Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-177-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-177-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GTS v1.0: a macrophysics scheme for climate models based on a probability density function
Chein-Jung Shiu
CORRESPONDING AUTHOR
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Yi-Chi Wang
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Huang-Hsiung Hsu
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Wei-Ting Chen
Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
Hua-Lu Pan
Retired Senior Scientist, National Centers for Environmental Prediction, NOAA, College Park, Maryland, USA
Ruiyu Sun
National Centers for Environmental Prediction, NOAA, College Park, Maryland, USA
Yi-Hsuan Chen
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
Cheng-An Chen
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Related authors
No articles found.
Yung-Yao Lan, Huang-Hsiung Hsu, Wei-Liang Lee, and Simon Chou
EGUsphere, https://doi.org/10.5194/egusphere-2025-4773, https://doi.org/10.5194/egusphere-2025-4773, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Waves and bubbles enhance CO₂ exchange between ocean and air, especially under strong winds, but most models ignore these effects. We added a wave module to CESM1.2.2, capturing impacts on solubility and diffusivity, and compared results with NOAA’s CarbonTracker (CT2022). The new model better matches global CO₂ flux patterns, reduces pH changes and dpCO₂ differences, and shows how wave effects reveal the ocean’s buffering capacity through the carbonate–pH system.
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024, https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary
Short summary
This study uses the CAM5–SIT coupled model to investigate the effects of SST feedback frequency on the MJO simulations with intervals at 30 min, 1, 3, 6, 12, 18, 24, and 30 d. The simulations become increasingly unrealistic as the frequency of the SST feedback decreases. Our results suggest that more spontaneous air--sea interaction (e.g., ocean response within 3 d in this study) with high vertical resolution in the ocean model is key to the realistic simulation of the MJO.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Yi-Chi Wang, Wan-Ling Tseng, Yu-Luen Chen, Shih-Yu Lee, Huang-Hsiung Hsu, and Hsin-Chien Liang
Geosci. Model Dev., 16, 4599–4616, https://doi.org/10.5194/gmd-16-4599-2023, https://doi.org/10.5194/gmd-16-4599-2023, 2023
Short summary
Short summary
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the El Niño–Southern Oscillation (ENSO), a significant tropical climate pattern with global impacts. Our findings reveal that TaiESM1 effectively captures several characteristics of ENSO, such as its seasonal variation and remote teleconnections. Its pronounced ENSO strength bias is also thoroughly investigated, aiming to gain insights to improve climate model performance.
Yung-Yao Lan, Huang-Hsiung Hsu, Wan-Ling Tseng, and Li-Chiang Jiang
Geosci. Model Dev., 15, 5689–5712, https://doi.org/10.5194/gmd-15-5689-2022, https://doi.org/10.5194/gmd-15-5689-2022, 2022
Short summary
Short summary
This study has shown that coupling a high-resolution 1-D ocean model (SIT 1.06) with the Community Atmosphere Model 5.3 (CAM5.3) significantly improves the simulation of the Madden–Julian Oscillation (MJO) over the standalone CAM5.3. Systematic sensitivity experiments resulted in more realistic simulations of the tropical MJO because they had better upper-ocean resolution, adequate upper-ocean thickness, coupling regions including the eastern Pacific and southern tropics, and a diurnal cycle.
Wan-Ling Tseng, Huang-Hsiung Hsu, Yung-Yao Lan, Wei-Liang Lee, Chia-Ying Tu, Pei-Hsuan Kuo, Ben-Jei Tsuang, and Hsin-Chien Liang
Geosci. Model Dev., 15, 5529–5546, https://doi.org/10.5194/gmd-15-5529-2022, https://doi.org/10.5194/gmd-15-5529-2022, 2022
Short summary
Short summary
We show that coupling a high-resolution one-column ocean model to three atmospheric general circulation models dramatically improves Madden–Julian oscillation (MJO) simulations. It suggests two major improvements to the coupling process in the preconditioning phase and strongest convection phase over the Maritime Continent. Our results demonstrate a simple but effective way to significantly improve MJO simulations and potentially seasonal to subseasonal prediction.
