Panel on Climate Change, Cambridge University
Press, Cambridge, UK, 2000.
Nordhaus, W.: Estimates of the Social Cost of Carbon: Concepts and Results
from the DICE-2013R Model and Alternative Approaches, Journal of the
Association of Environmental and Resource Economists, 1, 273–312,
https://doi.org/10.1086/676035, 2014.
Nordhaus, W. D.: Economic aspects of global warming in a post-Copenhagen
environment, P. Natl. Acad. Sci. USA, 107, 11721–11726, https://doi.org/10.1073/pnas.1005985107, 2010.
Nordhaus, W. D.: Revisiting the social cost of carbon, P. Natl. Acad. Sci. USA,, 114,
1518–1523, https://doi.org/10.1073/pnas.1609244114, 2017.
Nordhaus, W. D. and Yang, Z.: A Regional Dynamic General-Equilibrium Model
of Alternative Climate-Change Strategies, Am. Econ. Rev., 86,
741–765, 1996.
O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter,
T. R., Mathur, R., and Vuuren, D. P.: A new scenario framework for climate
change research: the concept of shared socioeconomic pathways, Climatic
Change, 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2, 2013.
Pauliuk, S., Milford, R. L., Müller, D. B., and Allwood, J. M.: The
Steel Scrap Age, Environ. Sci. Technol., 47, 3448–3454,
https://doi.org/10.1021/es303149z, 2013.
Pietzcker, R. C., Longden, T., Chen, W., Fu, S., Kriegler, E., Kyle, P., and
Luderer, G.: Long-term transport energy demand and climate policy:
Alternative visions on transport decarbonization in energy-economy models,
Energy, 64, 95–108, https://doi.org/10.1016/j.energy.2013.08.059, 2014a.
Pietzcker, R. C., Stetter, D., Manger, S., and Luderer, G.: Using the sun to
decarbonize the power sector: The economic potential of photovoltaics and
concentrating solar power, Appl. Energ., 135, 704–720,
https://doi.org/10.1016/j.apenergy.2014.08.011, 2014b.
Rao, S., Klimont, Z., Leitao, J., Riahi, K., van Dingenen, R., Reis, L. A.,
Calvin, K., Dentener, F., Drouet, L., Fujimori, S., Harmsen, M., Luderer,
G., Heyes, C., Strefler, J., Tavoni, M., and van Vuuren, D. P.: A
multi-model assessment of the co-benefits of climate mitigation for global
air quality, Environ. Res. Lett., 11, 124013, https://doi.org/10.1088/1748-9326/11/12/124013,
2016.
Rauner, S., Bauer, N., Dirnaichner, A., Dingenen, R. V., Mutel, C., and
Luderer, G.: Coal-exit health and environmental damage reductions outweigh
economic impacts, Nat. Clim. Change, 10, 308–312, https://doi.org/10.1038/s41558-020-0728-x, 2020.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, 2019.
Riahi, K., Vuuren, D. P. van, Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., KC, S., and Leimbach, M.: Shared Socioeconomic
Pathways: An Overview, Global Environ. Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009,
2017.
Roelfsema, M., van Soest, H. L., Harmsen, M., van Vuuren, D. P., Bertram,
C., den Elzen, M., Höhne, N., Iacobuta, G., Krey, V., Kriegler, E.,
Luderer, G., Riahi, K., Ueckerdt, F., Després, J., Drouet, L.,
Emmerling, J., Frank, S., Fricko, O., Gidden, M., Humpenöder, F.,
Huppmann, D., Fujimori, S., Fragkiadakis, K., Gi, K., Keramidas, K.,
Köberle, A. C., Aleluia Reis, L., Rochedo, P., Schaeffer, R., Oshiro,
K., Vrontisi, Z., Chen, W., Iyer, G. C., Edmonds, J., Kannavou, M., Jiang,
K., Mathur, R., Safonov, G., and Vishwanathan, S. S.: Taking stock of
national climate policies to evaluate implementation of the Paris Agreement,
Nat. Commun., 11, 2096, https://doi.org/10.1038/s41467-020-15414-6, 2020.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Seferian, R., Vilarino, M. V., Calvin, K., Edelenbosch, O., Emmerling, J., Fuss, S., Gasser, T., Gillet, N., He, C., Hertwich, E., Höglund Isaksson, L., Huppmann, D., Luderer, G., Markandya, A., McCollum, D., Millar, R., Meinshausen, M.,
Popp, A., Pereira, J., Purohit, P., Riahi, K., Ribes, A., Saunders, H., Schadel, C., Smith, C., Smith, P., Trutnevyte, E., Xiu, Y., Zickfeld, K., and Zhou, W.: Chapter 2: Mitigation pathways compatible with 1.5 ∘C in the context of sustainable development, in: Global Warming of 1.5 ∘C an IPCC special report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, Intergovernmental Panel on Climate Change, Geneva, Switzerland, available at: https://www.ipcc.ch/sr15/ (last access: 27 October 2021), 2018a.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V.,
Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L.,
Séférian, R., and Vilariño, M. V.: Mitigation pathways
compatible with 1.5 ∘C in the context of sustainable development,
in: Special Report on the impacts of global warming of 1.5 ∘C, in: Global Warming of 1.5 ∘C an IPCC special report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, Intergovernmental Panel on Climate Change, Geneva, Switzerland, available at: https://www.ipcc.ch/sr15/ (last access: 27 October 2021), 2018b.
