Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1309-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-14-1309-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Parametrization of a lake water dynamics model MLake in the ISBA-CTRIP land surface system (SURFEX v8.1)
Thibault Guinaldo
CORRESPONDING AUTHOR
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Simon Munier
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Patrick Le Moigne
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Aaron Boone
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Bertrand Decharme
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Margarita Choulga
Research Department, European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, RG2 9AX, UK
Delphine J. Leroux
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Related authors
Thibault Guinaldo and Griet Neukermans
EGUsphere, https://doi.org/10.5194/egusphere-2025-1862, https://doi.org/10.5194/egusphere-2025-1862, 2025
Short summary
Short summary
In 2023, an exceptional marine heatwave occurred in the North Atlantic ocean and disrupted phytoplankton blooms. This study evaluates changes in Emiliania huxleyi dynamics showing bloom decline in the Celtic Sea and growth in the Barents Sea. These shifts reflect the direct impact of temperature extremes driven by human-induced climate change with major effects on ocean life and carbon cycle. Continuous monitoring is vital to understand and monitor regional adaptation of marine ecosystems.
Thibault Guinaldo, Aurore Voldoire, Robin Waldman, Stéphane Saux Picart, and Hervé Roquet
Ocean Sci., 19, 629–647, https://doi.org/10.5194/os-19-629-2023, https://doi.org/10.5194/os-19-629-2023, 2023
Short summary
Short summary
In the summer of 2022, France experienced a series of unprecedented heatwaves. This study is the first to examine the response of sea surface temperatures to these events, using spatial operational data and attributing the observed abnormally warm SSTs to atmospheric forcings. The findings of this study underscore the critical need for an efficient and sustainable operational system to monitor alterations that threaten the oceans in the context of climate change.
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841, https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Drylands contribute more than a third of the global vegetation productivity. Yet, these regions are not well represented in global vegetation models. Here, we tested how well 15 global models capture annual changes in dryland vegetation productivity. Models that didn’t have vegetation change over time or fire have lower variability in vegetation productivity. Models need better representation of grass cover types and their coverage. Our work highlights where and how these models need to improve.
Bertrand Decharme
EGUsphere, https://doi.org/10.5194/egusphere-2025-3262, https://doi.org/10.5194/egusphere-2025-3262, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study resolves a key inconsistency in how Earth system models represent the physical properties of soil organic matter in land surface models. It introduces a new method to compute its volumetric fraction and physical effects using standard input data and soil mixture theory. Validated with experimental mixtures and field observations, the proposed framework improves the physical realism of soil property estimates.
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 29, 2321–2337, https://doi.org/10.5194/hess-29-2321-2025, https://doi.org/10.5194/hess-29-2321-2025, 2025
Short summary
Short summary
A drought index is developed that quantifies drought on an annual scale, making it applicable to monitoring clay shrinkage damage to buildings. A comparison with the number of insurance claims for subsidence shows that the presence of trees near individual houses must be taken into account. Significant soil moisture droughts occurred in France in 2003, 2018, 2019, 2020, and 2022. Particularly high index values are observed in 2022. It is found that droughts will become more severe in the future.
Bertrand Decharme and Jeanne Colin
Earth Syst. Dynam., 16, 729–752, https://doi.org/10.5194/esd-16-729-2025, https://doi.org/10.5194/esd-16-729-2025, 2025
Short summary
Short summary
Our study uses a global climate model to investigate how groundwater and floodplains influence today's climate. We found that these continental water sources, often overlooked in climate models, can influence precipitation, temperature, and land surface hydrology. This research contributes to a better understanding of the dynamics of the Earth system and highlights the importance of considering interactions between hydrology and the atmosphere.
Belén Martí, Jannis Groh, Guylaine Canut, and Aaron Boone
EGUsphere, https://doi.org/10.5194/egusphere-2025-1783, https://doi.org/10.5194/egusphere-2025-1783, 2025
Short summary
Short summary
The characterization of vegetation at two sites proved insufficient to simulate adequately the evapotranspiration. A dry surface layer was implemented in the land surface model SURFEX-ISBA v9.0. It is compared to simulations without a soil resistance. The application to an alfalfa site and a natural grass site in semiarid conditions results in an improvement in the estimation of the latent heat flux. The surface energy budget and the soil and vegetation characteristics are explored in detail.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Thibault Guinaldo and Griet Neukermans
EGUsphere, https://doi.org/10.5194/egusphere-2025-1862, https://doi.org/10.5194/egusphere-2025-1862, 2025
Short summary
Short summary
In 2023, an exceptional marine heatwave occurred in the North Atlantic ocean and disrupted phytoplankton blooms. This study evaluates changes in Emiliania huxleyi dynamics showing bloom decline in the Celtic Sea and growth in the Barents Sea. These shifts reflect the direct impact of temperature extremes driven by human-induced climate change with major effects on ocean life and carbon cycle. Continuous monitoring is vital to understand and monitor regional adaptation of marine ecosystems.
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
Geosci. Model Dev., 18, 921–937, https://doi.org/10.5194/gmd-18-921-2025, https://doi.org/10.5194/gmd-18-921-2025, 2025
Short summary
Short summary
We compared spatiotemporal forecasts of three machine learning models that learned water and energy
states on the land surface from a physical model scheme. The forecasting models were developed with reanalysis data and simulations on a European scale and transferred to the globe. We found that all approaches deliver highly accurate approximations of the physical dynamic at long time horizons, implying their usefulness to advance land surface forecasting with synthetic data.
states on the land surface from a physical model scheme. The forecasting models were developed with reanalysis data and simulations on a European scale and transferred to the globe. We found that all approaches deliver highly accurate approximations of the physical dynamic at long time horizons, implying their usefulness to advance land surface forecasting with synthetic data.