Cited articles
Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice
cloud microphysical parameters using the CloudSat millimeter-wave radar and
temperature, J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008JD010049, 2009.
Bogenschutz, P. A. and Krueger, S. K.: A simplified pdf parameterization of
subgrid-scale clouds and turbulence for cloud-resolving models, J.
Adv. Model. Earth Sy., 5, 195–211, https://doi.org/10.1002/jame.20018,
2013.
Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Schanen, D. P., Meyer, N. R., and Craig, C.: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: single-column experiments, Geosci. Model Dev., 5, 1407–1423, https://doi.org/10.5194/gmd-5-1407-2012, 2012.
Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C.,
and Schanen, D. S.: Higher-Order Turbulence Closure and Its Impact on
Climate Simulations in the Community Atmosphere Model, J. Climate, 26,
9655–9676, https://doi.org/10.1175/JCLI-D-13-00075.1, 2013.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in:
Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK,
2013.
Bougeault, P. H.: Cloud-ensemble relation based on the gamma probability distribution for the higher-order models of the planetary boundary layer, J. Atmos. Sci., 39, 2691–2700, 1982.
Chaboureau, J.-P. and Bechtold, P.: A Simple Cloud Parameterization Derived
from Cloud Resolving Model Data: Diagnostic and Prognostic Applications, J.
Atmos. Sci., 59, 2362–2372, 2002.
Chen, W.-T., Woods, C. P., Li, J.-L. F., Waliser, D. E., Chern, J.-D., Tao,
W.-K., Jiang, J. H., and Tompkins, A. M.: Partitioning CloudSat ice water
content for comparison with upper-tropospheric ice in global atmospheric
models, J. Geophys. Res., 116, D19206, https://doi.org/10.1029/2010JD015179, 2011.
Chosson, F., Vaillancourt, P. A., Milbrandt, J. A., Yau, M. K., and Zadra,
A.: Adapting Two-Moment Microphysics Schemes across Model Resolutions:
Subgrid Cloud and Precipitation Fraction and Microphysical Sub-Time Step,
J. Atmos. Sci., 71, 2635–2653, https://doi.org/10.1175/JAS-D-13-0367.1, 2014.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kallberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: TheERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R., Langenhorst, A. R., Lee, H.-C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C. D., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stern, W. F., Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F.: The Dynamical Core, Physical Parameterizations, and Basic
Simulation Characteristics of the Atmospheric Component AM3 of the GFDL
Global Coupled Model CM3, J. Climate, 24, 3484–3519, https://doi.org/10.1175/2011JCLI3955.1, 2011.
Firl, G. J.: A Study of Low Cloud Climate Feedbacks Using a Generalized
Higher-Order Closure Subgrid Model, PhD thesis, Department of
Atmospheric Science, Colorado State University, Fort Collins, CO, USA, 253 pp., 2013.
Firl, G. J. and Randall, D. A.: Fitting and Analyzing LES Using Multiple
Trivariate Gaussians, J. Atmos. Sci., 72, 1094–1116, 2015.
Franklin, C. N., Jakob, C., Dix, M., Protat, A., and Roff, G.: Assessing the
performance of a prognostic and a diagnostic cloud scheme using single
column model simulations of TWP–ICE, Q. J. Roy. Meteor. Soc., 138,
734–754, https://doi.org/10.1002/qj.954, 2012.
Golaz, J., Larson, V., and Cotton, W.: A PDF-based model for boundary layer
clouds: Part 1. Method and model description, J. Atmos. Sci., 59,
3540–3551, 2002.
Golaz, J.-C., Horowitz, L. W., and Levy II, H.: Cloud tuning in a coupled
climate model: impact on 20th century warming, Geophys. Res. Lett., 40,
2246–2251, https://doi.org/10.1002/grl.50232, 2013.
Hogan, R. J., O'Connor, E. J., and Illingworth, A. J.: Verification of cloud
fraction forecasts, Q. J. Roy. Meteor. Soc., 135, 1494–1511, 2009.
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., Folini, D., Ji, D., Klocke, D., Qian, Y., Rauser, F., Rio, C., Tomassini, L., Watanabe, M., and Williamson, D.: The art and science of climate model tuning, B. Am. Meteorol. Soc., 98, 589–602, https://doi.org/10.1175/BAMS-D-15-00135.1, 2017.