Rogelj, J., Huppmann, D., Krey, V., Riahi, K., Clarke, L., Gidden, M.,
Nicholls, Z., and Meinshausen, M.: A new scenario logic for the Paris
Agreement long-term temperature goal, Nature, 573, 357–363,
https://doi.org/10.1038/s41586-019-1541-4, 2019.
Rogner, H.-H.: An assessment of world hydrocarbon ressources, Annu. Rev. Energ. Env., 22, 217–262,
https://doi.org/10.1146/annurev.energy.22.1.217, 1997.
Rogner, H.-H., Aguilera, R. F., Bertani, R., Bhattacharya, S. C., Dusseault,
M. B., Gagnon, L., Haberl, H., Hoogwijk, M., Johnson, A., Rogner, M. L.,
Wagner, H., and Yakushev, V.: Chapter 7 – Energy Resources and Potentials,
in: Global Energy Assessment – Toward a Sustainable Future, Cambridge
University Press, Cambridge, UK and New York, NY, USA and the International
Institute for Applied Systems Analysis, Laxenburg, Austria, 423–512, 2012.
Rottoli, M., Dirnaichner, A., Kyle, P., Baumstark, L., Pietzcker, R., and
Luderer, G.: Coupling a Detailed Transport Model to the Integrated
Assessment Model REMIND, Environ. Model. Assess.,
https://doi.org/10.1007/s10666-021-09760-y, 2021.
Schafer, A. and Victor, D. G.: The future mobility of the world population,
Transport. Res. A-Pol., 34, 171–205,
https://doi.org/10.1016/S0965-8564(98)00071-8, 2000.
Scholz, Y., Gils, H. C., and Pietzcker, R. C.: Application of a high-detail
energy system model to derive power sector characteristics at high wind and
solar shares, Energ. Econ., 64, 568–582, 2017.
Schultes, A., Leimbach, M., Luderer, G., Pietzcker, R. C., Baumstark, L.,
Bauer, N., Kriegler, E., and Edenhofer, O.: Optimal international technology
cooperation for the low-carbon transformation, Clim. Policy, 18, 1165–1176,
https://doi.org/10.1080/14693062.2017.1409190, 2018.
Schultes, A., Piontek, F., Soergel, B., Rogelj, J., Baumstark, L., Kriegler,
E., Edenhofer, O., and Luderer, G.: Economic damages from on-going climate
change imply deeper near-term emission cuts, Environ. Res. Lett., 16, 104053, https://doi.org/10.1088/1748-9326/ac27ce, 2021.
Schwanitz, V. J.: Evaluating integrated assessment models of global climate
change, Environ. Model. Softw., 50, 120–131,
https://doi.org/10.1016/j.envsoft.2013.09.005, 2013.
Soergel, B., Kriegler, E., Weindl, I., Rauner, S., Dirnaichner, A., Ruhe,
C., Hofmann, M., Bauer, N., Bertram, C., Bodirsky, B. L., Leimbach, M.,
Leininger, J., Levesque, A., Luderer, G., Pehl, M., Wingens, C., Baumstark,
L., Beier, F., Dietrich, J. P., Humpenöder, F., von Jeetze, P., Klein,
D., Koch, J., Pietzcker, R., Strefler, J., Lotze-Campen, H., and Popp, A.: A
sustainable development pathway for climate action within the UN 2030
Agenda, Nat. Clim. Change, 11, 656–664,
https://doi.org/10.1038/s41558-021-01098-3, 2021a.
Soergel, B., Kriegler, E., Bodirsky, B. L., Bauer, N., Leimbach, M., and
Popp, A.: Combining ambitious climate policies with efforts to eradicate
poverty, Nat. Commun., 12, 2342, https://doi.org/10.1038/s41467-021-22315-9, 2021b.
Strefler, J.: Challenges for low stabilization of climate change: The
complementarity of non-CO2 greenhouse gas and aerosol abatement to CO2
emission reductions, PhD Thesis, Technische Universität Berlin, Berlin,
Germany, 178 pp., 2014.
Strefler, J., Bauer, N., Kriegler, E., Popp, A., Giannousakis, A., and
Edenhofer, O.: Between Scylla and Charybdis: Delayed mitigation narrows the
passage between large-scale CDR and high costs, Environ. Res. Lett., 13, 044015,
https://doi.org/10.1088/1748-9326/aab2ba, 2018a.