Tanguy Ronan Lunel, Belen Marti, Aaron Boone, and Patrick Le Moigne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3562, https://doi.org/10.5194/egusphere-2024-3562, 2025
Short summary
Short summary
Modelling evapotranspiration is essential for understanding the water cycle. While irrigation is known to increase evapotranspiration, it is less known that it also modifies local weather, which can in turn partially reduce evapotranspiration. This latter phenomenon is overlooked in some land surface model configurations. This study investigates and quantifies the impact of this oversight, showing that land surface models overestimate evapotranspiration by about 25% for crops in irrigated areas.
Théo Brivoal, Virginie Guemas, Martin Vancoppenolle, Clément Rousset, and Bertrand Decharme
EGUsphere, https://doi.org/10.5194/egusphere-2024-3220, https://doi.org/10.5194/egusphere-2024-3220, 2025
Short summary
Short summary
Snow in polar regions is key to sea ice formation and the Earth's climate, but current climate models simplify snow cover on sea ice. This study integrates an intermediate complexity snow-physics scheme into a sea-ice model designed for climate applications. We show that modelling the temporal changes in properties such as the density and thermal conductivity of the snow layers leads to a more accurate representation of heat transfer between the underlying sea ice and the atmosphere.
Alexis Jeantet, Jean-Pierre Vergnes, Simon Munier, and Florence Habets
EGUsphere, https://doi.org/10.5194/egusphere-2025-93, https://doi.org/10.5194/egusphere-2025-93, 2025
Short summary
Short summary
The AquiFR hydrogeological modelling plateform is forced by 36 climate projections in order to simulate future groundwater levels over France. The results show significant scatters between regional climate models and RCPs. Overall, a rise in groundwater levels, affecting most of the study area, is the dominant signal. Four storylines have been selected to to illustrate the impacts of worst-case scenarios and help decision-makers to adopt sustainable groundwater management policies.
Silvana Ramos Buarque, Bertrand Decharme, Alina Lavinia Barbu, and Laurent Franchisteguy
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-451, https://doi.org/10.5194/essd-2024-451, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
The Crocus-ERA5 snow dataset supports Arctic snow monitoring and contributes to the Arctic Report Card. It improves on its predecessor with higher spatial resolution (0.25° vs. 0.75°), enhancing topographic and land cover detail. The product’s performance is assessed in terms of snow depth and extent compared to in situ observations and satellite data. The findings show a notable improvement, though biases remain, particularly in boreal forests, where the model tends to overestimate spring melt.
Malak Sadki, Gaëtan Noual, Simon Munier, Vanessa Pedinotti, Kaushlendra Verma, Clément Albergel, Sylvain Biancamaria, and Alice Andral
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-328, https://doi.org/10.5194/hess-2024-328, 2024
Preprint under review for HESS
Short summary
Short summary
This study explores how 20 years of remote-sensed discharge data from the ESA CCI improve large-scale hydrological models, CTRIP and MGB, through data assimilation. Using an EnKF framework across the Niger and Congo basins, it shows how assimilating denser temporal discharge data reduces biases and improves flow variability, enhancing accuracy. These findings underscore the role of long-term discharge data in refining models for climate assessments, water management, and forecasting.
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024, https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Short summary
CEMS_SurfaceFields_2022 dataset is a new set of high-resolution maps for land type (e.g. lake, forest), soil properties and population water needs at approximately 2 and 6 km at the Equator, covering Europe and the globe (excluding Antarctica). We describe what and how new high-resolution information can be used to create the dataset. The paper suggests that the dataset can be used as input for river, weather or other models, as well as for statistical descriptions of the region of interest.
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023, https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary
Short summary
Lakes play an important role when we try to explain and predict the weather. More accurate and up-to-date description of lakes all around the world for numerical models is a continuous task. However, it is difficult to assess the impact of updated lake description within a weather prediction system. In this work, we develop a method to quickly and automatically define how, where, and when updated lake description affects weather prediction.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne
Hydrol. Earth Syst. Sci., 27, 2437–2461, https://doi.org/10.5194/hess-27-2437-2023, https://doi.org/10.5194/hess-27-2437-2023, 2023
Short summary
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Four water potential and hydraulic conductivity closed-form equations, including one mixed form, are evaluated. One form is more relevant for simulating drainage, especially during intense drainage events. The soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Thibault Guinaldo, Aurore Voldoire, Robin Waldman, Stéphane Saux Picart, and Hervé Roquet
Ocean Sci., 19, 629–647, https://doi.org/10.5194/os-19-629-2023, https://doi.org/10.5194/os-19-629-2023, 2023
Short summary
Short summary
In the summer of 2022, France experienced a series of unprecedented heatwaves. This study is the first to examine the response of sea surface temperatures to these events, using spatial operational data and attributing the observed abnormally warm SSTs to atmospheric forcings. The findings of this study underscore the critical need for an efficient and sustainable operational system to monitor alterations that threaten the oceans in the context of climate change.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Arsène Druel, Simon Munier, Anthony Mucia, Clément Albergel, and Jean-Christophe Calvet
Geosci. Model Dev., 15, 8453–8471, https://doi.org/10.5194/gmd-15-8453-2022, https://doi.org/10.5194/gmd-15-8453-2022, 2022
Short summary
Short summary
Crop phenology and irrigation is implemented into a land surface model able to work at a global scale. A case study is presented over Nebraska (USA). Simulations with and without the new scheme are compared to different satellite-based observations. The model is able to produce a realistic yearly irrigation water amount. The irrigation scheme improves the simulated leaf area index, gross primary productivity, evapotransipiration, and land surface temperature.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202, https://doi.org/10.5194/tc-16-2183-2022, https://doi.org/10.5194/tc-16-2183-2022, 2022
Short summary
Short summary
This paper describes an intercomparison of snow models, of varying complexity, used for numerical weather prediction or academic research. The results show that the simplest models are, under certain conditions, able to reproduce the surface temperature just as well as the most complex models. Moreover, the diversity of surface parameters of the models has a strong impact on the temporal variability of the components of the simulated surface energy balance.
Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne
EGUsphere, https://doi.org/10.5194/egusphere-2022-274, https://doi.org/10.5194/egusphere-2022-274, 2022
Preprint archived
Short summary
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Three water potential and hydraulic conductivity closed-form equations including one mixed form are evaluated. The mixed form is more relevant to simulate drainage especially during intense drainage events. Soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Simon Munier and Bertrand Decharme
Earth Syst. Sci. Data, 14, 2239–2258, https://doi.org/10.5194/essd-14-2239-2022, https://doi.org/10.5194/essd-14-2239-2022, 2022
Short summary
Short summary
This paper presents a new global-scale river network at 1/12°, generated automatically and assessed over the 69 largest basins of the world. A set of hydro-geomorphological parameters are derived at the same spatial resolution, including a description of river stretches (length, slope, width, roughness, bankfull depth), floodplains (roughness, sub-grid topography) and aquifers (transmissivity, porosity, sub-grid topography). The dataset may be useful for hydrology modelling or climate studies.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Margarita Choulga, Greet Janssens-Maenhout, Ingrid Super, Efisio Solazzo, Anna Agusti-Panareda, Gianpaolo Balsamo, Nicolas Bousserez, Monica Crippa, Hugo Denier van der Gon, Richard Engelen, Diego Guizzardi, Jeroen Kuenen, Joe McNorton, Gabriel Oreggioni, and Antoon Visschedijk
Earth Syst. Sci. Data, 13, 5311–5335, https://doi.org/10.5194/essd-13-5311-2021, https://doi.org/10.5194/essd-13-5311-2021, 2021
Short summary
Short summary
People worry that growing man-made carbon dioxide (CO2) concentrations lead to climate change. Global models, use of observations, and datasets can help us better understand behaviour of CO2. Here a tool to compute uncertainty in man-made CO2 sources per country per year and month is presented. An example of all sources separated into seven groups (intensive and average energy, industry, humans, ground and air transport, others) is presented. Results will be used to predict CO2 concentrations.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Francesco Piccioni, Céline Casenave, Bruno Jacques Lemaire, Patrick Le Moigne, Philippe Dubois, and Brigitte Vinçon-Leite
Earth Syst. Dynam., 12, 439–456, https://doi.org/10.5194/esd-12-439-2021, https://doi.org/10.5194/esd-12-439-2021, 2021
Short summary
Short summary
Small lakes are ecosystems highly impacted by climate change. Here, the thermal regime of a small, shallow lake over the past six decades was reconstructed via 3D modelling. Significant changes were found: strong water warming in spring and summer (0.7 °C/decade) as well as increased stratification and thermal energy for cyanobacteria growth, especially in spring. The strong spatial patterns detected for stratification might create local conditions particularly favourable to cyanobacteria bloom.
Efisio Solazzo, Monica Crippa, Diego Guizzardi, Marilena Muntean, Margarita Choulga, and Greet Janssens-Maenhout
Atmos. Chem. Phys., 21, 5655–5683, https://doi.org/10.5194/acp-21-5655-2021, https://doi.org/10.5194/acp-21-5655-2021, 2021
Short summary
Short summary
We conducted an extensive analysis of the structural uncertainty of the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases, which adds a much needed reliability dimension to the accuracy of the emission estimates. The study undertakes in-depth analyses of the implication of aggregating emissions from different sources and/or countries on the accuracy. Results are presented for all emissions sectors according to IPCC definitions.
Michel Le Page, Younes Fakir, Lionel Jarlan, Aaron Boone, Brahim Berjamy, Saïd Khabba, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 25, 637–651, https://doi.org/10.5194/hess-25-637-2021, https://doi.org/10.5194/hess-25-637-2021, 2021
Short summary
Short summary
In the context of major changes, the southern Mediterranean area faces serious challenges with low and continuously decreasing water resources mainly attributed to agricultural use. A method for projecting irrigation water demand under both anthropogenic and climatic changes is proposed. Time series of satellite imagery are used to determine a set of semiempirical equations that can be easily adapted to different future scenarios.
Adrien Napoly, Aaron Boone, and Théo Welfringer
Geosci. Model Dev., 13, 6523–6545, https://doi.org/10.5194/gmd-13-6523-2020, https://doi.org/10.5194/gmd-13-6523-2020, 2020
Short summary
Short summary
Accurate modeling of snow impact on surface energy and mass fluxes is required from land surface models. This new version of the SURFEX model improves the representation of the snowpack. In particular, it prevents its ablation from occurring too early in the season, which also leads to better soil temperatures and energy fluxes toward the atmosphere. This was made possible with a more explicit and distinct representation of each layer that constitutes the surface (soil, snow, and vegetation).
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Cited articles
Adam, J. C., Haddeland, I., Su, F., and Lettenmaier, D. P.: Simulation of
reservoir influences on annual and seasonal streamflow changes for the Lena,
Yenisei, and Ob'rivers, J. Geophys. Res.-Atmos., 112, D24114,
https://doi.org/10.1029/2007JD008525,
2007. a
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi,
M., and Betts, A. K.: A Revised Hydrology for the ECMWF Model: Verification
from Field Site to Terrestrial Water Storage and Impact in the Integrated
Forecast System, J. Hydrometeorol., 10, 623–643,
https://doi.org/10.1175/2008JHM1068.1, 2009. a
Balsamo, G., Salgado, R., Dutra, E., Boussetta, S., Stockdale, T., and Potes,
M.: On the contribution of lakes in predicting near-surface temperature in a
global weather forecasting model, Tellus A, 64, 15829,
https://doi.org/10.3402/tellusa.v64i0.15829, 2012. a, b
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017. a
Best, J.: Anthropogenic stresses on the world's big rivers, Nat.