Jakob, C. and Klein, S. A.: A parameterization of the effects of cloud and
precipitation overlap for use in general circulation models, Q. J. Roy.
Meteor. Soc., 126, 2525–2544, https://doi.org/10.1002/qj.49712656809, 2000.
Kay, J. E., Hillman, B., Klein, S., Zhang, Y., Medeiros, B., Gettelman, G.,
Pincus, R., Eaton, B., Boyle, J., Marchand, R., and Ackerman, T.: Exposing
global cloud biases in the Community Atmosphere Model (CAM) using satellite
observations and their corresponding instrument simulators, J. Climate, 25,
5190–5207, https://doi.org/10.1175/JCLI-D-11-00469.1, 2012.
Larson, V. E., Golaz, J.-C., and Cotton, W. R.: Small-scale and mesoscale
variability in cloudy boundary layers: Joint probability density functions,
J. Atmos. Sci., 59, 3519–3539, 2002.
Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I., Tu, C.-Y., Lan, Y.-Y., Chen, J.-P., Pan, H.-L., and Hsu, H.-H.: Taiwan Earth System Model Version 1: description and evaluation of mean state, Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020, 2020a.
Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I., Tu, C.-Y., Lan, Y.-Y., Chen, J.-P., Pan, H.-L., and Hsu, H.-H.: rceclccr/TaiESM v1.0.0 (Version v1.0.0), Zenodo, https://doi.org/10.5281/zenodo.3626654, 2020b.
Li, J.-L. F., Waliser, D. E., Chen, W.-T., Guan, B., Kubar, T. L., Stephens,
G. L., Ma, H.-Y., Min, D., Donner, L. J., Seman, C. J., and Horowitz, L. W.:
An observationally-based evaluation of cloud ice water in CMIP3 and CMIP5
GCMs and contemporary reanalyses using contemporary satellite data, J.
Geophys. Res., 117, D16105, https://doi.org/10.1029/2012JD017640, 2012.
Lin, Y.: Humidity variability revealed by a sounding array and its
implications for cloud representation in GCMs, J. Geophys. Res.-Atmos., 119,
10499–10514, https://doi.org/10.1002/2014JD021837, 2014.
Marchand, R., Mace, G. G., Ackerman, T., and Stephens, G.: Hydrometeor
Detection Using Cloudsat – An Earth-Orbiting 94-GHz Cloud Radar, J. Atmos.
Ocean. Tech., 25, 519–533, 2008.
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M., Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz, D., Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the climate of a global model, J. Adv. Model.
Earth Syst., 4, M00A01, https://doi.org/10.1029/2012MS000154, 2012.
May, P. T., Mather, J. H., Vaughan, G., Jakob, C., McFarquhar, G. M., Bower,
K. N., and Mace, G. G.: The Tropical Warm Pool International Cloud
Experiment, B. Am. Meteorol. Soc., 89, 629–645, 2008.
McCoy, D. T., Tan, I., Hartmann, D. L., Zelinka, M. D., and Storelvmo, T.:
On the relationships among cloud cover, mixed-phase partitioning, and
planetary albedo in GCMs, J. Adv. Model. Earth Sy., 8, 650–668,
https://doi.org/10.1002/2015MS000589, 2016.
Molod, A.: Constraints on the Profiles of Total Water PDF in AGCMs from AIRS
and a High-Resolution Model, J. Climate, 25, 8341–8352, 2012.
Neale, R. B., Chen, C.-C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D., Lamarque, J.-F., Marsh, D., Mills, M., Smith, A. K., Tilmes, S., Vitt, F., Morrison, H., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Ghan, S. J., Liu, X., Rasch, P. J., and Taylor, M. A. : Description of the NCAR Community Atmosphere Model (CAM
5.0), NCAR technical note (NCAR/TN-486+STR), National Center For
Atmospheric Research Boulder, Colorado, USA,, 268 pp., 2010.
Neale, R., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., and Zhang, M.: The Mean Climate of the Community Atmosphere Model
(CAM4) in Forced SST and Fully Coupled Experiments, J. Climate, 26,
5150–5168, https://doi.org/10.1175/JCLI-D-12-00236.1, 2013.
