Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2443-2021
https://doi.org/10.5194/gmd-14-2443-2021
Model description paper
 | 
05 May 2021
Model description paper |  | 05 May 2021

The Utrecht Finite Volume Ice-Sheet Model: UFEMISM (version 1.0)

Constantijn J. Berends, Heiko Goelzer, and Roderik S. W. van de Wal

Related authors

Brief communication: velocities and thinning rates for Halfar’s analytical solution to the Shallow Ice Approximation
Constantijn J. Berends
EGUsphere, https://doi.org/10.5194/egusphere-2024-3610,https://doi.org/10.5194/egusphere-2024-3610, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
CO2 and summer insolation as drivers for the Mid-Pleistocene transition
Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-57,https://doi.org/10.5194/cp-2024-57, 2024
Revised manuscript under review for CP
Short summary
Late Pleistocene glacial terminations accelerated by proglacial lakes
Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 20, 1761–1784, https://doi.org/10.5194/cp-20-1761-2024,https://doi.org/10.5194/cp-20-1761-2024, 2024
Short summary
Present-day mass loss rates are a precursor for West Antarctic Ice Sheet collapse
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Jorjo Bernales, Constantijn Berends, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-851,https://doi.org/10.5194/egusphere-2024-851, 2024
Short summary
The Utrecht Finite Volume Ice-Sheet Model (UFEMISM version 2.0) – part 1: description and idealised experiments
Constantijn J. Berends, Victor Azizi, Jorge Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-5,https://doi.org/10.5194/gmd-2024-5, 2024
Revised manuscript under review for GMD
Short summary

Related subject area

Cryosphere
SnowQM 1.0: a fast R package for bias-correcting spatial fields of snow water equivalent using quantile mapping
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev., 17, 8969–8988, https://doi.org/10.5194/gmd-17-8969-2024,https://doi.org/10.5194/gmd-17-8969-2024, 2024
Short summary
Simulation of snow albedo and solar irradiance profile with the Two-streAm Radiative TransfEr in Snow (TARTES) v2.0 model
Ghislain Picard and Quentin Libois
Geosci. Model Dev., 17, 8927–8953, https://doi.org/10.5194/gmd-17-8927-2024,https://doi.org/10.5194/gmd-17-8927-2024, 2024
Short summary
Evaluation of MITgcm-based ocean reanalyses for the Southern Ocean
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Yafei Nie, Ian Fenty, Matthew Mazloff, Armin Köhl, and Dimitris Menemenlis
Geosci. Model Dev., 17, 8613–8638, https://doi.org/10.5194/gmd-17-8613-2024,https://doi.org/10.5194/gmd-17-8613-2024, 2024
Short summary
Improvements in the land surface configuration to better simulate seasonal snow cover in the European Alps with the CNRM-AROME (cycle 46) convection-permitting regional climate model
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
Geosci. Model Dev., 17, 7645–7677, https://doi.org/10.5194/gmd-17-7645-2024,https://doi.org/10.5194/gmd-17-7645-2024, 2024
Short summary
A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024,https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary

Cited articles

Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., and Blatter, H.: Insolation-driven 100,000 year glacial cycles and hysteresis of ice-sheet volume, Nature Letters, 500, 190–194, 2013. 
Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, Methods in Computationl Physics: Advances in Research and Applications 17, 173–265, 1977. 
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy formulation for glaciers and ice sheets, J. Glaciol., 58, 441–457, 2012. 
Berends, C. J., de Boer, B., and van de Wal, R. S. W.: Application of HadCM3@Bristolv1.0 simulations of paleoclimate as forcing for an ice-sheet model, ANICE2.1: set-up and benchmark experiments, Geosci. Model Dev., 11, 4657–4675, https://doi.org/10.5194/gmd-11-4657-2018, 2018. 
Download
Short summary
The largest uncertainty in projections of sea-level rise comes from ice-sheet retreat. To better understand how these ice sheets respond to the changing climate, ice-sheet models are used, which must be able to reproduce both their present and past evolution. We have created a model that is fast enough to simulate an ice sheet at a high resolution over the course of an entire 120 000-year glacial cycle. This allows us to study processes that cannot be captured by lower-resolution models.