Geosci., 12, 7–21, 2019. a
Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The SWOT mission and its capabilities for land hydrology, Surv. Geophys., 37,
307–337, 2016. a
Blais, J. M. and Kalff, J.: The influence of lake morphometry on sediment
focusing, Limnol. Oceanogr., 40, 582–588, 1995. a
Bonan, G. B.: Sensitivity of a GCM simulation to inclusion of inland water
surfaces, J. Climate, 8, 2691–2704, 1995. a
Boone, A. and Etchevers, P.: An intercomparison of three snow schemes of
varying complexity coupled to the same land surface model: Local-scale
evaluation at an Alpine site, J. Hydrometeorol., 2, 374–394, 2001. a
Boone, A., Samuelsson, P., Gollvik, S., Napoly, A., Jarlan, L., Brun, E., and Decharme, B.: The interactions between soil–biosphere–atmosphere land surface model with a multi-energy balance (ISBA-MEB) option in SURFEXv8 – Part 1: Model description, Geosci. Model Dev., 10, 843–872, https://doi.org/10.5194/gmd-10-843-2017, 2017. a
Bouchez, C., Goncalves, J., Deschamps, P., Vallet-Coulomb, C., Hamelin, B., Doumnang, J.-C., and Sylvestre, F.: Hydrological, chemical, and isotopic budgets of Lake Chad: a quantitative assessment of evaporation, transpiration and infiltration fluxes, Hydrol. Earth Syst. Sci., 20, 1599–1619, https://doi.org/10.5194/hess-20-1599-2016, 2016. a
Burek, P., Van Der Knijff, J., and De Roo, A.: LISFLOOD, distributed water
balance and flood simulation model: Revised user manual, European commission,
joint research centre, Report EUR, 26162, https://doi.org/10.2788/24719, 2013. a
Busker, T., de Roo, A., Gelati, E., Schwatke, C., Adamovic, M., Bisselink, B., Pekel, J.-F., and Cottam, A.: A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry, Hydrol. Earth Syst. Sci., 23, 669–690, https://doi.org/10.5194/hess-23-669-2019, 2019. a
Cai, R., Feng, S., Oppenheimer, M., and Pytlikova, M.: Climate variability and
international migration: The importance of the agricultural linkage, J. Environ. Econ. Manag., 79, 135–151, 2016. a
Cardille, J., Coe, M. T., and Vano, J. A.: Impacts of climate variation and
catchment area on water balance and lake hydrologic type in
groundwater-dominated systems: a generic lake model, Earth Interactions, 8,
1–24, 2004. a
Choulga, M., Kourzeneva, E., Balsamo, G., Boussetta, S., and Wedi, N.: Upgraded global mapping information for earth system modelling: an application to surface water depth at the ECMWF, Hydrol. Earth Syst. Sci., 23, 4051–4076, https://doi.org/10.5194/hess-23-4051-2019, 2019. a
Codling, G., Sturchio, N. C., Rockne, K. J., Li, A., Peng, H., Timothy, J. T.,
Jones, P. D., and Giesy, J. P.: Spatial and temporal trends in poly-and
per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St.
Clair, Environ. Pollut., 237, 396–405, 2018. a
Crétaux, J.-F., Arsen, A., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., Gennero, M.-C., Nino,
F., Abarca Del Rio, R., Cazenave, A., and Maisongrande, P.: SOLS: A lake database to monitor in the Near Real Time water level
and storage variations from remote sensing data, Adv. Space Res.,
47, 1497–1507, 2011. a
Davison, B., Pietroniro, A., Fortin, V., Leconte, R., Mamo, M., and Yau, M.:
What is missing from the prescription of hydrology for land surface schemes?,
J. Hydrometeorol., 17, 2013–2039, 2016. a
Decharme, B. and Douville, H.: Global validation of the ISBA sub-grid
hydrology, Clim. Dynam., 29, 21–37, 2007. a
Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P., and Morin, S.: Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model, The Cryosphere, 10, 853–877, https://doi.org/10.5194/tc-10-853-2016, 2016. a
Decharme, B., Delire, C., Minvielle, M., Colin, J., Vergnes, J.-P., Alias, A.,
Saint-Martin, D., Séférian, R., Sénési, S., and Voldoire, A.:
Recent changes in the ISBA-CTRIP land surface system for use in the CNRM-CM6
climate model and in global off-line hydrological applications, J.
Adv. Model. Earth Syst., 11, 1207–1252, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Delire, C., Séférian, R., Decharme, B., Alkama, R., Calvet, J.-C.,Carrer, D., Gibelin, A.-L., Joetzjer, E., Morel, X., Rocher,
M., and Tzanos, D.: The
global land carbon cycle simulated with ISBA-CTRIP: improvements over the
last decade, J. Adv. Model. Earth Syst., e2019MS001886, https://doi.org/10.1029/2019MS001886,
2020. a
Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., McDowell, W. H., Kortelainen,
P., Caraco, N. F., Melack, J. M., and Middelburg, J. J.: The global
abundance and size distribution of lakes, ponds, and impoundments, Limnol. Oceanogr., 51, 2388–2397, 2006. a
Durand, Y., Brun, E., Merindol, L., Guyomarc'h, G., Lesaffre, B., and Martin,
E.: A meteorological estimation of relevant parameters for snow models,
Ann. Glaciol., 18, 65–71, 1993. a
Dutra, E., Stepanenko, V. M., Balsamo, G., Viterbo, P., Miranda, P., Mironov,
D., and Schär, C.: An offline study of the impact of lakes on the
performance of the ECMWF surface scheme, Boreal Environ. Res., 15,
100–112, 2010. a
Eerola, K., Rontu, L., Kourzeneva, E., Pour, H. K., and Duguay, C.: Impact of
partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic
winter situation – a case study using a limited area model, Tellus A, 66, 23929, https://doi.org/10.3402/tellusa.v66.23929, 2014. a
Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley,