Park, R.-S., Chae, J.-H., and Hong, S.-Y.: A Revised Prognostic Cloud
Fraction Scheme in a Global Forecasting System, Mon. Weather Rev., 144,
1219–1229, https://doi.org/10.1175/MWR-D-15-0273.1, 2016.
Park, S.: A unified convection scheme (UNICON). Part I: Formulation, J.
Atmos. Sci., 71, 3902–3930, 2014a.
Park, S.: A unified convection scheme (UNICON). Part II: Simulation, J.
Atmos. Sci., 71, 3931–3973, 2014b.
Park, S., Bretherton, C. S., and Rasch, P. J.: Integrating Cloud Processes
in the Community Atmosphere Model, Version 5, J. Climate, 27, 6821–6856,
2014.
Qian, Y., Long, C. N., Wang, H., Comstock, J. M., McFarlane, S. A., and Xie, S.: Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations, Atmos. Chem. Phys., 12, 1785–1810, https://doi.org/10.5194/acp-12-1785-2012, 2012.
Quaas, J.: Evaluating the “critical relative humidity” as a measure of
subgrid-scale variability of humidity in general circulation model cloud
cover parameterizations using satellite data, J. Geophys. Res., 117, D09208,
https://doi.org/10.1029/2012JD017495, 2012.
Rasch, P. J. and Kristjansson, J. E.: A comparison of the CCM3 model
climate using diagnosed and predicted condensate parameterizations, J.
Climate, 11, 1587–1614,
https://doi.org/10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2, 1998.
Roeckner, E., Arpe, L., Bengtsson, L., Christoph, M., Clauseen, L., Dümenil, L., Esch, M., Giorgetta, M., Schlese, U., and Schulzweida, U.: The atmospheric general circulation model ECHAM-4:
Model description and simulation of present-day climate, Report 218,
Max Planck Institute for Meteorology, Hamburg, Germany,
90 pp.,
1996.
Salzmann, M., Ming, Y., Golaz, J.-C., Ginoux, P. A., Morrison, H., Gettelman, A., Krämer, M., and Donner, L. J.: Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests, Atmos. Chem. Phys., 10, 8037–8064, https://doi.org/10.5194/acp-10-8037-2010, 2010.
Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y.‐H., Cheng, Y., Clune, T. L., Genio, A. D., Fainchtein, R. d., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller, R. L., Oinas, V., Oloso, A. O., Perlwitz, J. P., Puma, M. J., Putman, W. M., Rind, D., Romanou, A., Sato, M., Shindell, D. T., Sun, S., Syed, R. A., Tausnev, N., K. Tsigaridis, Unger, N., Voulgarakis, A., Yao, M.‐S., and Zhang, J.: Configuration and assessment of the GISS ModelE2
contributions to the CMIP5 archive, J. Adv. Model. Earth Sy., 6, 141–184,
https://doi.org/10.1002/2013MS000265, 2014.
Slingo, J. M.: The development and verification of a cloud prediction scheme
for the ECMWF model, Q. J. Roy. Meteor. Soc., 113, 899–927,
https://doi.org/10.1002/qj.49711347710, 1987.
Smith, R.: A scheme for predicting layer clouds and their water content in a
general circulation model, Q. J. Roy. Meteor. Soc., 116, 435–460,
https://doi.org/10.1002/qj.49711649210, 1990.
Sommeria, G. and Deardorff, J. W.: Subgrid-scale condensation in models of
nonprecipitating clouds, J. Atmos. Sci., 34, 344–355, 1977.
Sotiropoulou, G., Sedlar, J., Forbesb, R., and Tjernstrom, M.: Summer Arctic
clouds in the ECMWF forecast model: an evaluation of cloud parameterization
schemes, Q. J. Roy. Meteor. Soc., 142, 387–400, https://doi.org/10.1002/qj.2658, 2015.
Storer, R. L., Griffin, B. M., Höft, J., Weber, J. K., Raut, E., Larson, V. E., Wang, M., and Rasch, P. J.: Parameterizing deep convection using the assumed probability density function method, Geosci. Model Dev., 8, 1–19, https://doi.org/10.5194/gmd-8-1-2015, 2015.
