Articles | Volume 14, issue 1
Geosci. Model Dev., 14, 177–204, 2021
https://doi.org/10.5194/gmd-14-177-2021
Geosci. Model Dev., 14, 177–204, 2021
https://doi.org/10.5194/gmd-14-177-2021

Development and technical paper 12 Jan 2021

Development and technical paper | 12 Jan 2021

GTS v1.0: a macrophysics scheme for climate models based on a probability density function

Chein-Jung Shiu et al.

Related authors

Embedding a One-column Ocean Model (SIT 1.06) in the Community Atmosphere Model 5.3 (CAM5.3; CAM5–SIT v1.0) to Improve Madden–Julian Oscillation Simulation in Boreal Winter
Yung-Yao Lan, Huang-Hsiung Hsu, Wan-Ling Tseng, and Li-Chiang Jiang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-346,https://doi.org/10.5194/gmd-2021-346, 2021
Preprint under review for GMD
Short summary
Taiwan Earth System Model Version 1: description and evaluation of mean state
Wei-Liang Lee, Yi-Chi Wang, Chein-Jung Shiu, I-chun Tsai, Chia-Ying Tu, Yung-Yao Lan, Jen-Ping Chen, Hua-Lu Pan, and Huang-Hsiung Hsu
Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020,https://doi.org/10.5194/gmd-13-3887-2020, 2020
Short summary
Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast
Mengjiao Jiang, Jinqin Feng, Zhanqing Li, Ruiyu Sun, Yu-Tai Hou, Yuejian Zhu, Bingcheng Wan, Jianping Guo, and Maureen Cribb
Atmos. Chem. Phys., 17, 13967–13982, https://doi.org/10.5194/acp-17-13967-2017,https://doi.org/10.5194/acp-17-13967-2017, 2017
Short summary
Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan
Chuan-Yao Lin, Chiung-Jui Su, Hiroyuki Kusaka, Yuko Akimoto, Yang-Fan Sheng, Jr-Chuan Huang, and Huang-Hsiung Hsu
Atmos. Chem. Phys., 16, 1809–1822, https://doi.org/10.5194/acp-16-1809-2016,https://doi.org/10.5194/acp-16-1809-2016, 2016
Short summary
A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains
W.-L. Lee, Y. Gu, K. N. Liou, L. R. Leung, and H.-H. Hsu
Atmos. Chem. Phys., 15, 5405–5413, https://doi.org/10.5194/acp-15-5405-2015,https://doi.org/10.5194/acp-15-5405-2015, 2015
Short summary

Related subject area

Climate and Earth system modeling
NorCPM1 and its contribution to CMIP6 DCPP
Ingo Bethke, Yiguo Wang, François Counillon, Noel Keenlyside, Madlen Kimmritz, Filippa Fransner, Annette Samuelsen, Helene Langehaug, Lea Svendsen, Ping-Gin Chiu, Leilane Passos, Mats Bentsen, Chuncheng Guo, Alok Gupta, Jerry Tjiputra, Alf Kirkevåg, Dirk Olivié, Øyvind Seland, Julie Solsvik Vågane, Yuanchao Fan, and Tor Eldevik
Geosci. Model Dev., 14, 7073–7116, https://doi.org/10.5194/gmd-14-7073-2021,https://doi.org/10.5194/gmd-14-7073-2021, 2021
Short summary
ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler
Bin Mu, Bo Qin, and Shijin Yuan
Geosci. Model Dev., 14, 6977–6999, https://doi.org/10.5194/gmd-14-6977-2021,https://doi.org/10.5194/gmd-14-6977-2021, 2021
Short summary
Topography-based local spherical Voronoi grid refinement on classical and moist shallow-water finite-volume models
Luan F. Santos and Pedro S. Peixoto
Geosci. Model Dev., 14, 6919–6944, https://doi.org/10.5194/gmd-14-6919-2021,https://doi.org/10.5194/gmd-14-6919-2021, 2021
Short summary
Decadal climate predictions with the Canadian Earth System Model version 5 (CanESM5)
Reinel Sospedra-Alfonso, William J. Merryfield, George J. Boer, Viatsheslav V. Kharin, Woo-Sung Lee, Christian Seiler, and James R. Christian
Geosci. Model Dev., 14, 6863–6891, https://doi.org/10.5194/gmd-14-6863-2021,https://doi.org/10.5194/gmd-14-6863-2021, 2021
Short summary
The Simplified Chemistry-Dynamical Model (SCDM V1.0)
Hao-Jhe Hong and Thomas Reichler
Geosci. Model Dev., 14, 6647–6660, https://doi.org/10.5194/gmd-14-6647-2021,https://doi.org/10.5194/gmd-14-6647-2021, 2021
Short summary

Cited articles

Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature, J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008JD010049, 2009. 
Bogenschutz, P. A. and Krueger, S. K.: A simplified pdf parameterization of subgrid-scale clouds and turbulence for cloud-resolving models, J. Adv. Model. Earth Sy., 5, 195–211, https://doi.org/10.1002/jame.20018, 2013. 
Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Schanen, D. P., Meyer, N. R., and Craig, C.: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the Community Atmosphere Model: single-column experiments, Geosci. Model Dev., 5, 1407–1423, https://doi.org/10.5194/gmd-5-1407-2012, 2012. 
Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., and Schanen, D. S.: Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model, J. Climate, 26, 9655–9676, https://doi.org/10.1175/JCLI-D-13-00075.1, 2013. 
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK, 2013. 
Download
Short summary
A cloud macrophysics scheme utilizing grid-mean hydrometeor information is developed and evaluated for climate models. The GFS–TaiESM–Sundqvist (GTS) scheme can simulate variations of cloud fraction associated with relative humidity (RH) in a more consistent way than the default scheme of CAM5.3. Through better cloud–RH distributions, the GTS scheme helps to better represent cloud fraction, cloud radiative forcing, and thermodynamic-related climatic fields in climate simulations.