H., and Amato, S.: Microplastic pollution in the surface waters of the
Laurentian Great Lakes, Marine Pollut. Bull., 77, 177–182, 2013. a
Etchevers, P., Golaz, C., and Habets, F.: Simulation of the water budget and
the river flows of the Rhone basin from 1981 to 1994, J. Hydrol.,
244, 60–85, 2001. a
Faroux, S., Kaptué Tchuenté, A. T., Roujean, J.-L., Masson, V., Martin, E., and Le Moigne, P.: ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models, Geosci. Model Dev., 6, 563–582, https://doi.org/10.5194/gmd-6-563-2013, 2013. a, b
Filatov, N., Viruchalkina, T. Y., Dianskiy, N., Nazarova, L., and Sinukovich,
V.: Intrasecular variability in the level of the largest lakes of Russia, Dokl. Earth Sci., 467, 393–397, https://doi.org/10.1134/S1028334X16040097, 2016. a
Filatov, N., Baklagin, V., Efremova, T., Nazarova, L., and Palshin, N.: Climate
change impacts on the watersheds of Lakes Onego and Ladoga from remote
sensing and in situ data, Inland Waters, 9, 130–141, 2019. a
Gao, H., Birkett, C., and Lettenmaier, D. P.: Global monitoring of large
reservoir storage from satellite remote sensing, Water Resour. Res.,
48, https://doi.org/10.1029/2012WR012063, 2012. a
Getirana, A., Jung, H. C., Van Den Hoek, J., and Ndehedehe, C. E.: Hydropower
dam operation strongly controls Lake Victoria's freshwater storage
variability, Sci. Total Environ., 726, 138343, https://doi.org/10.1016/j.scitotenv.2020.138343, 2020. a, b
Goudie, A. S.: Human impact on the natural environment, John Wiley & Sons, Ltd The Atrium, Southern Gate, Chichester, West Sussex,
PO198SQ, UK,
2018. a
Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F.,
Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras,
R., Goichot,
M., Higgins,
J., Hogan,
Z., Lip,
B., McClain,
M. E., Meng,
J., Mulligan,
M., Nilsson,
C., Olden,
J. D., Opperman,
J. J., Petry,
P., Reidy Liermann,
C., Sáenz,
L., Salinas-Rodríguez,
S., Schelle,
P., Schmitt,
R. J. P., Snider,
J., Tan,
F., Tockner,
K., Valdujo,
P. H., van Soesbergen,
A., and Zarfl,
C.: Mapping the
world's free-flowing rivers, Nature, 569, 215–221,
https://doi.org/10.1038/s41586-019-1111-9, 2019. a
Gronewold, A. D., Smith, J. P., Read, L., and Crooks, J. L.: Reconciling the
water balance of large lake systems, Adv. Water Resour., 137, 103505, https://doi.org/10.1016/j.advwatres.2020.103505,
2020. a, b
Gross, M.: The world's vanishing lakes, Curr. Biol., 27, R43–R46, https://doi.org/10.1016/j.cub.2017.01.008, 2017. a
Guinaldo, T.: Parametrization of lakes water dynamics in the ISBA-CTRIP land surface system (SURFEX v8.1) [Data set], Zenodo, https://doi.org/10.5281/zenodo.4013873, 2020. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91, 2009. a
Habets, F., Boone, A., Champeaux, J. L., Etchevers, P., Franchistéguy, L., Leblois, E., Ledoux, E.,
Le Moigne, P., Martin, E., Morel, S., Noilhan, J., Quintana Seguí, P., Rousset‐Regimbeau, F., and
Viennot, P.: The
SAFRAN-ISBA-MODCOU hydrometeorological model applied over France, J.
Geophys. Res.-Atmos., 113, https://doi.org/10.1029/2007JD008548, 2008. a
Haddeland, I., Skaugen, T., and Lettenmaier, D. P.: Anthropogenic impacts on
continental surface water fluxes, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL026047, 2006. a
Håkanson, L.: The importance of lake morphometry for the structureand
function of lakes, Int. Rev. Hydrobiol., 90, 433–461, 2005. a
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi,
Y. A. R., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R.,
Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and Zhai, P.: Observations: atmosphere and surface,
in: Climate change 2013 the physical science basis: Working group I
contribution to the fifth assessment report of the intergovernmental panel on
climate change, pp. 159–254, Cambridge University Press, available at: https://www.ipcc.ch/report/ar5/wg1/observations-atmosphere-and-surface/
(last access: 4 March 2021), 2013. a
Hollister, J. and Milstead, W. B.: Using GIS to estimate lake volume from
limited data, Lake and Reservoir Management, 26, 194–199, 2010. a
Hunger, M. and Döll, P.: Value of river discharge data for global-scale hydrological modeling, Hydrol. Earth Syst. Sci., 12, 841–861, https://doi.org/10.5194/hess-12-841-2008, 2008. a
Janse, J., Kuiper, J., Weijters, M., Westerbeek, E., Jeuken, M., Bakkenes, M.,
Alkemade, R., Mooij, W., and Verhoeven, J.: GLOBIO-Aquatic, a global model of
human impact on the biodiversity of inland aquatic ecosystems, Environ.
Sci.Policy, 48, 99–114, 2015. a
Jenny, J.-P., Anneville, O., Arnaud, F., Baulaz, Y., Bouffard, D.,Domaizon, I., Bocaniov,
S. A., Chèvre, N., Dittrich, M., Dorioz, J.-M., Dunlop, E. S., Dur, G.,
Guillard, J., Guinaldo, T., Jacquet, S., Jamoneau, A., Jawed, Z., Jeppesen, E.,
Krantzberg, G., Lenters, J., Leoni, B., Meybeck, M., Nava, V., Nõges, T., Nõges, P., Patelli,
M., Pebbles, V., Perga, M.-E., Rasconi, S., Ruetz III, C. R., Rudstam, L.,
Salmaso, N., Sapna, S., Straile, D., Tammeorg, O., Twiss, M. R., Uzarski, D. G.,
MariVentelä, A., Vincent, W. F., Wilhelm, S. W., Wängberg, S.-Å., and Weyhenmeyer, G. A.:
Scientists' Warning to Humanity: Rapid degradation of the world's large
lakes, J. Great Lakes Res., 46, 686–702, 2020. a, b, c
Jones, N. E.: Incorporating lakes within the river discontinuum: longitudinal
changes in ecological characteristics in stream–lake networks, Can.