Strefler, J., Amann, T., Bauer, N., Kriegler, E., and Hartmann, J.:
Potential and costs of carbon dioxide removal by enhanced weathering of
rocks, Environ. Res. Lett., 13, 034010, https://doi.org/10.1088/1748-9326/aaa9c4, 2018b.
Sullivan, P., Krey, V., and Riahi, K.: Impacts of considering electric
sector variability and reliability in the MESSAGE model, Energy Strateg.
Rev., 1, 157–163, https://doi.org/10.1016/j.esr.2013.01.001, 2013.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
The World in 2050 initiative (TWI): Transformations to Achieve the
Sustainable Development Goals, IIASA, TWI2050, Laxenburg, Austria, 2018.
Ueckerdt, F., Pietzcker, R., Scholz, Y., Stetter, D., Giannousakis, A., and
Luderer, G.: Decarbonizing global power supply under region-specific
consideration of challenges and options of integrating variable renewables
in the REMIND model, Energ. Econ., 64, 665–684,
https://doi.org/10.1016/j.eneco.2016.05.012, 2017.
UNEP: The Emissions Gap Report 2019, UNEP, Nairobi, Kenya, 2019.
United Nations General Assembly: Transforming our World: The 2030 Agenda for
Sustainable Development, UN, New York, NY, USA, 2015.
University of Delaware Air Temperature and Precipitation: NOAA Physical
Sciences Laboratory, available at:
https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html, last access: 8 December 2020.
van Beek, L., Hajer, M., Pelzer, P., van Vuuren, D., and Cassen, C.:
Anticipating futures through models: the rise of Integrated Assessment
Modelling in the climate science-policy interface since 1970, Global
Environ. Chang., 65, 102191,
https://doi.org/10.1016/j.gloenvcha.2020.102191, 2020.
Vandyck, T., Keramidas, K., Kitous, A., Spadaro, J. V., Van Dingenen, R.,
Holland, M., and Saveyn, B.: Air quality co-benefits for human health and
agriculture counterbalance costs to meet Paris Agreement pledges, Nat. Commun., 9, 1–11,
https://doi.org/10.1038/s41467-018-06885-9, 2018.
van Sluisveld, M. A. E., Harmsen, J. H. M., Bauer, N., McCollum, D. L.,
Riahi, K., Tavoni, M., Vuuren, D. P. van, Wilson, C., and Zwaan, B. van der:
Comparing future patterns of energy system change in 2 ∘C
scenarios with historically observed rates of change, Global Environ.
Chang., 35, 436–449, https://doi.org/10.1016/j.gloenvcha.2015.09.019, 2015.
van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., van
den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V.,
Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van
Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., and
Tabeau, A.: Energy, land-use and greenhouse gas emissions trajectories under
a green growth paradigm, Global Environ. Chang., 42, 237–250,
https://doi.org/10.1016/j.gloenvcha.2016.05.008, 2017.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Waisman, H.-D., Guivarch, C., and Lecocq, F.: The transportation sector and
low-carbon growth pathways: modelling urban, infrastructure, and spatial
determinants of mobility, Clim. Policy, 13, 106–129,
https://doi.org/10.1080/14693062.2012.735916, 2013.
West, J. J., Smith, S. J., Silva, R. A., Naik, V., Zhang, Y., Adelman, Z.,
Fry, M. M., Anenberg, S., Horowitz, L. W., and Lamarque, J.-F.: Co-benefits
of mitigating global greenhouse gas emissions for future air quality and
human health, Nat. Clim. Change, 3, 885–889,
https://doi.org/10.1038/nclimate2009, 2013.
WGBU: Welt im Wandel: Energiewende zur Nachhaltigkeit (WB der B globale
Umweltveränderung), available at: https://www.wbgu.de/de/publikationen/publikation/welt-im-wandel-energiewende-zur-nachhaltigkeit (last access: 27 October 2021), 2003.
Wilson, C., Grubler, A., Bauer, N., Krey, V., and Riahi, K.: Future capacity
growth of energy technologies: are scenarios consistent with historical
evidence?, Climatic Change, 118, 381–395,
https://doi.org/10.1007/s10584-012-0618-y, 2013.
World Bank: World Development Report 2012: Gender Equality and Development, World Bank, available at: https://openknowledge.worldbank.org/handle/10986/4391 (last access: 27 October 2021), 2012.
Short summary
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and Development (REMIND) with the aim of improving code documentation and transparency. REMIND is an integrated assessment model (IAM) of the energy-economic system. By answering questions like
Can the world keep global warming below 2 °C?and, if so,
Under what socio-economic conditions and applying what technological options?, it is the goal of REMIND to explore consistent transformation pathways.
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and...