Su, H., Jiang, J. H., Zhai, C., Perun, V. S., Shen, J. T., Genio, A. D., Nazarenk, L. S., Donner, L. J., Horowitz, L., Seman, C., Morcrette, C., Petch, J., Ringer, M., Cole, J., v. Salzen, K., Mesquita, M. S., Iversen, T., Kristjansson, J. E., Gettelman, A., Rotstayn, L., Jeffrey, S., Dufresne, J.‐L., Watanabe, M., Kawai, H., Koshiro, T., Wu, T., Volodin, E. M., L'Ecuyer, T., Teixeira, J., and Stephens, G. L.: Diagnosis of regime-dependent cloud simulation errors in
CMIP5 models using “A-Train” satellite observations and reanalysis data,
J. Geophys. Res.-Atmos., 118, 2762–2780, https://doi.org/10.1029/2012JD018575, 2013.
Sundqvist, H.: Parameterization of condensation and associated clouds in
models for weather prediction and general circulation simulation, in:
Physically
Based Modeling and Simulation of Climate and Climatic Change, edited by: Schlesinger, M. E., Kluwer Academic, Springer, Dordrecht, the Netherlands, 433–461, 1988.
Sundqvist, H., Berge, E., and Kristjansson, J. E.: Condensation and cloud
parameterization studies with a mesoscale numerical weather prediction
model, Mon. Weather Rev., 117, 1641–1657, https://doi.org/10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2, 1989.
Tiedtke, M.: Representation of clouds in large-scale models, Mon. Weather Rev.,
121, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2, 1993.
Tompkins, A. M.: A prognostic parameterization for the subgrid-scale
variability of water vapor and clouds in large-scale models and its use to
diagnose cloud cover, J. Atmos. Sci., 59, 1917–1942,
https://doi.org/10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2, 2002.
Tompkins, A. M.: The parametrization of cloud cover, ECMWF Moist Processes Lecture Note Series, available at: https://www.ecmwf.int/sites/default/files/elibrary/2005/16958-parametrization-cloud-cover.pdf (last access: 8 January 2021), 2005.
Tompkins, A. M., Gierens, K., and Rädel, G.: Ice supersaturation in the
ECMWF integrated forecast system, Q. J. Roy. Meteor. Soc., 133, 53–63,
https://doi.org/10.1002/qj.14, 2007.
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., Morcrette,
C. J.: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme
description, Q. J. Roy. Meteor. Soc, 134, 2093–2107, https://doi.org/10.1002/qj.333, 2008a.
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., Morcrette,
C. J., and Bodas-Salcedo, A.: PC2: A prognostic cloud fraction and condensation
scheme. II: Climate model simulations, Q. J. R. Meteor. Soc., 134,
2109–2125, https://doi.org/10.1002/qj.332, 2008b.
Xie, S., Hume, T., Jakob, C., Klein, S., McCoy, R., and Zhang, M.: Observed
large-scale structures and diabatic heating and drying profiles during
TWP-ICE, J. Climate, 23, 57–79, 2010.
Xu, K. M. and Randall, D. A.: A semiempirical cloudiness parameterization
for use in climate models, J. Atmos. Sci., 53, 3084–3102,
https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2, 1996.
Zhang, M., Lin, W., Bretherton, C., Hack, J., and Rasch, P. J.: A modified
formulation of fractional stratiform condensation rate in the NCAR Community
Atmospheric Model (CAM2), J. Geophys. Res., 108, 4035,
https://doi.org/10.1029/2002JD002523, 2003.
Short summary
A cloud macrophysics scheme utilizing grid-mean hydrometeor information is developed and evaluated for climate models. The GFS–TaiESM–Sundqvist (GTS) scheme can simulate variations of cloud fraction associated with relative humidity (RH) in a more consistent way than the default scheme of CAM5.3. Through better cloud–RH distributions, the GTS scheme helps to better represent cloud fraction, cloud radiative forcing, and thermodynamic-related climatic fields in climate simulations.
A cloud macrophysics scheme utilizing grid-mean hydrometeor information is developed and...