J. Fish. Aquat. Sci., 67, 1350–1362, 2010. a
Karlsson, J. M., Jaramillo, F., and Destouni, G.: Hydro-climatic and lake
change patterns in Arctic permafrost and non-permafrost areas, J. Hydrol., 529, 134–145, 2015. a
Kitaigorodsky, S. and Miropolsky, Y. Z.: On the theory of the open ocean active
layer, Izv. Atmos. Ocean. Phys, 6, 97–102, 1970. a
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenario, J. Hydrol.,
424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011,
2012. a
Koseki, S. and Mooney, P. A.: Influences of Lake Malawi on the spatial and diurnal variability of local precipitation, Hydrol. Earth Syst. Sci., 23, 2795–2812, https://doi.org/10.5194/hess-23-2795-2019, 2019. a
Kourzeneva, E., Asensio, H., Martin, E., and Faroux, S.: Global gridded dataset
of lake coverage and lake depth for use in numerical weather prediction and
climate modelling, Tellus A, 64,
15640, https://doi.org/10.3402/tellusa.v64i0.15640, 2012. a
Krinner, G.: Impact of lakes and wetlands on boreal climate, J. Geophys. Res.-Atmos., 108, https://doi.org/10.1029/2002JD002597, 2003. a
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J.,
Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cycles, 19, https://doi.org/10.1029/2003GB002199, 2005. a
Krinner, G., Lézine, A.-M., Braconnot, P., Sepulchre, P., Ramstein, G.,
Grenier, C., and Gouttevin, I.: A reassessment of lake and wetland feedbacks
on the North African Holocene climate, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL050992,
2012. a
Kumar, S. V., Reichle, R. H., Koster, R. D., Crow, W. T., and Peters-Lidard,
C. D.: Role of subsurface physics in the assimilation of surface soil
moisture observations, J. Hydrometeorol., 10, 1534–1547, 2009. a
Ledoux, E., Girard, G., De Marsily, G., Villeneuve, J., and Deschenes, J.:
Spatially distributed modeling: conceptual approach, coupling surface water
and groundwater, in: Unsaturated Flow in Hydrologic Modeling, 435–454,
Springer, Dordrecht,
avalaible at: https://link.springer.com/chapter/10.1007/978-94-009-2352-2_16
(last access: 4 March 2021), 1989. a
Le Moigne, P., Boone, A., Calvet, J.-C., Decharme, B., Faroux, S., Gibelin, A.-L., Lebeaupin, C.,
Mahfouf, J.-F., Martin, E., Masson, V., Mironov, D., Noilhan, J., Tulet, P., and Van Den Hurk, B.: SURFEX scientific
documentation, Note de centre (CNRM/GMME), Météo-France, Toulouse,
France, 2009. a
Le Moigne, P., Colin, J., and Decharme, B.: Impact of lake surface temperatures
simulated by the FLake scheme in the CNRM-CM5 climate model, Tellus A, 68, 31274, https://doi.org/10.3402/tellusa.v68.31274, 2016. a, b, c
Le Moigne, P., Besson, F., Martin, E., Boé, J., Boone, A., Decharme, B., Etchevers, P., Faroux, S., Habets, F., Lafaysse, M., Leroux, D., and Rousset-Regimbeau, F.: The latest improvements with SURFEX v8.0 of the Safran–Isba–Modcou hydrometeorological model for France, Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, 2020. a, b, c
Lencastre, A.: Manuel d'hydraulique générale, Eyrolles, Paris, 1963. a
Marsily, G. d., Abarca-del Rio, R., Cazenave, A., and Ribstein, P.: Allons-nous
bientôt manquer d'eau?, La Météorologie, Saint Mandé, France, available at: http://documents.irevues.inist.fr/handle/2042/67429
(last access: 4 March 2021), 2018. a
Martynov, A., Sushama, L., Laprise, R., Winger, K., and Dugas, B.: Interactive
lakes in the Canadian Regional Climate Model, version 5: the role of lakes in
the regional climate of North America, Tellus A, 64, 16226,
https://doi.org/10.3402/tellusa.v64i0.16226, 2012. a
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A.,
Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin,
A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S.,
Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G.,
Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7. 2
land and ocean surface platform for coupled or offline simulation of earth
surface variables and fluxes, Tech. rep., Centre National de Recherches
Météorologiques, 2013. a, b
Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and
Terzhevik, A.: Implementation of the lake parameterisation scheme FLake into
the numerical weather prediction model COSMO, Boreal Environ. Res., 15, 218–230,
2010. a
Napoly, A., Boone, A., and Welfringer, T.: ISBA-MEB (SURFEX v8.1): model snow evaluation for local-scale forest sites, Geosci. Model Dev., 13, 6523–6545, https://doi.org/10.5194/gmd-13-6523-2020, 2020. a
Ogutu-Ohwayo, R., Hecky, R. E., Cohen, A. S., and Kaufman, L.: Human impacts on
the African great lakes, Environ. Biol. Fish., 50, 117–131, 1997. a
Oki, T. and Kanae, S.: Global hydrological cycles and world water resources,
science, 313, 1068–1072, 2006. a
Oki, T. and Sud, Y.: Design of Total Runoff Integrating Pathways (TRIP) A
global river channel network, Earth interactions, 2, 1–37, 1998. a
Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E.,
Peter, J., Levis, S., Swenson, S. C., Thornton, E., Feddema, J.,
Heald, C. L., Lamarque, J.-F., Niu, G.-Y., Qian, T., Running, S.,
Sakaguchi, K., Yang, L., Zeng, X., Zeng, X., and Decker, M.: Technical
description of version 4.0 of the Community Land Model (CLM), Tech. rep.,
National Center for Atmospheric Research, available at : https://opensky.ucar.edu/islandora/object/technotes:493 (last access: 4 March 2021), 2010. a
O'Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J., Schneider,
P., Lenters, J. D., McIntyre, P. B., Kraemer, B. M., Weyhenmeyer, G. A., Straile,
D., Dong, B., Adrian, R., Allan, M. G., Anneville, O., Arvola, L., Austin, J., Bailey, J.
L., Baron, J. S., Brookes, J. D., de Eyto, E., Dokulil, M. T., Hamilton, D. P.,
Havens, K., Hetherington, A. L., Higgins, S. N., Hook, S., Izmest'eva, L. R., Joehnk, K. D.,
Kangur, K., Kasprzak, P., Kumagai, M., Kuusisto, E., Leshkevich, G., Livingstonee, D. M.,
MacIntyre, S., May, L., Melack, J. M., Mueller‐Navarra, D. C., Naumenko, M., Noges, P., Noges,
T., North, R. P., Plisnier, P.-D., Rigosi, A., Rimmer, A., Rogora, M.,
Rudstam, L. G., Rusak, J. A., Salmaso, N., Samal, N. R., Schindler, D. E., Schladow, S. G., Schmid,
M., Schmidt, S. R., Silow, E., Soylu, M. E., Teubner, K., Verburg, P.,
Voutilainen, A., Watkinson, A., Williamson, C. E., and Zhang, G.: Rapid and highly variable warming of lake surface waters around the
globe, Geophys. Res. Lett., 42, 10–773, 2015. a
Palmer, M. E., Yan, N. D., and Somers, K. M.: Climate change drives coherent
trends in physics and oxygen content in North American lakes, Clim.
Change, 124, 285–299, 2014. a
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540,
418–422, 2016. a
Pham-Duc, B., Sylvestre, F., Papa, F., Frappart, F., Bouchez, C., and
Crétaux, J.-F.: The Lake Chad hydrology under current climate change,
Sci. Rep.-UK, 10, 1–10, 2020. a
Pietroniro, A., Fortin, V., Kouwen, N., Neal, C., Turcotte, R., Davison, B., Verseghy, D., Soulis, E. D., Caldwell, R., Evora, N., and Pellerin, P.: Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale, Hydrol. Earth Syst. Sci., 11, 1279–1294, https://doi.org/10.5194/hess-11-1279-2007, 2007. a
Pujol, O., Lascaux, F., and Georgis, J.: Kinematics and microphysics of
MAP-IOP3 event from radar observations and Meso-NH simulations, Atmos.
Res., 101, 124–142, 2011. a
Quintana-Segui, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon,
M., Canellas, C., Franchisteguy, L., and Morel, S.: Analysis of near-surface
atmospheric variables: Validation of the SAFRAN analysis over France, J. Appl. Meteorol. Climatol., 47, 92–107, 2008. a
Rahmstorf, S.: Bifurcations of the Atlantic thermohaline circulation in
response to changes in the hydrological cycle, Nature, 378, 145–149, 1995. a
Reinecke, R., Wachholz, A., Mehl, S., Foglia, L., Niemann, C., and Döll,
P.: Importance of spatial resolution in global groundwater modeling,
Groundwater, 58, 363–376, 2020. a
Salgado, R. and Le Moigne, P.: Coupling of the FLake model to the Surfex
externalized surface model, Boreal Environ. Res., 15, 231–244, 2010. a
Sauvage, C., Brossier, C. L., Ducrocq, V., Bouin, M.-N., Vincendon, B.,
Verdecchia, M., Taupier-Letage, I., and Orain, F.: Impact of the
representation of the freshwater river input in the Western Mediterranean
Sea, Ocean Model., 131, 115–131, 2018. a
Schallenberg, M., de Winton, M. D., Verburg, P., Kelly, D. J., Hamill, K. D.,
and Hamilton, D. P.: Ecosystem services of lakes, Ecosystem services in
New Zealand: conditions and trends. Manaaki Whenua Press, Lincoln,
203–225, 2013. a
Séférian, R., Nabat, P., Michou, M., Saint‐Martin, D., Voldoire, A., Colin, J., Decharme,
B., Delire, C., Berthet, S., Chevallier, M., Sénési, S.,
Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Geoffroy, O., Guérémy, J.-F., Moine,
M.-P., Msadek, R., Ribes, A., Rocher, M., Roehrig, R., Salasy-Mélia, D., Sanchez, E., Terray, L., Valcke, S., Waldman, R., Aumont, O.,
Bopp, L., Deshayes, J., Éthé, C., and Madec, G.:
Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System
Processes in Present-Day and Future Climate, J. Adv. Model.
Earth Sy., 11,
4182–4227, 2019. a
Sharma, S., Gray, D. K., Read, J. S., O'Reilly, C. M., Schneider, P., Qudrat,
A., Gries, C., Stefanoff, S., Hampton, S. E., Hook, S., Lenters, J. D., Livingstone,
D. M., McIntyre,
P. B., Adrian,
R., Allan,
M. G., Anneville,
O., Arvola,
L., Austin,
J., Bailey,
J., Baron,
J. S., Brookes,
J., Chen,
Y., Daly,
R., Dokulil,
M., Dong,
B., Ewing,
K., de Eyto,
E., Hamilton,
D., Havens,
K., Haydon,
S., Hetzenauer,
H., Heneberry,
J., Hetherington,
A. L., Higgins,
S. N., Hixson,
E., Izmest'eva,
L. R., Jones,
B. M., Kangur,
K., Kasprzak,
P., Köster,
O., Kraemer,
B. M., Kumagai,
M., Kuusisto,
E., Leshkevich,
G., May,
L., MacIntyre,
S., Müller-Navarra,
D., Naumenko,
M., Noges,
P., Noges,
T., Niederhauser,
P., North,
R. P., Paterson,
A. M., Plisnier,
P.-D., Rigosi,
A., Rimmer,
A., Rogora,
M., Rudstam,
L., Rusak,
J. A., Salmaso,
N., Samal,
N. R., Schindler,
D. E., Schladow,
G., Schmidt,
S. R., Schultz,
T., Silow,
E. A., Straile,
D., Teubner,
K., Verburg,
P., Voutilainen,
A., Watkinson,
A., Weyhenmeyer,
G. A., Williamson,
C. E., and Woo,
K. H.: A global
database of lake surface temperatures collected by in situ and satellite
methods from 1985–2009, Sci. Data, 2, 150008, 2015. a
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year
high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111, 2006. a
Shin, S., Pokhrel, Y., and Miguez-Macho, G.: High-resolution modeling of
reservoir release and storage dynamics at the continental scale, Water Resour. Res., 55, 787–810, 2019. a
Smith, S. D., McIntyre, P. B., Halpern, B. S., Cooke, R. M., Marino, A. L.,
Boyer, G. L., Buchsbaum, A., Burton Jr., G., Campbell, L. M., Ciborowski,
J. J., Doran, P. J., Infante,
D. M., Johnson,
L. B., Read,
J. G., Rose,
J. B., Rutherford,
E. S., Steinman,
A. D., and Allan,
J. D.: Rating impacts in a multi-stressor world: a quantitative
assessment of 50 stressors affecting the Great Lakes, Ecol.
Appl., 25, 717–728, 2015. a
Soubeyroux, J.-M., Martin, E., Franchisteguy, L., Habets, F., Noilhan, J.,
Baillon, M., Regimbeau, F., Vidal, J.-P., Lemoigne, P., and Morel, S.:
Safran-Isba-Modcou (SIM): Un outil pour le suivi hydrométéorologique
opérationnel et les études, La Météorologie, available at: http://documents.irevues.inist.fr/bitstream/handle/2042/21890/meteo_2008_63_40.pdf?sequence=1
(last access: 4 March 2021), 2008. a
Spence, C.: Hydrological processes and streamflow in a lake dominated
watercourse, Hydrol. Process., 20, 3665–3681, 2006. a
Thiery, W., Davin, E. L., Panitz, H.-J., Demuzere, M., Lhermitte, S., and
Van Lipzig, N.: The impact of the African Great Lakes on the regional
climate, J. Climate, 28, 4061–4085, 2015. a
Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global
inventory of lakes based on high-resolution satellite imagery, Geophys.
Res. Lett., 41, 6396–6402, 2014. a
Voldoire, A., Decharme, B., Pianezze, J., Lebeaupin Brossier, C., Sevault, F., Seyfried, L., Garnier, V., Bielli, S., Valcke, S., Alias, A., Accensi, M., Ardhuin, F., Bouin, M.-N., Ducrocq, V., Faroux, S., Giordani, H., Léger, F., Marsaleix, P., Rainaud, R., Redelsperger, J.-L., Richard, E., and Riette, S.: SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales, Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, 2017. a
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A.,
Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat, P., Roehrig,
R., Salas y Mélia,
D., Séférian,
R., Valcke,
S., Beau,
I., Belamari,
S., Berthet,
S., Cassou,
C., Cattiaux,
J., Deshayes,
J., Douville,
H., Ethé,
C., Franchistéguy,
L., Geoffroy,
O., Lévy,
C., Madec,
G., Meurdesoif,
Y., Msadek,
R., Ribes,
A., Sanchez‐Gomez,
E., and Terray, Waldman,
L.
R.: Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1, J.
Adv. Model. Earth Sy., 11, 2177–2213, 2019. a
Vörösmarty, C. J., Moore III, B., Grace, A. L., Gildea, M. P., Melillo,
J. M., Peterson, B. J., Rastetter, E. B., and Steudler, P. A.: Continental
scale models of water balance and fluvial transport: an application to South
America, Global Biogeochem. Cycles, 3, 241–265, 1989. a
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D.,
Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A.,
Liermann, C. R., et al.: Global threats to human water security and river
biodiversity, Nature, 467, 555–561, 2010. a
Vyruchalkina, T. Y.: Lake Baikal and the Angara River before and after the
Construction of Reservoirs., Water Resour., 31, 483–489, 2004. a
Wagner, A., Hülsmann, S., Paul, L., Paul, R. J., Petzoldt, T., Sachse, R.,
Schiller, T., Zeis, B., Benndorf, J., and Berendonk, T. U.: A
phenomenological approach shows a high coherence of warming patterns in
dimictic aquatic systems across latitude, Marine Biol., 159, 2543–2559,
2012. a
Werner, M.: Shuttle radar topography mission (SRTM) mission overview, Frequenz,
55, 75–79, 2001. a
WHO: Progress on sanitation and drinking-water – 2010 update, World
Health Organization, Geneva, 60, 2010. a
Williams, W. D.: What future for saline lakes?, Environment: Science and Policy
for Sustainable Development, 38, 12–39, 1996. a
Williamson, C. E., Saros, J. E., Vincent, W. F., and Smol, J. P.: Lakes and
reservoirs as sentinels, integrators, and regulators of climate change,
Limnol. Oceanogr., 54, 2273–2282, 2009. a
Woolway, R. I. and Merchant, C. J.: Worldwide alteration of lake mixing regimes
in response to climate change, Nat. Geosci., 12, 271–276, 2019. a
Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O'Reilly,
C. M., and Sharma, S.: Global lake responses to climate change, Nature
Rev. Earth Environ., 1, 388–403, 2020. a
Wu, H., Kimball, J. S., Li, H., Huang, M., Leung, L. R., and Adler, R. F.: A
new global river network database for macroscale hydrologic modeling, Water Resour. Res., 48, https://doi.org/10.1029/2012WR012313, 2012. a
Yao, J., Zhang, Q., Ye, X., Zhang, D., and Bai, P.: Quantifying the impact of
bathymetric changes on the hydrological regimes in a large floodplain lake:
Poyang Lake, J. Hydrol., 561, 711–723, 2018. a
Zhang, K., Su, J., Xiong, X., Wu, X., Wu, C., and Liu, J.: Microplastic
pollution of lakeshore sediments from remote lakes in Tibet plateau, China,
Environ. Pollut., 219, 450–455, 2016. a
Zhou, T., Nijssen, B., Gao, H., and Lettenmaier, D. P.: The contribution of
reservoirs to global land surface water storage variations, J. Hydrometeorol., 17, 309–325, 2016. a
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Lakes are of fundamental importance in the Earth system as they support essential environmental...